1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
|
from __future__ import annotations
import contextlib
from itertools import combinations, permutations, product
from typing import cast, get_args
import numpy as np
import pandas as pd
import pytest
import xarray as xr
from xarray.coding.cftimeindex import _parse_array_of_cftime_strings
from xarray.core.types import (
Interp1dOptions,
InterpnOptions,
InterpolantOptions,
InterpOptions,
)
from xarray.tests import (
assert_allclose,
assert_equal,
assert_identical,
has_dask,
has_scipy,
has_scipy_ge_1_13,
raise_if_dask_computes,
requires_cftime,
requires_dask,
requires_scipy,
)
from xarray.tests.test_dataset import create_test_data
with contextlib.suppress(ImportError):
import scipy
ALL_1D = get_args(Interp1dOptions) + get_args(InterpolantOptions)
def get_example_data(case: int) -> xr.DataArray:
if case == 0:
# 2D
x = np.linspace(0, 1, 100)
y = np.linspace(0, 0.1, 30)
return xr.DataArray(
np.sin(x[:, np.newaxis]) * np.cos(y),
dims=["x", "y"],
coords={"x": x, "y": y, "x2": ("x", x**2)},
)
elif case == 1:
# 2D chunked single dim
return get_example_data(0).chunk({"y": 3})
elif case == 2:
# 2D chunked both dims
return get_example_data(0).chunk({"x": 25, "y": 3})
elif case == 3:
# 3D
x = np.linspace(0, 1, 100)
y = np.linspace(0, 0.1, 30)
z = np.linspace(0.1, 0.2, 10)
return xr.DataArray(
np.sin(x[:, np.newaxis, np.newaxis]) * np.cos(y[:, np.newaxis]) * z,
dims=["x", "y", "z"],
coords={"x": x, "y": y, "x2": ("x", x**2), "z": z},
)
elif case == 4:
# 3D chunked single dim
# chunksize=5 lets us check whether we rechunk to 1 with quintic
return get_example_data(3).chunk({"z": 5})
else:
raise ValueError("case must be 1-4")
@pytest.fixture
def nd_interp_coords():
# interpolation indices for nd interpolation of da from case 3 of get_example_data
da = get_example_data(case=3)
coords = {}
# grid -> grid
coords["xdestnp"] = np.linspace(0.1, 1.0, 11)
coords["ydestnp"] = np.linspace(0.0, 0.2, 10)
coords["zdestnp"] = da.z.data
# list of the points defined by the above mesh in C order
mesh_x, mesh_y, mesh_z = np.meshgrid(
coords["xdestnp"], coords["ydestnp"], coords["zdestnp"], indexing="ij"
)
coords["grid_grid_points"] = np.column_stack(
[mesh_x.ravel(), mesh_y.ravel(), mesh_z.ravel()]
)
# grid -> oned
coords["xdest"] = xr.DataArray(np.linspace(0.1, 1.0, 11), dims="y") # type: ignore[assignment]
coords["ydest"] = xr.DataArray(np.linspace(0.0, 0.2, 11), dims="y") # type: ignore[assignment]
coords["zdest"] = da.z
# grid of the points defined by the oned gridded with zdest in C order
coords["grid_oned_points"] = np.array(
[
(a, b, c)
for (a, b), c in product(
zip(coords["xdest"].data, coords["ydest"].data, strict=False),
coords["zdest"].data,
)
]
)
return coords
def test_keywargs():
if not has_scipy:
pytest.skip("scipy is not installed.")
da = get_example_data(0)
assert_equal(da.interp(x=[0.5, 0.8]), da.interp({"x": [0.5, 0.8]}))
@pytest.mark.parametrize("method", ["linear", "cubic"])
@pytest.mark.parametrize("dim", ["x", "y"])
@pytest.mark.parametrize(
"case", [pytest.param(0, id="no_chunk"), pytest.param(1, id="chunk_y")]
)
def test_interpolate_1d(method: InterpOptions, dim: str, case: int) -> None:
if not has_scipy:
pytest.skip("scipy is not installed.")
if not has_dask and case == 1:
pytest.skip("dask is not installed in the environment.")
da = get_example_data(case)
xdest = np.linspace(0.0, 0.9, 80)
actual = da.interp(method=method, coords={dim: xdest})
# scipy interpolation for the reference
def func(obj, new_x):
return scipy.interpolate.interp1d(
da[dim],
obj.data,
axis=obj.get_axis_num(dim),
bounds_error=False,
fill_value=np.nan,
kind=method,
)(new_x)
if dim == "x":
coords = {"x": xdest, "y": da["y"], "x2": ("x", func(da["x2"], xdest))}
else: # y
coords = {"x": da["x"], "y": xdest, "x2": da["x2"]}
expected = xr.DataArray(func(da, xdest), dims=["x", "y"], coords=coords)
assert_allclose(actual, expected)
@pytest.mark.parametrize("method", ["cubic", "zero"])
def test_interpolate_1d_methods(method: InterpOptions) -> None:
if not has_scipy:
pytest.skip("scipy is not installed.")
da = get_example_data(0)
dim = "x"
xdest = np.linspace(0.0, 0.9, 80)
actual = da.interp(method=method, coords={dim: xdest})
# scipy interpolation for the reference
def func(obj, new_x):
return scipy.interpolate.interp1d(
da[dim],
obj.data,
axis=obj.get_axis_num(dim),
bounds_error=False,
fill_value=np.nan,
kind=method,
)(new_x)
coords = {"x": xdest, "y": da["y"], "x2": ("x", func(da["x2"], xdest))}
expected = xr.DataArray(func(da, xdest), dims=["x", "y"], coords=coords)
assert_allclose(actual, expected)
@requires_scipy
@pytest.mark.parametrize(
"use_dask, method",
(
(False, "linear"),
(False, "akima"),
pytest.param(
False,
"makima",
marks=pytest.mark.skipif(not has_scipy_ge_1_13, reason="scipy too old"),
),
pytest.param(
True,
"linear",
marks=pytest.mark.skipif(not has_dask, reason="dask not available"),
),
pytest.param(
True,
"akima",
marks=pytest.mark.skipif(not has_dask, reason="dask not available"),
),
),
)
def test_interpolate_vectorize(use_dask: bool, method: InterpOptions) -> None:
# scipy interpolation for the reference
def func(obj, dim, new_x, method):
scipy_kwargs = {}
interpolant_options = {
"barycentric": scipy.interpolate.BarycentricInterpolator,
"krogh": scipy.interpolate.KroghInterpolator,
"pchip": scipy.interpolate.PchipInterpolator,
"akima": scipy.interpolate.Akima1DInterpolator,
"makima": scipy.interpolate.Akima1DInterpolator,
}
shape = [s for i, s in enumerate(obj.shape) if i != obj.get_axis_num(dim)]
for s in new_x.shape[::-1]:
shape.insert(obj.get_axis_num(dim), s)
if method in interpolant_options:
interpolant = interpolant_options[method]
if method == "makima":
scipy_kwargs["method"] = method
return interpolant(
da[dim], obj.data, axis=obj.get_axis_num(dim), **scipy_kwargs
)(new_x).reshape(shape)
else:
return scipy.interpolate.interp1d(
da[dim],
obj.data,
axis=obj.get_axis_num(dim),
kind=method,
bounds_error=False,
fill_value=np.nan,
**scipy_kwargs,
)(new_x).reshape(shape)
da = get_example_data(0)
if use_dask:
da = da.chunk({"y": 5})
# xdest is 1d but has different dimension
xdest = xr.DataArray(
np.linspace(0.1, 0.9, 30),
dims="z",
coords={"z": np.random.randn(30), "z2": ("z", np.random.randn(30))},
)
actual = da.interp(x=xdest, method=method)
expected = xr.DataArray(
func(da, "x", xdest, method),
dims=["z", "y"],
coords={
"z": xdest["z"],
"z2": xdest["z2"],
"y": da["y"],
"x": ("z", xdest.values),
"x2": ("z", func(da["x2"], "x", xdest, method)),
},
)
assert_allclose(actual, expected.transpose("z", "y", transpose_coords=True))
# xdest is 2d
xdest = xr.DataArray(
np.linspace(0.1, 0.9, 30).reshape(6, 5),
dims=["z", "w"],
coords={
"z": np.random.randn(6),
"w": np.random.randn(5),
"z2": ("z", np.random.randn(6)),
},
)
actual = da.interp(x=xdest, method=method)
expected = xr.DataArray(
func(da, "x", xdest, method),
dims=["z", "w", "y"],
coords={
"z": xdest["z"],
"w": xdest["w"],
"z2": xdest["z2"],
"y": da["y"],
"x": (("z", "w"), xdest.data),
"x2": (("z", "w"), func(da["x2"], "x", xdest, method)),
},
)
assert_allclose(actual, expected.transpose("z", "w", "y", transpose_coords=True))
@requires_scipy
@pytest.mark.parametrize("method", get_args(InterpnOptions))
@pytest.mark.parametrize(
"case",
[
pytest.param(3, id="no_chunk"),
pytest.param(
4, id="chunked", marks=pytest.mark.skipif(not has_dask, reason="no dask")
),
],
)
def test_interpolate_nd(case: int, method: InterpnOptions, nd_interp_coords) -> None:
da = get_example_data(case)
# grid -> grid
xdestnp = nd_interp_coords["xdestnp"]
ydestnp = nd_interp_coords["ydestnp"]
zdestnp = nd_interp_coords["zdestnp"]
grid_grid_points = nd_interp_coords["grid_grid_points"]
# the presence/absence of z coordinate may affect nd interpolants, even when the
# coordinate is unchanged
# TODO: test this?
actual = da.interp(x=xdestnp, y=ydestnp, z=zdestnp, method=method)
expected_data = scipy.interpolate.interpn(
points=(da.x, da.y, da.z),
values=da.load().data,
xi=grid_grid_points,
method=method,
bounds_error=False,
).reshape((len(xdestnp), len(ydestnp), len(zdestnp)))
expected = xr.DataArray(
expected_data,
dims=["x", "y", "z"],
coords={
"x": xdestnp,
"y": ydestnp,
"z": zdestnp,
"x2": da["x2"].interp(x=xdestnp, method=method),
},
)
assert_allclose(actual.transpose("x", "y", "z"), expected.transpose("x", "y", "z"))
# grid -> 1d-sample
xdest = nd_interp_coords["xdest"]
ydest = nd_interp_coords["ydest"]
zdest = nd_interp_coords["zdest"]
grid_oned_points = nd_interp_coords["grid_oned_points"]
actual = da.interp(x=xdest, y=ydest, z=zdest, method=method)
expected_data = scipy.interpolate.interpn(
points=(da.x, da.y, da.z),
values=da.data,
xi=grid_oned_points,
method=method,
bounds_error=False,
).reshape([len(xdest), len(zdest)])
expected = xr.DataArray(
expected_data,
dims=["y", "z"],
coords={
"y": ydest,
"z": zdest,
"x": ("y", xdest.values),
"x2": da["x2"].interp(x=xdest, method=method),
},
)
assert_allclose(actual.transpose("y", "z"), expected)
# reversed order
actual = da.interp(y=ydest, x=xdest, z=zdest, method=method)
assert_allclose(actual.transpose("y", "z"), expected)
@requires_scipy
# omit cubic, pchip, quintic because not enough points
@pytest.mark.parametrize("method", ("linear", "nearest", "slinear"))
def test_interpolate_nd_nd(method: InterpnOptions) -> None:
"""Interpolate nd array with an nd indexer sharing coordinates."""
# Create original array
a = [0, 2]
x = [0, 1, 2]
values = np.arange(6).reshape(2, 3)
da = xr.DataArray(values, dims=("a", "x"), coords={"a": a, "x": x})
# Create indexer into `a` with dimensions (y, x)
y = [10]
a_targets = [1, 2, 2]
c = {"x": x, "y": y}
ia = xr.DataArray([a_targets], dims=("y", "x"), coords=c)
out = da.interp(a=ia, method=method)
expected_xi = list(zip(a_targets, x, strict=False))
expected_vec = scipy.interpolate.interpn(
points=(a, x), values=values, xi=expected_xi, method=method
)
expected = xr.DataArray([expected_vec], dims=("y", "x"), coords=c)
xr.testing.assert_allclose(out.drop_vars("a"), expected)
# If the *shared* indexing coordinates do not match, interp should fail.
with pytest.raises(ValueError):
c = {"x": [1], "y": y}
ia = xr.DataArray([[1]], dims=("y", "x"), coords=c)
da.interp(a=ia)
with pytest.raises(ValueError):
c = {"x": [5, 6, 7], "y": y}
ia = xr.DataArray([[1]], dims=("y", "x"), coords=c)
da.interp(a=ia)
@requires_scipy
@pytest.mark.filterwarnings("ignore:All-NaN slice")
def test_interpolate_nd_with_nan() -> None:
"""Interpolate an array with an nd indexer and `NaN` values."""
# Create indexer into `a` with dimensions (y, x)
x = [0, 1, 2]
y = [10, 20]
c = {"x": x, "y": y}
a = np.arange(6, dtype=float).reshape(2, 3)
a[0, 1] = np.nan
ia = xr.DataArray(a, dims=("y", "x"), coords=c)
da = xr.DataArray([1, 2, 2], dims=("a"), coords={"a": [0, 2, 4]})
out = da.interp(a=ia)
expected = xr.DataArray(
[[1.0, np.nan, 2.0], [2.0, 2.0, np.nan]], dims=("y", "x"), coords=c
)
xr.testing.assert_allclose(out.drop_vars("a"), expected)
db = 2 * da
ds = xr.Dataset({"da": da, "db": db})
out2 = ds.interp(a=ia)
expected_ds = xr.Dataset({"da": expected, "db": 2 * expected})
xr.testing.assert_allclose(out2.drop_vars("a"), expected_ds)
@requires_scipy
@pytest.mark.parametrize("method", ("linear",))
@pytest.mark.parametrize(
"case", [pytest.param(0, id="no_chunk"), pytest.param(1, id="chunk_y")]
)
def test_interpolate_scalar(method: InterpOptions, case: int) -> None:
if not has_dask and case == 1:
pytest.skip("dask is not installed in the environment.")
da = get_example_data(case)
xdest = 0.4
actual = da.interp(x=xdest, method=method)
# scipy interpolation for the reference
def func(obj, new_x):
return scipy.interpolate.interp1d(
da["x"],
obj.data,
axis=obj.get_axis_num("x"),
bounds_error=False,
fill_value=np.nan,
kind=method,
)(new_x)
coords = {"x": xdest, "y": da["y"], "x2": func(da["x2"], xdest)}
expected = xr.DataArray(func(da, xdest), dims=["y"], coords=coords)
assert_allclose(actual, expected)
@requires_scipy
@pytest.mark.parametrize("method", ("linear",))
@pytest.mark.parametrize(
"case", [pytest.param(3, id="no_chunk"), pytest.param(4, id="chunked")]
)
def test_interpolate_nd_scalar(method: InterpOptions, case: int) -> None:
if not has_dask and case == 4:
pytest.skip("dask is not installed in the environment.")
da = get_example_data(case)
xdest = 0.4
ydest = 0.05
zdest = da.get_index("z")
actual = da.interp(x=xdest, y=ydest, z=zdest, method=method)
# scipy interpolation for the reference
expected_data = scipy.interpolate.RegularGridInterpolator(
(da["x"], da["y"], da["z"]),
da.transpose("x", "y", "z").values,
method=method,
bounds_error=False,
fill_value=np.nan,
)(np.asarray([(xdest, ydest, z_val) for z_val in zdest]))
coords = {
"x": xdest,
"y": ydest,
"x2": da["x2"].interp(x=xdest, method=method),
"z": da["z"],
}
expected = xr.DataArray(expected_data, dims=["z"], coords=coords)
assert_allclose(actual, expected)
@pytest.mark.parametrize("use_dask", [True, False])
def test_nans(use_dask: bool) -> None:
if not has_scipy:
pytest.skip("scipy is not installed.")
da = xr.DataArray([0, 1, np.nan, 2], dims="x", coords={"x": range(4)})
if not has_dask and use_dask:
pytest.skip("dask is not installed in the environment.")
da = da.chunk()
actual = da.interp(x=[0.5, 1.5])
# not all values are nan
assert actual.count() > 0
@requires_scipy
@pytest.mark.parametrize("use_dask", [True, False])
def test_errors(use_dask: bool) -> None:
# spline is unavailable
da = xr.DataArray([0, 1, np.nan, 2], dims="x", coords={"x": range(4)})
if not has_dask and use_dask:
pytest.skip("dask is not installed in the environment.")
da = da.chunk()
for method in ["spline"]:
with pytest.raises(ValueError), pytest.warns(PendingDeprecationWarning):
da.interp(x=[0.5, 1.5], method=method) # type: ignore[arg-type]
# not sorted
if use_dask:
da = get_example_data(3)
else:
da = get_example_data(0)
result = da.interp(x=[-1, 1, 3], kwargs={"fill_value": 0.0})
assert not np.isnan(result.values).any()
result = da.interp(x=[-1, 1, 3])
assert np.isnan(result.values).any()
# invalid method
with pytest.raises(ValueError):
da.interp(x=[2, 0], method="boo") # type: ignore[arg-type]
with pytest.raises(ValueError):
da.interp(y=[2, 0], method="boo") # type: ignore[arg-type]
# object-type DataArray cannot be interpolated
da = xr.DataArray(["a", "b", "c"], dims="x", coords={"x": [0, 1, 2]})
with pytest.raises(TypeError):
da.interp(x=0)
@requires_scipy
def test_dtype() -> None:
data_vars = dict(
a=("time", np.array([1, 1.25, 2])),
b=("time", np.array([True, True, False], dtype=bool)),
c=("time", np.array(["start", "start", "end"], dtype=str)),
)
time = np.array([0, 0.25, 1], dtype=float)
expected = xr.Dataset(data_vars, coords=dict(time=time))
actual = xr.Dataset(
{k: (dim, arr[[0, -1]]) for k, (dim, arr) in data_vars.items()},
coords=dict(time=time[[0, -1]]),
)
actual = actual.interp(time=time, method="linear")
assert_identical(expected, actual)
@requires_scipy
def test_sorted() -> None:
# unsorted non-uniform gridded data
x = np.random.randn(100)
y = np.random.randn(30)
z = np.linspace(0.1, 0.2, 10) * 3.0
da = xr.DataArray(
np.cos(x[:, np.newaxis, np.newaxis]) * np.cos(y[:, np.newaxis]) * z,
dims=["x", "y", "z"],
coords={"x": x, "y": y, "x2": ("x", x**2), "z": z},
)
x_new = np.linspace(0, 1, 30)
y_new = np.linspace(0, 1, 20)
da_sorted = da.sortby("x")
assert_allclose(da.interp(x=x_new), da_sorted.interp(x=x_new, assume_sorted=True))
da_sorted = da.sortby(["x", "y"])
assert_allclose(
da.interp(x=x_new, y=y_new),
da_sorted.interp(x=x_new, y=y_new, assume_sorted=True),
)
with pytest.raises(ValueError):
da.interp(x=[0, 1, 2], assume_sorted=True)
@requires_scipy
def test_dimension_wo_coords() -> None:
da = xr.DataArray(
np.arange(12).reshape(3, 4), dims=["x", "y"], coords={"y": [0, 1, 2, 3]}
)
da_w_coord = da.copy()
da_w_coord["x"] = np.arange(3)
assert_equal(da.interp(x=[0.1, 0.2, 0.3]), da_w_coord.interp(x=[0.1, 0.2, 0.3]))
assert_equal(
da.interp(x=[0.1, 0.2, 0.3], y=[0.5]),
da_w_coord.interp(x=[0.1, 0.2, 0.3], y=[0.5]),
)
@requires_scipy
def test_dataset() -> None:
ds = create_test_data()
ds.attrs["foo"] = "var"
ds["var1"].attrs["buz"] = "var2"
new_dim2 = xr.DataArray([0.11, 0.21, 0.31], dims="z")
interpolated = ds.interp(dim2=new_dim2)
assert_allclose(interpolated["var1"], ds["var1"].interp(dim2=new_dim2))
assert interpolated["var3"].equals(ds["var3"])
# make sure modifying interpolated does not affect the original dataset
interpolated["var1"][:, 1] = 1.0
interpolated["var2"][:, 1] = 1.0
interpolated["var3"][:, 1] = 1.0
assert not interpolated["var1"].equals(ds["var1"])
assert not interpolated["var2"].equals(ds["var2"])
assert not interpolated["var3"].equals(ds["var3"])
# attrs should be kept
assert interpolated.attrs["foo"] == "var"
assert interpolated["var1"].attrs["buz"] == "var2"
@pytest.mark.parametrize("case", [pytest.param(0, id="2D"), pytest.param(3, id="3D")])
def test_interpolate_dimorder(case: int) -> None:
"""Make sure the resultant dimension order is consistent with .sel()"""
if not has_scipy:
pytest.skip("scipy is not installed.")
da = get_example_data(case)
new_x = xr.DataArray([0, 1, 2], dims="x")
assert da.interp(x=new_x).dims == da.sel(x=new_x, method="nearest").dims
new_y = xr.DataArray([0, 1, 2], dims="y")
actual = da.interp(x=new_x, y=new_y).dims
expected = da.sel(x=new_x, y=new_y, method="nearest").dims
assert actual == expected
# reversed order
actual = da.interp(y=new_y, x=new_x).dims
expected = da.sel(y=new_y, x=new_x, method="nearest").dims
assert actual == expected
new_x = xr.DataArray([0, 1, 2], dims="a")
assert da.interp(x=new_x).dims == da.sel(x=new_x, method="nearest").dims
assert da.interp(y=new_x).dims == da.sel(y=new_x, method="nearest").dims
new_y = xr.DataArray([0, 1, 2], dims="a")
actual = da.interp(x=new_x, y=new_y).dims
expected = da.sel(x=new_x, y=new_y, method="nearest").dims
assert actual == expected
new_x = xr.DataArray([[0], [1], [2]], dims=["a", "b"])
assert da.interp(x=new_x).dims == da.sel(x=new_x, method="nearest").dims
assert da.interp(y=new_x).dims == da.sel(y=new_x, method="nearest").dims
if case == 3:
new_x = xr.DataArray([[0], [1], [2]], dims=["a", "b"])
new_z = xr.DataArray([[0], [1], [2]], dims=["a", "b"])
actual = da.interp(x=new_x, z=new_z).dims
expected = da.sel(x=new_x, z=new_z, method="nearest").dims
assert actual == expected
actual = da.interp(z=new_z, x=new_x).dims
expected = da.sel(z=new_z, x=new_x, method="nearest").dims
assert actual == expected
actual = da.interp(x=0.5, z=new_z).dims
expected = da.sel(x=0.5, z=new_z, method="nearest").dims
assert actual == expected
@requires_scipy
def test_interp_like() -> None:
ds = create_test_data()
ds.attrs["foo"] = "var"
ds["var1"].attrs["buz"] = "var2"
other = xr.DataArray(np.random.randn(3), dims=["dim2"], coords={"dim2": [0, 1, 2]})
interpolated = ds.interp_like(other)
assert_allclose(interpolated["var1"], ds["var1"].interp(dim2=other["dim2"]))
assert_allclose(interpolated["var1"], ds["var1"].interp_like(other))
assert interpolated["var3"].equals(ds["var3"])
# attrs should be kept
assert interpolated.attrs["foo"] == "var"
assert interpolated["var1"].attrs["buz"] == "var2"
other = xr.DataArray(
np.random.randn(3), dims=["dim3"], coords={"dim3": ["a", "b", "c"]}
)
actual = ds.interp_like(other)
expected = ds.reindex_like(other)
assert_allclose(actual, expected)
@requires_scipy
@pytest.mark.parametrize(
"x_new, expected",
[
(pd.date_range("2000-01-02", periods=3), [1, 2, 3]),
(
np.array(
[np.datetime64("2000-01-01T12:00"), np.datetime64("2000-01-02T12:00")]
),
[0.5, 1.5],
),
(["2000-01-01T12:00", "2000-01-02T12:00"], [0.5, 1.5]),
(["2000-01-01T12:00", "2000-01-02T12:00", "NaT"], [0.5, 1.5, np.nan]),
(["2000-01-01T12:00"], 0.5),
pytest.param("2000-01-01T12:00", 0.5, marks=pytest.mark.xfail),
],
)
def test_datetime(x_new, expected) -> None:
da = xr.DataArray(
np.arange(24),
dims="time",
coords={"time": pd.date_range("2000-01-01", periods=24)},
)
actual = da.interp(time=x_new)
expected_da = xr.DataArray(
np.atleast_1d(expected),
dims=["time"],
coords={"time": (np.atleast_1d(x_new).astype("datetime64[ns]"))},
)
assert_allclose(actual, expected_da)
@requires_scipy
def test_datetime_single_string() -> None:
da = xr.DataArray(
np.arange(24),
dims="time",
coords={"time": pd.date_range("2000-01-01", periods=24)},
)
actual = da.interp(time="2000-01-01T12:00")
expected = xr.DataArray(0.5)
assert_allclose(actual.drop_vars("time"), expected)
@requires_cftime
@requires_scipy
def test_cftime() -> None:
times = xr.date_range("2000", periods=24, freq="D", use_cftime=True)
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = xr.date_range(
"2000-01-01T12:00:00", periods=3, freq="D", use_cftime=True
)
actual = da.interp(time=times_new)
expected = xr.DataArray([0.5, 1.5, 2.5], coords=[times_new], dims=["time"])
assert_allclose(actual, expected)
@requires_cftime
@requires_scipy
def test_cftime_type_error() -> None:
times = xr.date_range("2000", periods=24, freq="D", use_cftime=True)
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = xr.date_range(
"2000-01-01T12:00:00", periods=3, freq="D", calendar="noleap", use_cftime=True
)
with pytest.raises(TypeError):
da.interp(time=times_new)
@requires_cftime
@requires_scipy
def test_cftime_list_of_strings() -> None:
from cftime import DatetimeProlepticGregorian
times = xr.date_range(
"2000", periods=24, freq="D", calendar="proleptic_gregorian", use_cftime=True
)
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = ["2000-01-01T12:00", "2000-01-02T12:00", "2000-01-03T12:00"]
actual = da.interp(time=times_new)
times_new_array = _parse_array_of_cftime_strings(
np.array(times_new), DatetimeProlepticGregorian
)
expected = xr.DataArray([0.5, 1.5, 2.5], coords=[times_new_array], dims=["time"])
assert_allclose(actual, expected)
@requires_cftime
@requires_scipy
def test_cftime_single_string() -> None:
from cftime import DatetimeProlepticGregorian
times = xr.date_range(
"2000", periods=24, freq="D", calendar="proleptic_gregorian", use_cftime=True
)
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
times_new = "2000-01-01T12:00"
actual = da.interp(time=times_new)
times_new_array = _parse_array_of_cftime_strings(
np.array(times_new), DatetimeProlepticGregorian
)
expected = xr.DataArray(0.5, coords={"time": times_new_array})
assert_allclose(actual, expected)
@requires_scipy
def test_datetime_to_non_datetime_error() -> None:
da = xr.DataArray(
np.arange(24),
dims="time",
coords={"time": pd.date_range("2000-01-01", periods=24)},
)
with pytest.raises(TypeError):
da.interp(time=0.5)
@requires_cftime
@requires_scipy
def test_cftime_to_non_cftime_error() -> None:
times = xr.date_range("2000", periods=24, freq="D", use_cftime=True)
da = xr.DataArray(np.arange(24), coords=[times], dims="time")
with pytest.raises(TypeError):
da.interp(time=0.5)
@requires_scipy
def test_datetime_interp_noerror() -> None:
# GH:2667
a = xr.DataArray(
np.arange(21).reshape(3, 7),
dims=["x", "time"],
coords={
"x": [1, 2, 3],
"time": pd.date_range("01-01-2001", periods=7, freq="D"),
},
)
xi = xr.DataArray(
np.linspace(1, 3, 50),
dims=["time"],
coords={"time": pd.date_range("01-01-2001", periods=50, freq="h")},
)
a.interp(x=xi, time=xi.time) # should not raise an error
@requires_cftime
@requires_scipy
def test_3641() -> None:
times = xr.date_range("0001", periods=3, freq="500YE", use_cftime=True)
da = xr.DataArray(range(3), dims=["time"], coords=[times])
da.interp(time=["0002-05-01"])
@requires_scipy
# cubic, quintic, pchip omitted because not enough points
@pytest.mark.parametrize("method", ("linear", "nearest", "slinear"))
def test_decompose(method: InterpOptions) -> None:
da = xr.DataArray(
np.arange(6).reshape(3, 2),
dims=["x", "y"],
coords={"x": [0, 1, 2], "y": [-0.1, -0.3]},
)
x_new = xr.DataArray([0.5, 1.5, 2.5], dims=["x1"])
y_new = xr.DataArray([-0.15, -0.25], dims=["y1"])
x_broadcast, y_broadcast = xr.broadcast(x_new, y_new)
assert x_broadcast.ndim == 2
actual = da.interp(x=x_new, y=y_new, method=method).drop_vars(("x", "y"))
expected = da.interp(x=x_broadcast, y=y_broadcast, method=method).drop_vars(
("x", "y")
)
assert_allclose(actual, expected)
@requires_scipy
@requires_dask
@pytest.mark.parametrize("method", ("linear", "nearest", "cubic", "pchip", "quintic"))
@pytest.mark.parametrize("chunked", [True, False])
@pytest.mark.parametrize(
"data_ndim,interp_ndim,nscalar",
[
(data_ndim, interp_ndim, nscalar)
for data_ndim in range(1, 4)
for interp_ndim in range(1, data_ndim + 1)
for nscalar in range(interp_ndim + 1)
],
)
@pytest.mark.filterwarnings("ignore:Increasing number of chunks")
def test_interpolate_chunk_1d(
method: InterpOptions, data_ndim, interp_ndim, nscalar, chunked: bool
) -> None:
"""Interpolate nd array with multiple independent indexers
It should do a series of 1d interpolation
"""
if method in ["cubic", "pchip", "quintic"] and interp_ndim == 3:
pytest.skip("Too slow.")
# 3d non chunked data
x = np.linspace(0, 1, 6)
y = np.linspace(2, 4, 7)
z = np.linspace(-0.5, 0.5, 8)
da = xr.DataArray(
data=np.sin(x[:, np.newaxis, np.newaxis])
* np.cos(y[:, np.newaxis])
* np.exp(z),
coords=[("x", x), ("y", y), ("z", z)],
)
# choose the data dimensions
for data_dims in permutations(da.dims, data_ndim):
# select only data_ndim dim
da = da.isel( # take the middle line
{dim: len(da.coords[dim]) // 2 for dim in da.dims if dim not in data_dims}
)
# chunk data
da = da.chunk(chunks={dim: i + 1 for i, dim in enumerate(da.dims)})
# choose the interpolation dimensions
for interp_dims in permutations(da.dims, interp_ndim):
# choose the scalar interpolation dimensions
for scalar_dims in combinations(interp_dims, nscalar):
dest = {}
for dim in interp_dims:
if dim in scalar_dims:
# take the middle point
dest[dim] = 0.5 * (da.coords[dim][0] + da.coords[dim][-1])
else:
# pick some points, including outside the domain
before = 2 * da.coords[dim][0] - da.coords[dim][1]
after = 2 * da.coords[dim][-1] - da.coords[dim][-2]
dest[dim] = cast(
xr.DataArray,
np.linspace(
before.item(), after.item(), len(da.coords[dim]) * 13
),
)
if chunked:
dest[dim] = xr.DataArray(data=dest[dim], dims=[dim])
dest[dim] = dest[dim].chunk(2)
actual = da.interp(method=method, **dest)
expected = da.compute().interp(method=method, **dest)
assert_identical(actual, expected)
# all the combinations are usually not necessary
break
break
break
@requires_scipy
@requires_dask
# quintic omitted because not enough points
@pytest.mark.parametrize("method", ("linear", "nearest", "slinear", "cubic", "pchip"))
@pytest.mark.filterwarnings("ignore:Increasing number of chunks")
def test_interpolate_chunk_advanced(method: InterpOptions) -> None:
"""Interpolate nd array with an nd indexer sharing coordinates."""
# Create original array
x = np.linspace(-1, 1, 5)
y = np.linspace(-1, 1, 7)
z = np.linspace(-1, 1, 11)
t = np.linspace(0, 1, 13)
q = np.linspace(0, 1, 17)
da = xr.DataArray(
data=np.sin(x[:, np.newaxis, np.newaxis, np.newaxis, np.newaxis])
* np.cos(y[:, np.newaxis, np.newaxis, np.newaxis])
* np.exp(z[:, np.newaxis, np.newaxis])
* t[:, np.newaxis]
+ q,
dims=("x", "y", "z", "t", "q"),
coords={"x": x, "y": y, "z": z, "t": t, "q": q, "label": "dummy_attr"},
)
# Create indexer into `da` with shared coordinate ("full-twist" Möbius strip)
theta = np.linspace(0, 2 * np.pi, 5)
w = np.linspace(-0.25, 0.25, 7)
r = xr.DataArray(
data=1 + w[:, np.newaxis] * np.cos(theta),
coords=[("w", w), ("theta", theta)],
)
xda = r * np.cos(theta)
yda = r * np.sin(theta)
zda = xr.DataArray(
data=w[:, np.newaxis] * np.sin(theta),
coords=[("w", w), ("theta", theta)],
)
kwargs = {"fill_value": None}
expected = da.interp(t=0.5, x=xda, y=yda, z=zda, kwargs=kwargs, method=method)
da = da.chunk(2)
xda = xda.chunk(1)
zda = zda.chunk(3)
actual = da.interp(t=0.5, x=xda, y=yda, z=zda, kwargs=kwargs, method=method)
assert_identical(actual, expected)
@requires_scipy
def test_interp1d_bounds_error() -> None:
"""Ensure exception on bounds error is raised if requested"""
da = xr.DataArray(
np.sin(0.3 * np.arange(4)),
[("time", np.arange(4))],
)
with pytest.raises(ValueError):
da.interp(time=3.5, kwargs=dict(bounds_error=True))
# default is to fill with nans, so this should pass
da.interp(time=3.5)
@requires_scipy
@pytest.mark.parametrize(
"x, expect_same_attrs",
[
(2.5, True),
(np.array([2.5, 5]), True),
(("x", np.array([0, 0.5, 1, 2]), dict(unit="s")), False),
],
)
def test_coord_attrs(
x,
expect_same_attrs: bool,
) -> None:
base_attrs = dict(foo="bar")
ds = xr.Dataset(
data_vars=dict(a=2 * np.arange(5)),
coords={"x": ("x", np.arange(5), base_attrs)},
)
has_same_attrs = ds.interp(x=x).x.attrs == base_attrs
assert expect_same_attrs == has_same_attrs
@requires_scipy
def test_interp1d_complex_out_of_bounds() -> None:
"""Ensure complex nans are used by default"""
da = xr.DataArray(
np.exp(0.3j * np.arange(4)),
[("time", np.arange(4))],
)
expected = da.interp(time=3.5, kwargs=dict(fill_value=np.nan + np.nan * 1j))
actual = da.interp(time=3.5)
assert_identical(actual, expected)
@requires_scipy
def test_interp_non_numeric_scalar() -> None:
ds = xr.Dataset(
{
"non_numeric": ("time", np.array(["a"])),
},
coords={"time": (np.array([0]))},
)
actual = ds.interp(time=np.linspace(0, 3, 3))
expected = xr.Dataset(
{
"non_numeric": ("time", np.array(["a", "a", "a"])),
},
coords={"time": np.linspace(0, 3, 3)},
)
xr.testing.assert_identical(actual, expected)
# Make sure the array is a copy:
assert actual["non_numeric"].data.base is None
@requires_scipy
def test_interp_non_numeric_1d() -> None:
ds = xr.Dataset(
{
"numeric": ("time", 1 + np.arange(0, 4, 1)),
"non_numeric": ("time", np.array(["a", "b", "c", "d"])),
},
coords={"time": (np.arange(0, 4, 1))},
)
actual = ds.interp(time=np.linspace(0, 3, 7))
expected = xr.Dataset(
{
"numeric": ("time", 1 + np.linspace(0, 3, 7)),
"non_numeric": ("time", np.array(["a", "b", "b", "c", "c", "d", "d"])),
},
coords={"time": np.linspace(0, 3, 7)},
)
xr.testing.assert_identical(actual, expected)
@requires_scipy
def test_interp_non_numeric_nd() -> None:
# regression test for GH8099, GH9839
ds = xr.Dataset({"x": ("a", np.arange(4))}, coords={"a": (np.arange(4) - 1.5)})
t = xr.DataArray(
np.random.randn(6).reshape((2, 3)) * 0.5,
dims=["r", "s"],
coords={"r": np.arange(2) - 0.5, "s": np.arange(3) - 1},
)
ds["m"] = ds.x > 1
actual = ds.interp(a=t, method="linear")
# with numeric only
expected = ds[["x"]].interp(a=t, method="linear")
assert_identical(actual[["x"]], expected)
@requires_dask
@requires_scipy
def test_interp_vectorized_dask() -> None:
# Synthetic dataset chunked in the two interpolation dimensions
import dask.array as da
nt = 10
nlat = 20
nlon = 10
nq = 21
ds = xr.Dataset(
data_vars={
"foo": (
("lat", "lon", "dayofyear", "q"),
da.random.random((nlat, nlon, nt, nq), chunks=(10, 10, 10, -1)),
),
"bar": (("lat", "lon"), da.random.random((nlat, nlon), chunks=(10, 10))),
},
coords={
"lat": np.linspace(-89.5, 89.6, nlat),
"lon": np.linspace(-179.5, 179.6, nlon),
"dayofyear": np.arange(0, nt),
"q": np.linspace(0, 1, nq),
},
)
# Interpolate along non-chunked dimension
with raise_if_dask_computes():
actual = ds.interp(q=ds["bar"], kwargs={"fill_value": None})
expected = ds.compute().interp(q=ds["bar"], kwargs={"fill_value": None})
assert_identical(actual, expected)
@requires_scipy
@pytest.mark.parametrize(
"chunk",
[
pytest.param(
True, marks=pytest.mark.skipif(not has_dask, reason="requires_dask")
),
False,
],
)
def test_interp_vectorized_shared_dims(chunk: bool) -> None:
# GH4463
da = xr.DataArray(
[[[1, 2, 3], [2, 3, 4]], [[1, 2, 3], [2, 3, 4]]],
dims=("t", "x", "y"),
coords={"x": [1, 2], "y": [1, 2, 3], "t": [10, 12]},
)
dy = xr.DataArray([1.5, 2.5], dims=("u",), coords={"u": [45, 55]})
dx = xr.DataArray(
[[1.5, 1.5], [1.5, 1.5]], dims=("t", "u"), coords={"u": [45, 55], "t": [10, 12]}
)
if chunk:
da = da.chunk(t=1)
with raise_if_dask_computes():
actual = da.interp(y=dy, x=dx, method="linear")
expected = xr.DataArray(
[[2, 3], [2, 3]],
dims=("t", "u"),
coords={"u": [45, 55], "t": [10, 12], "x": dx, "y": dy},
)
assert_identical(actual, expected)
|