1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782
|
from __future__ import annotations
import copy
from datetime import datetime
from typing import Any
import numpy as np
import pandas as pd
import pytest
import xarray as xr
from xarray.coding.cftimeindex import CFTimeIndex
from xarray.core.indexes import (
Hashable,
Index,
Indexes,
PandasIndex,
PandasMultiIndex,
_asarray_tuplesafe,
safe_cast_to_index,
)
from xarray.core.variable import IndexVariable, Variable
from xarray.tests import assert_array_equal, assert_identical, requires_cftime
from xarray.tests.test_coding_times import _all_cftime_date_types
def test_asarray_tuplesafe() -> None:
res = _asarray_tuplesafe(("a", 1))
assert isinstance(res, np.ndarray)
assert res.ndim == 0
assert res.item() == ("a", 1)
res = _asarray_tuplesafe([(0,), (1,)])
assert res.shape == (2,)
assert res[0] == (0,)
assert res[1] == (1,)
class CustomIndex(Index):
def __init__(self, dims) -> None:
self.dims = dims
class TestIndex:
@pytest.fixture
def index(self) -> CustomIndex:
return CustomIndex({"x": 2})
def test_from_variables(self) -> None:
with pytest.raises(NotImplementedError):
Index.from_variables({}, options={})
def test_concat(self) -> None:
with pytest.raises(NotImplementedError):
Index.concat([], "x")
def test_stack(self) -> None:
with pytest.raises(NotImplementedError):
Index.stack({}, "x")
def test_unstack(self, index) -> None:
with pytest.raises(NotImplementedError):
index.unstack()
def test_create_variables(self, index) -> None:
assert index.create_variables() == {}
assert index.create_variables({"x": "var"}) == {"x": "var"}
def test_to_pandas_index(self, index) -> None:
with pytest.raises(TypeError):
index.to_pandas_index()
def test_isel(self, index) -> None:
assert index.isel({}) is None
def test_sel(self, index) -> None:
with pytest.raises(NotImplementedError):
index.sel({})
def test_join(self, index) -> None:
with pytest.raises(NotImplementedError):
index.join(CustomIndex({"y": 2}))
def test_reindex_like(self, index) -> None:
with pytest.raises(NotImplementedError):
index.reindex_like(CustomIndex({"y": 2}))
def test_equals(self, index) -> None:
with pytest.raises(NotImplementedError):
index.equals(CustomIndex({"y": 2}))
def test_roll(self, index) -> None:
assert index.roll({}) is None
def test_rename(self, index) -> None:
assert index.rename({}, {}) is index
@pytest.mark.parametrize("deep", [True, False])
def test_copy(self, index, deep) -> None:
copied = index.copy(deep=deep)
assert isinstance(copied, CustomIndex)
assert copied is not index
copied.dims["x"] = 3
if deep:
assert copied.dims != index.dims
assert copied.dims != copy.deepcopy(index).dims
else:
assert copied.dims is index.dims
assert copied.dims is copy.copy(index).dims
def test_getitem(self, index) -> None:
with pytest.raises(NotImplementedError):
index[:]
class TestPandasIndex:
def test_constructor(self) -> None:
pd_idx = pd.Index([1, 2, 3])
index = PandasIndex(pd_idx, "x")
assert index.index.equals(pd_idx)
# makes a shallow copy
assert index.index is not pd_idx
assert index.dim == "x"
# test no name set for pd.Index
pd_idx.name = None
index = PandasIndex(pd_idx, "x")
assert index.index.name == "x"
def test_from_variables(self) -> None:
# pandas has only Float64Index but variable dtype should be preserved
data = np.array([1.1, 2.2, 3.3], dtype=np.float32)
var = xr.Variable(
"x", data, attrs={"unit": "m"}, encoding={"dtype": np.float64}
)
index = PandasIndex.from_variables({"x": var}, options={})
assert index.dim == "x"
assert index.index.equals(pd.Index(data))
assert index.coord_dtype == data.dtype
var2 = xr.Variable(("x", "y"), [[1, 2, 3], [4, 5, 6]])
with pytest.raises(ValueError, match=r".*only accepts one variable.*"):
PandasIndex.from_variables({"x": var, "foo": var2}, options={})
with pytest.raises(
ValueError, match=r".*cannot set a PandasIndex.*scalar variable.*"
):
PandasIndex.from_variables({"foo": xr.Variable((), 1)}, options={})
with pytest.raises(
ValueError, match=r".*only accepts a 1-dimensional variable.*"
):
PandasIndex.from_variables({"foo": var2}, options={})
def test_from_variables_index_adapter(self) -> None:
# test index type is preserved when variable wraps a pd.Index
data = pd.Series(["foo", "bar"], dtype="category")
pd_idx = pd.Index(data)
var = xr.Variable("x", pd_idx)
index = PandasIndex.from_variables({"x": var}, options={})
assert isinstance(index.index, pd.CategoricalIndex)
def test_concat_periods(self):
periods = pd.period_range("2000-01-01", periods=10)
indexes = [PandasIndex(periods[:5], "t"), PandasIndex(periods[5:], "t")]
expected = PandasIndex(periods, "t")
actual = PandasIndex.concat(indexes, dim="t")
assert actual.equals(expected)
assert isinstance(actual.index, pd.PeriodIndex)
positions = [list(range(5)), list(range(5, 10))]
actual = PandasIndex.concat(indexes, dim="t", positions=positions)
assert actual.equals(expected)
assert isinstance(actual.index, pd.PeriodIndex)
@pytest.mark.parametrize("dtype", [str, bytes])
def test_concat_str_dtype(self, dtype) -> None:
a = PandasIndex(np.array(["a"], dtype=dtype), "x", coord_dtype=dtype)
b = PandasIndex(np.array(["b"], dtype=dtype), "x", coord_dtype=dtype)
expected = PandasIndex(
np.array(["a", "b"], dtype=dtype), "x", coord_dtype=dtype
)
actual = PandasIndex.concat([a, b], "x")
assert actual.equals(expected)
assert np.issubdtype(actual.coord_dtype, dtype)
def test_concat_empty(self) -> None:
idx = PandasIndex.concat([], "x")
assert idx.coord_dtype is np.dtype("O")
def test_concat_dim_error(self) -> None:
indexes = [PandasIndex([0, 1], "x"), PandasIndex([2, 3], "y")]
with pytest.raises(ValueError, match=r"Cannot concatenate.*dimensions.*"):
PandasIndex.concat(indexes, "x")
def test_create_variables(self) -> None:
# pandas has only Float64Index but variable dtype should be preserved
data = np.array([1.1, 2.2, 3.3], dtype=np.float32)
pd_idx = pd.Index(data, name="foo")
index = PandasIndex(pd_idx, "x", coord_dtype=data.dtype)
index_vars = {
"foo": IndexVariable(
"x", data, attrs={"unit": "m"}, encoding={"fill_value": 0.0}
)
}
actual = index.create_variables(index_vars)
assert_identical(actual["foo"], index_vars["foo"])
assert actual["foo"].dtype == index_vars["foo"].dtype
assert actual["foo"].dtype == index.coord_dtype
def test_to_pandas_index(self) -> None:
pd_idx = pd.Index([1, 2, 3], name="foo")
index = PandasIndex(pd_idx, "x")
assert index.to_pandas_index() is index.index
def test_sel(self) -> None:
# TODO: add tests that aren't just for edge cases
index = PandasIndex(pd.Index([1, 2, 3]), "x")
with pytest.raises(KeyError, match=r"not all values found"):
index.sel({"x": [0]})
with pytest.raises(KeyError):
index.sel({"x": 0})
with pytest.raises(ValueError, match=r"does not have a MultiIndex"):
index.sel({"x": {"one": 0}})
def test_sel_boolean(self) -> None:
# index should be ignored and indexer dtype should not be coerced
# see https://github.com/pydata/xarray/issues/5727
index = PandasIndex(pd.Index([0.0, 2.0, 1.0, 3.0]), "x")
actual = index.sel({"x": [False, True, False, True]})
expected_dim_indexers = {"x": [False, True, False, True]}
np.testing.assert_array_equal(
actual.dim_indexers["x"], expected_dim_indexers["x"]
)
def test_sel_datetime(self) -> None:
index = PandasIndex(
pd.to_datetime(["2000-01-01", "2001-01-01", "2002-01-01"]), "x"
)
actual = index.sel({"x": "2001-01-01"})
expected_dim_indexers = {"x": 1}
assert actual.dim_indexers == expected_dim_indexers
actual = index.sel({"x": index.to_pandas_index().to_numpy()[1]})
assert actual.dim_indexers == expected_dim_indexers
def test_sel_unsorted_datetime_index_raises(self) -> None:
index = PandasIndex(pd.to_datetime(["2001", "2000", "2002"]), "x")
with pytest.raises(KeyError):
# pandas will try to convert this into an array indexer. We should
# raise instead, so we can be sure the result of indexing with a
# slice is always a view.
index.sel({"x": slice("2001", "2002")})
def test_equals(self) -> None:
index1 = PandasIndex([1, 2, 3], "x")
index2 = PandasIndex([1, 2, 3], "x")
assert index1.equals(index2) is True
def test_join(self) -> None:
index1 = PandasIndex(["a", "aa", "aaa"], "x", coord_dtype="<U3")
index2 = PandasIndex(["aa", "aaa", "aaaa"], "x", coord_dtype="<U4")
expected = PandasIndex(["aa", "aaa"], "x")
actual = index1.join(index2)
print(actual.index)
assert actual.equals(expected)
assert actual.coord_dtype == "=U4"
expected = PandasIndex(["a", "aa", "aaa", "aaaa"], "x")
actual = index1.join(index2, how="outer")
print(actual.index)
assert actual.equals(expected)
assert actual.coord_dtype == "=U4"
def test_reindex_like(self) -> None:
index1 = PandasIndex([0, 1, 2], "x")
index2 = PandasIndex([1, 2, 3, 4], "x")
expected = {"x": [1, 2, -1, -1]}
actual = index1.reindex_like(index2)
assert actual.keys() == expected.keys()
np.testing.assert_array_equal(actual["x"], expected["x"])
index3 = PandasIndex([1, 1, 2], "x")
with pytest.raises(ValueError, match=r".*index has duplicate values"):
index3.reindex_like(index2)
def test_rename(self) -> None:
index = PandasIndex(pd.Index([1, 2, 3], name="a"), "x", coord_dtype=np.int32)
# shortcut
new_index = index.rename({}, {})
assert new_index is index
new_index = index.rename({"a": "b"}, {})
assert new_index.index.name == "b"
assert new_index.dim == "x"
assert new_index.coord_dtype == np.int32
new_index = index.rename({}, {"x": "y"})
assert new_index.index.name == "a"
assert new_index.dim == "y"
assert new_index.coord_dtype == np.int32
def test_copy(self) -> None:
expected = PandasIndex([1, 2, 3], "x", coord_dtype=np.int32)
actual = expected.copy()
assert actual.index.equals(expected.index)
assert actual.index is not expected.index
assert actual.dim == expected.dim
assert actual.coord_dtype == expected.coord_dtype
def test_getitem(self) -> None:
pd_idx = pd.Index([1, 2, 3])
expected = PandasIndex(pd_idx, "x", coord_dtype=np.int32)
actual = expected[1:]
assert actual.index.equals(pd_idx[1:])
assert actual.dim == expected.dim
assert actual.coord_dtype == expected.coord_dtype
class TestPandasMultiIndex:
def test_constructor(self) -> None:
foo_data = np.array([0, 0, 1], dtype="int64")
bar_data = np.array([1.1, 1.2, 1.3], dtype="float64")
pd_idx = pd.MultiIndex.from_arrays([foo_data, bar_data], names=("foo", "bar"))
index = PandasMultiIndex(pd_idx, "x")
assert index.dim == "x"
assert index.index.equals(pd_idx)
assert index.index.names == ("foo", "bar")
assert index.index.name == "x"
assert index.level_coords_dtype == {
"foo": foo_data.dtype,
"bar": bar_data.dtype,
}
with pytest.raises(ValueError, match=".*conflicting multi-index level name.*"):
PandasMultiIndex(pd_idx, "foo")
# default level names
pd_idx = pd.MultiIndex.from_arrays([foo_data, bar_data])
index = PandasMultiIndex(pd_idx, "x")
assert list(index.index.names) == ["x_level_0", "x_level_1"]
def test_from_variables(self) -> None:
v_level1 = xr.Variable(
"x", [1, 2, 3], attrs={"unit": "m"}, encoding={"dtype": np.int32}
)
v_level2 = xr.Variable(
"x", ["a", "b", "c"], attrs={"unit": "m"}, encoding={"dtype": "U"}
)
index = PandasMultiIndex.from_variables(
{"level1": v_level1, "level2": v_level2}, options={}
)
expected_idx = pd.MultiIndex.from_arrays([v_level1.data, v_level2.data])
assert index.dim == "x"
assert index.index.equals(expected_idx)
assert index.index.name == "x"
assert list(index.index.names) == ["level1", "level2"]
var = xr.Variable(("x", "y"), [[1, 2, 3], [4, 5, 6]])
with pytest.raises(
ValueError, match=r".*only accepts 1-dimensional variables.*"
):
PandasMultiIndex.from_variables({"var": var}, options={})
v_level3 = xr.Variable("y", [4, 5, 6])
with pytest.raises(
ValueError, match=r"unmatched dimensions for multi-index variables.*"
):
PandasMultiIndex.from_variables(
{"level1": v_level1, "level3": v_level3}, options={}
)
def test_concat(self) -> None:
pd_midx = pd.MultiIndex.from_product(
[[0, 1, 2], ["a", "b"]], names=("foo", "bar")
)
level_coords_dtype = {"foo": np.int32, "bar": "=U1"}
midx1 = PandasMultiIndex(
pd_midx[:2], "x", level_coords_dtype=level_coords_dtype
)
midx2 = PandasMultiIndex(
pd_midx[2:], "x", level_coords_dtype=level_coords_dtype
)
expected = PandasMultiIndex(pd_midx, "x", level_coords_dtype=level_coords_dtype)
actual = PandasMultiIndex.concat([midx1, midx2], "x")
assert actual.equals(expected)
assert actual.level_coords_dtype == expected.level_coords_dtype
def test_stack(self) -> None:
prod_vars = {
"x": xr.Variable("x", pd.Index(["b", "a"]), attrs={"foo": "bar"}),
"y": xr.Variable("y", pd.Index([1, 3, 2])),
}
index_xr = PandasMultiIndex.stack(prod_vars, "z")
assert index_xr.dim == "z"
index_pd = index_xr.index
assert isinstance(index_pd, pd.MultiIndex)
# TODO: change to tuple when pandas 3 is minimum
assert list(index_pd.names) == ["x", "y"]
np.testing.assert_array_equal(
index_pd.codes, [[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]
)
with pytest.raises(
ValueError, match=r"conflicting dimensions for multi-index product.*"
):
PandasMultiIndex.stack(
{"x": xr.Variable("x", ["a", "b"]), "x2": xr.Variable("x", [1, 2])},
"z",
)
def test_stack_non_unique(self) -> None:
prod_vars = {
"x": xr.Variable("x", pd.Index(["b", "a"]), attrs={"foo": "bar"}),
"y": xr.Variable("y", pd.Index([1, 1, 2])),
}
index_xr = PandasMultiIndex.stack(prod_vars, "z")
index_pd = index_xr.index
assert isinstance(index_pd, pd.MultiIndex)
np.testing.assert_array_equal(
index_pd.codes, [[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1]]
)
np.testing.assert_array_equal(index_pd.levels[0], ["b", "a"])
np.testing.assert_array_equal(index_pd.levels[1], [1, 2])
def test_unstack(self) -> None:
pd_midx = pd.MultiIndex.from_product(
[["a", "b"], [1, 2, 3]], names=["one", "two"]
)
index = PandasMultiIndex(pd_midx, "x")
new_indexes, new_pd_idx = index.unstack()
assert list(new_indexes) == ["one", "two"]
assert new_indexes["one"].equals(PandasIndex(["a", "b"], "one"))
assert new_indexes["two"].equals(PandasIndex([1, 2, 3], "two"))
assert new_pd_idx.equals(pd_midx)
def test_unstack_requires_unique(self) -> None:
pd_midx = pd.MultiIndex.from_product([["a", "a"], [1, 2]], names=["one", "two"])
index = PandasMultiIndex(pd_midx, "x")
with pytest.raises(
ValueError, match="Cannot unstack MultiIndex containing duplicates"
):
index.unstack()
def test_create_variables(self) -> None:
foo_data = np.array([0, 0, 1], dtype="int64")
bar_data = np.array([1.1, 1.2, 1.3], dtype="float64")
pd_idx = pd.MultiIndex.from_arrays([foo_data, bar_data], names=("foo", "bar"))
index_vars = {
"x": IndexVariable("x", pd_idx),
"foo": IndexVariable("x", foo_data, attrs={"unit": "m"}),
"bar": IndexVariable("x", bar_data, encoding={"fill_value": 0}),
}
index = PandasMultiIndex(pd_idx, "x")
actual = index.create_variables(index_vars)
for k, expected in index_vars.items():
assert_identical(actual[k], expected)
assert actual[k].dtype == expected.dtype
if k != "x":
assert actual[k].dtype == index.level_coords_dtype[k]
def test_sel(self) -> None:
index = PandasMultiIndex(
pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two")), "x"
)
# test tuples inside slice are considered as scalar indexer values
actual = index.sel({"x": slice(("a", 1), ("b", 2))})
expected_dim_indexers = {"x": slice(0, 4)}
assert actual.dim_indexers == expected_dim_indexers
with pytest.raises(KeyError, match=r"not all values found"):
index.sel({"x": [0]})
with pytest.raises(KeyError):
index.sel({"x": 0})
with pytest.raises(ValueError, match=r"cannot provide labels for both.*"):
index.sel({"one": 0, "x": "a"})
with pytest.raises(
ValueError,
match=r"multi-index level names \('three',\) not found in indexes",
):
index.sel({"x": {"three": 0}})
with pytest.raises(IndexError):
index.sel({"x": (slice(None), 1, "no_level")})
def test_join(self):
midx = pd.MultiIndex.from_product([["a", "aa"], [1, 2]], names=("one", "two"))
level_coords_dtype = {"one": "=U2", "two": "i"}
index1 = PandasMultiIndex(midx, "x", level_coords_dtype=level_coords_dtype)
index2 = PandasMultiIndex(midx[0:2], "x", level_coords_dtype=level_coords_dtype)
actual = index1.join(index2)
assert actual.equals(index2)
assert actual.level_coords_dtype == level_coords_dtype
actual = index1.join(index2, how="outer")
assert actual.equals(index1)
assert actual.level_coords_dtype == level_coords_dtype
def test_rename(self) -> None:
level_coords_dtype = {"one": "<U1", "two": np.int32}
index = PandasMultiIndex(
pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two")),
"x",
level_coords_dtype=level_coords_dtype,
)
# shortcut
new_index = index.rename({}, {})
assert new_index is index
new_index = index.rename({"two": "three"}, {})
assert list(new_index.index.names) == ["one", "three"]
assert new_index.dim == "x"
assert new_index.level_coords_dtype == {"one": "<U1", "three": np.int32}
new_index = index.rename({}, {"x": "y"})
assert list(new_index.index.names) == ["one", "two"]
assert new_index.dim == "y"
assert new_index.level_coords_dtype == level_coords_dtype
def test_copy(self) -> None:
level_coords_dtype = {"one": "U<1", "two": np.int32}
expected = PandasMultiIndex(
pd.MultiIndex.from_product([["a", "b"], [1, 2]], names=("one", "two")),
"x",
level_coords_dtype=level_coords_dtype,
)
actual = expected.copy()
assert actual.index.equals(expected.index)
assert actual.index is not expected.index
assert actual.dim == expected.dim
assert actual.level_coords_dtype == expected.level_coords_dtype
class TestIndexes:
@pytest.fixture
def indexes_and_vars(self) -> tuple[list[PandasIndex], dict[Hashable, Variable]]:
x_idx = PandasIndex(pd.Index([1, 2, 3], name="x"), "x")
y_idx = PandasIndex(pd.Index([4, 5, 6], name="y"), "y")
z_pd_midx = pd.MultiIndex.from_product(
[["a", "b"], [1, 2]], names=["one", "two"]
)
z_midx = PandasMultiIndex(z_pd_midx, "z")
indexes = [x_idx, y_idx, z_midx]
variables = {}
for idx in indexes:
variables.update(idx.create_variables())
return indexes, variables
@pytest.fixture(params=["pd_index", "xr_index"])
def unique_indexes(
self, request, indexes_and_vars
) -> list[PandasIndex] | list[pd.Index]:
xr_indexes, _ = indexes_and_vars
if request.param == "pd_index":
return [idx.index for idx in xr_indexes]
else:
return xr_indexes
@pytest.fixture
def indexes(
self, unique_indexes, indexes_and_vars
) -> Indexes[Index] | Indexes[pd.Index]:
x_idx, y_idx, z_midx = unique_indexes
indexes: dict[Any, Index] = {
"x": x_idx,
"y": y_idx,
"z": z_midx,
"one": z_midx,
"two": z_midx,
}
_, variables = indexes_and_vars
index_type = Index if isinstance(x_idx, Index) else pd.Index
return Indexes(indexes, variables, index_type=index_type)
def test_interface(self, unique_indexes, indexes) -> None:
x_idx = unique_indexes[0]
assert list(indexes) == ["x", "y", "z", "one", "two"]
assert len(indexes) == 5
assert "x" in indexes
assert indexes["x"] is x_idx
def test_variables(self, indexes) -> None:
assert tuple(indexes.variables) == ("x", "y", "z", "one", "two")
def test_dims(self, indexes) -> None:
assert indexes.dims == {"x": 3, "y": 3, "z": 4}
def test_get_unique(self, unique_indexes, indexes) -> None:
assert indexes.get_unique() == unique_indexes
def test_is_multi(self, indexes) -> None:
assert indexes.is_multi("one") is True
assert indexes.is_multi("x") is False
def test_get_all_coords(self, indexes) -> None:
expected = {
"z": indexes.variables["z"],
"one": indexes.variables["one"],
"two": indexes.variables["two"],
}
assert indexes.get_all_coords("one") == expected
with pytest.raises(ValueError, match="errors must be.*"):
indexes.get_all_coords("x", errors="invalid")
with pytest.raises(ValueError, match="no index found.*"):
indexes.get_all_coords("no_coord")
assert indexes.get_all_coords("no_coord", errors="ignore") == {}
def test_get_all_dims(self, indexes) -> None:
expected = {"z": 4}
assert indexes.get_all_dims("one") == expected
def test_group_by_index(self, unique_indexes, indexes):
expected = [
(unique_indexes[0], {"x": indexes.variables["x"]}),
(unique_indexes[1], {"y": indexes.variables["y"]}),
(
unique_indexes[2],
{
"z": indexes.variables["z"],
"one": indexes.variables["one"],
"two": indexes.variables["two"],
},
),
]
assert indexes.group_by_index() == expected
def test_to_pandas_indexes(self, indexes) -> None:
pd_indexes = indexes.to_pandas_indexes()
assert isinstance(pd_indexes, Indexes)
assert all(isinstance(idx, pd.Index) for idx in pd_indexes.values())
assert indexes.variables == pd_indexes.variables
def test_copy_indexes(self, indexes) -> None:
copied, index_vars = indexes.copy_indexes()
assert copied.keys() == indexes.keys()
for new, original in zip(copied.values(), indexes.values(), strict=True):
assert new.equals(original)
# check unique index objects preserved
assert copied["z"] is copied["one"] is copied["two"]
assert index_vars.keys() == indexes.variables.keys()
for new, original in zip(
index_vars.values(), indexes.variables.values(), strict=True
):
assert_identical(new, original)
def test_safe_cast_to_index():
dates = pd.date_range("2000-01-01", periods=10)
x = np.arange(5)
td = x * np.timedelta64(1, "D")
for expected, array in [
(dates, dates.values),
(pd.Index(x, dtype=object), x.astype(object)),
(pd.Index(td), td),
(pd.Index(td, dtype=object), td.astype(object)),
]:
actual = safe_cast_to_index(array)
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
@requires_cftime
def test_safe_cast_to_index_cftimeindex():
date_types = _all_cftime_date_types()
for date_type in date_types.values():
dates = [date_type(1, 1, day) for day in range(1, 20)]
expected = CFTimeIndex(dates)
actual = safe_cast_to_index(np.array(dates))
assert_array_equal(expected, actual)
assert expected.dtype == actual.dtype
assert isinstance(actual, type(expected))
# Test that datetime.datetime objects are never used in a CFTimeIndex
@requires_cftime
def test_safe_cast_to_index_datetime_datetime():
dates = [datetime(1, 1, day) for day in range(1, 20)]
expected = pd.Index(dates)
actual = safe_cast_to_index(np.array(dates))
assert_array_equal(expected, actual)
assert isinstance(actual, pd.Index)
@pytest.mark.parametrize("dtype", ["int32", "float32"])
def test_restore_dtype_on_multiindexes(dtype: str) -> None:
foo = xr.Dataset(coords={"bar": ("bar", np.array([0, 1], dtype=dtype))})
foo = foo.stack(baz=("bar",))
assert str(foo["bar"].values.dtype) == dtype
class IndexWithExtraVariables(Index):
@classmethod
def from_variables(cls, variables, *, options=None):
return cls()
def create_variables(self, variables=None):
if variables is None:
# For Coordinates.from_xindex(), return all variables the index can create
return {
"time": Variable(dims=("time",), data=[1, 2, 3]),
"valid_time": Variable(
dims=("time",),
data=[2, 3, 4], # time + 1
attrs={"description": "time + 1"},
),
}
result = dict(variables)
if "time" in variables:
result["valid_time"] = Variable(
dims=("time",),
data=variables["time"].data + 1,
attrs={"description": "time + 1"},
)
return result
def test_set_xindex_with_extra_variables() -> None:
"""Test that set_xindex raises an error when custom index creates extra variables."""
ds = xr.Dataset(coords={"time": [1, 2, 3]}).reset_index("time")
# Test that set_xindex raises error for extra variables
with pytest.raises(ValueError, match="extra variables 'valid_time'"):
ds.set_xindex("time", IndexWithExtraVariables)
def test_set_xindex_factory_method_pattern() -> None:
ds = xr.Dataset(coords={"time": [1, 2, 3]}).reset_index("time")
# Test the recommended factory method pattern
coord_vars = {"time": ds._variables["time"]}
index = IndexWithExtraVariables.from_variables(coord_vars)
coords = xr.Coordinates.from_xindex(index)
result = ds.assign_coords(coords)
assert "time" in result.variables
assert "valid_time" in result.variables
assert_array_equal(result.valid_time.data, result.time.data + 1)
|