1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
|
import numpy as np
import pytest
import xarray as xr
from xarray.indexes import NDPointIndex
from xarray.tests import assert_identical
pytest.importorskip("scipy")
def test_tree_index_init() -> None:
from xarray.indexes.nd_point_index import ScipyKDTreeAdapter
xx, yy = np.meshgrid([1.0, 2.0], [3.0, 4.0])
ds = xr.Dataset(coords={"xx": (("y", "x"), xx), "yy": (("y", "x"), yy)})
ds_indexed1 = ds.set_xindex(("xx", "yy"), NDPointIndex)
assert "xx" in ds_indexed1.xindexes
assert "yy" in ds_indexed1.xindexes
assert isinstance(ds_indexed1.xindexes["xx"], NDPointIndex)
assert ds_indexed1.xindexes["xx"] is ds_indexed1.xindexes["yy"]
ds_indexed2 = ds.set_xindex(
("xx", "yy"), NDPointIndex, tree_adapter_cls=ScipyKDTreeAdapter
)
assert ds_indexed1.xindexes["xx"].equals(ds_indexed2.xindexes["yy"])
def test_tree_index_init_errors() -> None:
xx, yy = np.meshgrid([1.0, 2.0], [3.0, 4.0])
ds = xr.Dataset(coords={"xx": (("y", "x"), xx), "yy": (("y", "x"), yy)})
with pytest.raises(ValueError, match="number of variables"):
ds.set_xindex("xx", NDPointIndex)
ds2 = ds.assign_coords(yy=(("u", "v"), [[3.0, 3.0], [4.0, 4.0]]))
with pytest.raises(ValueError, match="same dimensions"):
ds2.set_xindex(("xx", "yy"), NDPointIndex)
def test_tree_index_sel() -> None:
xx, yy = np.meshgrid([1.0, 2.0], [3.0, 4.0])
ds = xr.Dataset(coords={"xx": (("y", "x"), xx), "yy": (("y", "x"), yy)}).set_xindex(
("xx", "yy"), NDPointIndex
)
# 1-dimensional labels
actual = ds.sel(
xx=xr.Variable("u", [1.1, 1.1, 1.1]),
yy=xr.Variable("u", [3.1, 3.1, 3.1]),
method="nearest",
)
expected = xr.Dataset(
coords={"xx": ("u", [1.0, 1.0, 1.0]), "yy": ("u", [3.0, 3.0, 3.0])}
)
assert_identical(actual, expected)
# 2-dimensional labels
actual = ds.sel(
xx=xr.Variable(("u", "v"), [[1.1, 1.1, 1.1], [1.9, 1.9, 1.9]]),
yy=xr.Variable(("u", "v"), [[3.1, 3.1, 3.1], [3.9, 3.9, 3.9]]),
method="nearest",
)
expected = xr.Dataset(
coords={
"xx": (("u", "v"), [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0]]),
"yy": (("u", "v"), [[3.0, 3.0, 3.0], [4.0, 4.0, 4.0]]),
},
)
assert_identical(actual, expected)
# all scalar labels
actual = ds.sel(xx=1.1, yy=3.1, method="nearest")
expected = xr.Dataset(coords={"xx": 1.0, "yy": 3.0})
assert_identical(actual, expected)
# broadcast scalar to label shape and dimensions
actual = ds.sel(xx=1.1, yy=xr.Variable("u", [3.1, 3.1, 3.1]), method="nearest")
expected = ds.sel(
xx=xr.Variable("u", [1.1, 1.1, 1.1]),
yy=xr.Variable("u", [3.1, 3.1, 3.1]),
method="nearest",
)
assert_identical(actual, expected)
# broadcast orthogonal 1-dimensional labels
actual = ds.sel(
xx=xr.Variable("u", [1.1, 1.1]),
yy=xr.Variable("v", [3.1, 3.1]),
method="nearest",
)
expected = xr.Dataset(
coords={
"xx": (("u", "v"), [[1.0, 1.0], [1.0, 1.0]]),
"yy": (("u", "v"), [[3.0, 3.0], [3.0, 3.0]]),
},
)
assert_identical(actual, expected)
# implicit dimension array-like labels
actual = ds.sel(
xx=[[1.1, 1.1, 1.1], [1.9, 1.9, 1.9]],
yy=[[3.1, 3.1, 3.1], [3.9, 3.9, 3.9]],
method="nearest",
)
expected = ds.sel(
xx=xr.Variable(ds.xx.dims, [[1.1, 1.1, 1.1], [1.9, 1.9, 1.9]]),
yy=xr.Variable(ds.yy.dims, [[3.1, 3.1, 3.1], [3.9, 3.9, 3.9]]),
method="nearest",
)
assert_identical(actual, expected)
def test_tree_index_sel_errors() -> None:
xx, yy = np.meshgrid([1.0, 2.0], [3.0, 4.0])
ds = xr.Dataset(coords={"xx": (("y", "x"), xx), "yy": (("y", "x"), yy)}).set_xindex(
("xx", "yy"), NDPointIndex
)
with pytest.raises(ValueError, match="method='nearest'"):
ds.sel(xx=1.1, yy=3.1)
with pytest.raises(ValueError, match="missing labels"):
ds.sel(xx=1.1, method="nearest")
with pytest.raises(ValueError, match="invalid label value"):
# invalid array-like dimensions
ds.sel(xx=[1.1, 1.9], yy=[3.1, 3.9], method="nearest")
# error while trying to broadcast labels
with pytest.raises(xr.AlignmentError, match=".*conflicting dimension sizes"):
ds.sel(
xx=xr.Variable("u", [1.1, 1.1, 1.1]),
yy=xr.Variable("u", [3.1, 3.1]),
method="nearest",
)
def test_tree_index_equals() -> None:
xx1, yy1 = np.meshgrid([1.0, 2.0], [3.0, 4.0])
ds1 = xr.Dataset(
coords={"xx": (("y", "x"), xx1), "yy": (("y", "x"), yy1)}
).set_xindex(("xx", "yy"), NDPointIndex)
xx2, yy2 = np.meshgrid([1.0, 2.0], [3.0, 4.0])
ds2 = xr.Dataset(
coords={"xx": (("y", "x"), xx2), "yy": (("y", "x"), yy2)}
).set_xindex(("xx", "yy"), NDPointIndex)
xx3, yy3 = np.meshgrid([10.0, 20.0], [30.0, 40.0])
ds3 = xr.Dataset(
coords={"xx": (("y", "x"), xx3), "yy": (("y", "x"), yy3)}
).set_xindex(("xx", "yy"), NDPointIndex)
assert ds1.xindexes["xx"].equals(ds2.xindexes["xx"])
assert not ds1.xindexes["xx"].equals(ds3.xindexes["xx"])
def test_tree_index_rename() -> None:
xx, yy = np.meshgrid([1.0, 2.0], [3.0, 4.0])
ds = xr.Dataset(coords={"xx": (("y", "x"), xx), "yy": (("y", "x"), yy)}).set_xindex(
("xx", "yy"), NDPointIndex
)
ds_renamed = ds.rename_dims(y="u").rename_vars(yy="uu")
assert "uu" in ds_renamed.xindexes
assert isinstance(ds_renamed.xindexes["uu"], NDPointIndex)
assert ds_renamed.xindexes["xx"] is ds_renamed.xindexes["uu"]
# test via sel() with implicit dimension array-like labels, which relies on
# NDPointIndex._coord_names and NDPointIndex._dims internal attrs
actual = ds_renamed.sel(
xx=[[1.1, 1.1, 1.1], [1.9, 1.9, 1.9]],
uu=[[3.1, 3.1, 3.1], [3.9, 3.9, 3.9]],
method="nearest",
)
expected = ds_renamed.sel(
xx=xr.Variable(ds_renamed.xx.dims, [[1.1, 1.1, 1.1], [1.9, 1.9, 1.9]]),
uu=xr.Variable(ds_renamed.uu.dims, [[3.1, 3.1, 3.1], [3.9, 3.9, 3.9]]),
method="nearest",
)
assert_identical(actual, expected)
|