File: test_namedarray.py

package info (click to toggle)
python-xarray 2025.08.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 11,796 kB
  • sloc: python: 115,416; makefile: 258; sh: 47
file content (611 lines) | stat: -rw-r--r-- 22,182 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
from __future__ import annotations

import copy
import sys
from abc import abstractmethod
from collections.abc import Mapping
from typing import TYPE_CHECKING, Any, Generic, cast, overload

import numpy as np
import pytest
from packaging.version import Version

from xarray.core.indexing import ExplicitlyIndexed
from xarray.namedarray._typing import (
    _arrayfunction_or_api,
    _default,
    _DType_co,
    _ShapeType_co,
)
from xarray.namedarray.core import NamedArray, from_array

if TYPE_CHECKING:
    from types import ModuleType

    from numpy.typing import ArrayLike, DTypeLike, NDArray

    from xarray.namedarray._typing import (
        Default,
        _AttrsLike,
        _Dim,
        _DimsLike,
        _DType,
        _IndexKeyLike,
        _IntOrUnknown,
        _Shape,
        _ShapeLike,
        duckarray,
    )


class CustomArrayBase(Generic[_ShapeType_co, _DType_co]):
    def __init__(self, array: duckarray[Any, _DType_co]) -> None:
        self.array: duckarray[Any, _DType_co] = array

    @property
    def dtype(self) -> _DType_co:
        return self.array.dtype

    @property
    def shape(self) -> _Shape:
        return self.array.shape


class CustomArray(
    CustomArrayBase[_ShapeType_co, _DType_co], Generic[_ShapeType_co, _DType_co]
):
    def __array__(
        self, dtype: np.typing.DTypeLike = None, /, *, copy: bool | None = None
    ) -> np.ndarray[Any, np.dtype[np.generic]]:
        if Version(np.__version__) >= Version("2.0.0"):
            return np.asarray(self.array, dtype=dtype, copy=copy)
        else:
            return np.asarray(self.array, dtype=dtype)


class CustomArrayIndexable(
    CustomArrayBase[_ShapeType_co, _DType_co],
    ExplicitlyIndexed,
    Generic[_ShapeType_co, _DType_co],
):
    def __getitem__(
        self, key: _IndexKeyLike | CustomArrayIndexable[Any, Any], /
    ) -> CustomArrayIndexable[Any, _DType_co]:
        if isinstance(key, CustomArrayIndexable):
            if isinstance(key.array, type(self.array)):
                # TODO: key.array is duckarray here, can it be narrowed down further?
                # an _arrayapi cannot be used on a _arrayfunction for example.
                return type(self)(array=self.array[key.array])  # type: ignore[index]
            else:
                raise TypeError("key must have the same array type as self")
        else:
            return type(self)(array=self.array[key])

    def __array_namespace__(self) -> ModuleType:
        return np


def check_duck_array_typevar(a: duckarray[Any, _DType]) -> duckarray[Any, _DType]:
    # Mypy checks a is valid:
    b: duckarray[Any, _DType] = a

    # Runtime check if valid:
    if isinstance(b, _arrayfunction_or_api):
        return b
    else:
        missing_attrs = ""
        actual_attrs = set(dir(b))
        for t in _arrayfunction_or_api:
            if sys.version_info >= (3, 13):
                # https://github.com/python/cpython/issues/104873
                from typing import get_protocol_members

                expected_attrs = get_protocol_members(t)
            elif sys.version_info >= (3, 12):
                expected_attrs = t.__protocol_attrs__
            else:
                from typing import _get_protocol_attrs  # type: ignore[attr-defined]

                expected_attrs = _get_protocol_attrs(t)

            missing_attrs_ = expected_attrs - actual_attrs
            if missing_attrs_:
                missing_attrs += f"{t.__name__} - {missing_attrs_}\n"
        raise TypeError(
            f"a ({type(a)}) is not a valid _arrayfunction or _arrayapi. "
            "Missing following attrs:\n"
            f"{missing_attrs}"
        )


class NamedArraySubclassobjects:
    @pytest.fixture
    def target(self, data: np.ndarray[Any, Any]) -> Any:
        """Fixture that needs to be overridden"""
        raise NotImplementedError

    @abstractmethod
    def cls(self, *args: Any, **kwargs: Any) -> Any:
        """Method that needs to be overridden"""
        raise NotImplementedError

    @pytest.fixture
    def data(self) -> np.ndarray[Any, np.dtype[Any]]:
        return 0.5 * np.arange(10).reshape(2, 5)

    @pytest.fixture
    def random_inputs(self) -> np.ndarray[Any, np.dtype[np.float32]]:
        return np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5))

    def test_properties(self, target: Any, data: Any) -> None:
        assert target.dims == ("x", "y")
        assert np.array_equal(target.data, data)
        assert target.dtype == float
        assert target.shape == (2, 5)
        assert target.ndim == 2
        assert target.sizes == {"x": 2, "y": 5}
        assert target.size == 10
        assert target.nbytes == 80
        assert len(target) == 2

    def test_attrs(self, target: Any) -> None:
        assert target.attrs == {}
        attrs = {"foo": "bar"}
        target.attrs = attrs
        assert target.attrs == attrs
        assert isinstance(target.attrs, dict)
        target.attrs["foo"] = "baz"
        assert target.attrs["foo"] == "baz"

    @pytest.mark.parametrize(
        "expected", [np.array([1, 2], dtype=np.dtype(np.int8)), [1, 2]]
    )
    def test_init(self, expected: Any) -> None:
        actual = self.cls(("x",), expected)
        assert np.array_equal(np.asarray(actual.data), expected)

        actual = self.cls(("x",), expected)
        assert np.array_equal(np.asarray(actual.data), expected)

    def test_data(self, random_inputs: Any) -> None:
        expected = self.cls(["x", "y", "z"], random_inputs)
        assert np.array_equal(np.asarray(expected.data), random_inputs)
        with pytest.raises(ValueError):
            expected.data = np.random.random((3, 4)).astype(np.float64)
        d2 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5))
        expected.data = d2
        assert np.array_equal(np.asarray(expected.data), d2)


class TestNamedArray(NamedArraySubclassobjects):
    def cls(self, *args: Any, **kwargs: Any) -> NamedArray[Any, Any]:
        return NamedArray(*args, **kwargs)

    @pytest.fixture
    def target(self, data: np.ndarray[Any, Any]) -> NamedArray[Any, Any]:
        return NamedArray(["x", "y"], data)

    @pytest.mark.parametrize(
        "expected",
        [
            np.array([1, 2], dtype=np.dtype(np.int8)),
            pytest.param(
                [1, 2],
                marks=pytest.mark.xfail(
                    reason="NamedArray only supports array-like objects"
                ),
            ),
        ],
    )
    def test_init(self, expected: Any) -> None:
        super().test_init(expected)

    @pytest.mark.parametrize(
        "dims, data, expected, raise_error",
        [
            (("x",), [1, 2, 3], np.array([1, 2, 3]), False),
            ((1,), np.array([4, 5, 6]), np.array([4, 5, 6]), False),
            ((), 2, np.array(2), False),
            # Fail:
            (
                ("x",),
                NamedArray("time", np.array([1, 2, 3], dtype=np.dtype(np.int64))),
                np.array([1, 2, 3]),
                True,
            ),
        ],
    )
    def test_from_array(
        self,
        dims: _DimsLike,
        data: ArrayLike,
        expected: np.ndarray[Any, Any],
        raise_error: bool,
    ) -> None:
        actual: NamedArray[Any, Any]
        if raise_error:
            with pytest.raises(TypeError, match="already a Named array"):
                actual = from_array(dims, data)

                # Named arrays are not allowed:
                from_array(actual)  # type: ignore[call-overload]
        else:
            actual = from_array(dims, data)

            assert np.array_equal(np.asarray(actual.data), expected)

    def test_from_array_with_masked_array(self) -> None:
        masked_array: np.ndarray[Any, np.dtype[np.generic]]
        masked_array = np.ma.array([1, 2, 3], mask=[False, True, False])  # type: ignore[no-untyped-call]
        with pytest.raises(NotImplementedError):
            from_array(("x",), masked_array)

    def test_from_array_with_0d_object(self) -> None:
        data = np.empty((), dtype=object)
        data[()] = (10, 12, 12)
        narr = from_array((), data)
        np.array_equal(np.asarray(narr.data), data)

    # TODO: Make xr.core.indexing.ExplicitlyIndexed pass as a subclass of_arrayfunction_or_api
    # and remove this test.
    def test_from_array_with_explicitly_indexed(
        self, random_inputs: np.ndarray[Any, Any]
    ) -> None:
        array: CustomArray[Any, Any]
        array = CustomArray(random_inputs)
        output: NamedArray[Any, Any]
        output = from_array(("x", "y", "z"), array)
        assert isinstance(output.data, np.ndarray)

        array2: CustomArrayIndexable[Any, Any]
        array2 = CustomArrayIndexable(random_inputs)
        output2: NamedArray[Any, Any]
        output2 = from_array(("x", "y", "z"), array2)
        assert isinstance(output2.data, CustomArrayIndexable)

    def test_real_and_imag(self) -> None:
        expected_real: np.ndarray[Any, np.dtype[np.float64]]
        expected_real = np.arange(3, dtype=np.float64)

        expected_imag: np.ndarray[Any, np.dtype[np.float64]]
        expected_imag = -np.arange(3, dtype=np.float64)

        arr: np.ndarray[Any, np.dtype[np.complex128]]
        arr = expected_real + 1j * expected_imag

        named_array: NamedArray[Any, np.dtype[np.complex128]]
        named_array = NamedArray(["x"], arr)

        actual_real: duckarray[Any, np.dtype[np.float64]] = named_array.real.data
        assert np.array_equal(np.asarray(actual_real), expected_real)
        assert actual_real.dtype == expected_real.dtype

        actual_imag: duckarray[Any, np.dtype[np.float64]] = named_array.imag.data
        assert np.array_equal(np.asarray(actual_imag), expected_imag)
        assert actual_imag.dtype == expected_imag.dtype

    # Additional tests as per your original class-based code
    @pytest.mark.parametrize(
        "data, dtype",
        [
            ("foo", np.dtype("U3")),
            (b"foo", np.dtype("S3")),
        ],
    )
    def test_from_array_0d_string(self, data: Any, dtype: DTypeLike) -> None:
        named_array: NamedArray[Any, Any]
        named_array = from_array([], data)
        assert named_array.data == data
        assert named_array.dims == ()
        assert named_array.sizes == {}
        assert named_array.attrs == {}
        assert named_array.ndim == 0
        assert named_array.size == 1
        assert named_array.dtype == dtype

    def test_from_array_0d_object(self) -> None:
        named_array: NamedArray[Any, Any]
        named_array = from_array([], (10, 12, 12))
        expected_data = np.empty((), dtype=object)
        expected_data[()] = (10, 12, 12)
        assert np.array_equal(np.asarray(named_array.data), expected_data)

        assert named_array.dims == ()
        assert named_array.sizes == {}
        assert named_array.attrs == {}
        assert named_array.ndim == 0
        assert named_array.size == 1
        assert named_array.dtype == np.dtype("O")

    def test_from_array_0d_datetime(self) -> None:
        named_array: NamedArray[Any, Any]
        named_array = from_array([], np.datetime64("2000-01-01"))
        assert named_array.dtype == np.dtype("datetime64[D]")

    @pytest.mark.parametrize(
        "timedelta, expected_dtype",
        [
            (np.timedelta64(1, "D"), np.dtype("timedelta64[D]")),
            (np.timedelta64(1, "s"), np.dtype("timedelta64[s]")),
            (np.timedelta64(1, "m"), np.dtype("timedelta64[m]")),
            (np.timedelta64(1, "h"), np.dtype("timedelta64[h]")),
            (np.timedelta64(1, "us"), np.dtype("timedelta64[us]")),
            (np.timedelta64(1, "ns"), np.dtype("timedelta64[ns]")),
            (np.timedelta64(1, "ps"), np.dtype("timedelta64[ps]")),
            (np.timedelta64(1, "fs"), np.dtype("timedelta64[fs]")),
            (np.timedelta64(1, "as"), np.dtype("timedelta64[as]")),
        ],
    )
    def test_from_array_0d_timedelta(
        self, timedelta: np.timedelta64, expected_dtype: np.dtype[np.timedelta64]
    ) -> None:
        named_array: NamedArray[Any, Any]
        named_array = from_array([], timedelta)
        assert named_array.dtype == expected_dtype
        assert named_array.data == timedelta

    @pytest.mark.parametrize(
        "dims, data_shape, new_dims, raises",
        [
            (["x", "y", "z"], (2, 3, 4), ["a", "b", "c"], False),
            (["x", "y", "z"], (2, 3, 4), ["a", "b"], True),
            (["x", "y", "z"], (2, 4, 5), ["a", "b", "c", "d"], True),
            ([], [], (), False),
            ([], [], ("x",), True),
        ],
    )
    def test_dims_setter(
        self, dims: Any, data_shape: Any, new_dims: Any, raises: bool
    ) -> None:
        named_array: NamedArray[Any, Any]
        named_array = NamedArray(dims, np.asarray(np.random.random(data_shape)))
        assert named_array.dims == tuple(dims)
        if raises:
            with pytest.raises(ValueError):
                named_array.dims = new_dims
        else:
            named_array.dims = new_dims
            assert named_array.dims == tuple(new_dims)

    def test_duck_array_class(self) -> None:
        numpy_a: NDArray[np.int64]
        numpy_a = np.array([2.1, 4], dtype=np.dtype(np.int64))
        check_duck_array_typevar(numpy_a)

        masked_a: np.ma.MaskedArray[Any, np.dtype[np.int64]]
        masked_a = np.ma.asarray([2.1, 4], dtype=np.dtype(np.int64))  # type: ignore[no-untyped-call]
        check_duck_array_typevar(masked_a)

        custom_a: CustomArrayIndexable[Any, np.dtype[np.int64]]
        custom_a = CustomArrayIndexable(numpy_a)
        check_duck_array_typevar(custom_a)

    def test_duck_array_class_array_api(self) -> None:
        # Test numpy's array api:
        nxp = pytest.importorskip("array_api_strict", minversion="1.0")

        # TODO: nxp doesn't use dtype typevars, so can only use Any for the moment:
        arrayapi_a: duckarray[Any, Any]  #  duckarray[Any, np.dtype[np.int64]]
        arrayapi_a = nxp.asarray([2.1, 4], dtype=nxp.int64)
        check_duck_array_typevar(arrayapi_a)

    def test_new_namedarray(self) -> None:
        dtype_float = np.dtype(np.float32)
        narr_float: NamedArray[Any, np.dtype[np.float32]]
        narr_float = NamedArray(("x",), np.array([1.5, 3.2], dtype=dtype_float))
        assert narr_float.dtype == dtype_float

        dtype_int = np.dtype(np.int8)
        narr_int: NamedArray[Any, np.dtype[np.int8]]
        narr_int = narr_float._new(("x",), np.array([1, 3], dtype=dtype_int))
        assert narr_int.dtype == dtype_int

        class Variable(
            NamedArray[_ShapeType_co, _DType_co], Generic[_ShapeType_co, _DType_co]
        ):
            @overload
            def _new(
                self,
                dims: _DimsLike | Default = ...,
                data: duckarray[Any, _DType] = ...,
                attrs: _AttrsLike | Default = ...,
            ) -> Variable[Any, _DType]: ...

            @overload
            def _new(
                self,
                dims: _DimsLike | Default = ...,
                data: Default = ...,
                attrs: _AttrsLike | Default = ...,
            ) -> Variable[_ShapeType_co, _DType_co]: ...

            def _new(
                self,
                dims: _DimsLike | Default = _default,
                data: duckarray[Any, _DType] | Default = _default,
                attrs: _AttrsLike | Default = _default,
            ) -> Variable[Any, _DType] | Variable[_ShapeType_co, _DType_co]:
                dims_ = copy.copy(self._dims) if dims is _default else dims

                attrs_: Mapping[Any, Any] | None
                if attrs is _default:
                    attrs_ = None if self._attrs is None else self._attrs.copy()
                else:
                    attrs_ = attrs

                if data is _default:
                    return type(self)(dims_, copy.copy(self._data), attrs_)
                cls_ = cast("type[Variable[Any, _DType]]", type(self))
                return cls_(dims_, data, attrs_)

        var_float: Variable[Any, np.dtype[np.float32]]
        var_float = Variable(("x",), np.array([1.5, 3.2], dtype=dtype_float))
        assert var_float.dtype == dtype_float

        var_int: Variable[Any, np.dtype[np.int8]]
        var_int = var_float._new(("x",), np.array([1, 3], dtype=dtype_int))
        assert var_int.dtype == dtype_int

    def test_replace_namedarray(self) -> None:
        dtype_float = np.dtype(np.float32)
        np_val: np.ndarray[Any, np.dtype[np.float32]]
        np_val = np.array([1.5, 3.2], dtype=dtype_float)
        np_val2: np.ndarray[Any, np.dtype[np.float32]]
        np_val2 = 2 * np_val

        narr_float: NamedArray[Any, np.dtype[np.float32]]
        narr_float = NamedArray(("x",), np_val)
        assert narr_float.dtype == dtype_float

        narr_float2: NamedArray[Any, np.dtype[np.float32]]
        narr_float2 = NamedArray(("x",), np_val2)
        assert narr_float2.dtype == dtype_float

        class Variable(
            NamedArray[_ShapeType_co, _DType_co], Generic[_ShapeType_co, _DType_co]
        ):
            @overload
            def _new(
                self,
                dims: _DimsLike | Default = ...,
                data: duckarray[Any, _DType] = ...,
                attrs: _AttrsLike | Default = ...,
            ) -> Variable[Any, _DType]: ...

            @overload
            def _new(
                self,
                dims: _DimsLike | Default = ...,
                data: Default = ...,
                attrs: _AttrsLike | Default = ...,
            ) -> Variable[_ShapeType_co, _DType_co]: ...

            def _new(
                self,
                dims: _DimsLike | Default = _default,
                data: duckarray[Any, _DType] | Default = _default,
                attrs: _AttrsLike | Default = _default,
            ) -> Variable[Any, _DType] | Variable[_ShapeType_co, _DType_co]:
                dims_ = copy.copy(self._dims) if dims is _default else dims

                attrs_: Mapping[Any, Any] | None
                if attrs is _default:
                    attrs_ = None if self._attrs is None else self._attrs.copy()
                else:
                    attrs_ = attrs

                if data is _default:
                    return type(self)(dims_, copy.copy(self._data), attrs_)
                cls_ = cast("type[Variable[Any, _DType]]", type(self))
                return cls_(dims_, data, attrs_)

        var_float: Variable[Any, np.dtype[np.float32]]
        var_float = Variable(("x",), np_val)
        assert var_float.dtype == dtype_float

        var_float2: Variable[Any, np.dtype[np.float32]]
        var_float2 = var_float._replace(("x",), np_val2)
        assert var_float2.dtype == dtype_float

    @pytest.mark.parametrize(
        "dim,expected_ndim,expected_shape,expected_dims",
        [
            (None, 3, (1, 2, 5), (None, "x", "y")),
            (_default, 3, (1, 2, 5), ("dim_2", "x", "y")),
            ("z", 3, (1, 2, 5), ("z", "x", "y")),
        ],
    )
    def test_expand_dims(
        self,
        target: NamedArray[Any, np.dtype[np.float32]],
        dim: _Dim | Default,
        expected_ndim: int,
        expected_shape: _ShapeLike,
        expected_dims: _DimsLike,
    ) -> None:
        result = target.expand_dims(dim=dim)
        assert result.ndim == expected_ndim
        assert result.shape == expected_shape
        assert result.dims == expected_dims

    @pytest.mark.parametrize(
        "dims, expected_sizes",
        [
            ((), {"y": 5, "x": 2}),
            (["y", "x"], {"y": 5, "x": 2}),
            (["y", ...], {"y": 5, "x": 2}),
        ],
    )
    def test_permute_dims(
        self,
        target: NamedArray[Any, np.dtype[np.float32]],
        dims: _DimsLike,
        expected_sizes: dict[_Dim, _IntOrUnknown],
    ) -> None:
        actual = target.permute_dims(*dims)
        assert actual.sizes == expected_sizes

    def test_permute_dims_errors(
        self,
        target: NamedArray[Any, np.dtype[np.float32]],
    ) -> None:
        with pytest.raises(ValueError, match=r"'y'.*permuted list"):
            dims = ["y"]
            target.permute_dims(*dims)

    @pytest.mark.parametrize(
        "broadcast_dims,expected_ndim",
        [
            ({"x": 2, "y": 5}, 2),
            ({"x": 2, "y": 5, "z": 2}, 3),
            ({"w": 1, "x": 2, "y": 5}, 3),
        ],
    )
    def test_broadcast_to(
        self,
        target: NamedArray[Any, np.dtype[np.float32]],
        broadcast_dims: Mapping[_Dim, int],
        expected_ndim: int,
    ) -> None:
        expand_dims = set(broadcast_dims.keys()) - set(target.dims)
        # loop over expand_dims and call .expand_dims(dim=dim) in a loop
        for dim in expand_dims:
            target = target.expand_dims(dim=dim)
        result = target.broadcast_to(broadcast_dims)
        assert result.ndim == expected_ndim
        assert result.sizes == broadcast_dims

    def test_broadcast_to_errors(
        self, target: NamedArray[Any, np.dtype[np.float32]]
    ) -> None:
        with pytest.raises(
            ValueError,
            match=r"operands could not be broadcast together with remapped shapes",
        ):
            target.broadcast_to({"x": 2, "y": 2})

        with pytest.raises(ValueError, match=r"Cannot add new dimensions"):
            target.broadcast_to({"x": 2, "y": 2, "z": 2})

    def test_warn_on_repeated_dimension_names(self) -> None:
        with pytest.warns(UserWarning, match="Duplicate dimension names"):
            NamedArray(("x", "x"), np.arange(4).reshape(2, 2))

    def test_aggregation(self) -> None:
        x: NamedArray[Any, np.dtype[np.int64]]
        x = NamedArray(("x", "y"), np.arange(4).reshape(2, 2))

        result = x.sum()
        assert isinstance(result.data, np.ndarray)


def test_repr() -> None:
    x: NamedArray[Any, np.dtype[np.uint64]]
    x = NamedArray(("x",), np.array([0], dtype=np.uint64))

    # Reprs should not crash:
    r = x.__repr__()
    x._repr_html_()

    # Basic comparison:
    assert r == "<xarray.NamedArray (x: 1)> Size: 8B\narray([0], dtype=uint64)"