1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
# This file contains code vendored from pandas
# For reference, here is a copy of the pandas copyright notice:
# BSD 3-Clause License
# Copyright (c) 2008-2011, AQR Capital Management, LLC, Lambda Foundry, Inc. and PyData Development Team
# All rights reserved.
# Copyright (c) 2011-2025, Open source contributors.
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import numpy as np
import pandas as pd
import pandas._testing as tm
import pytest
from packaging.version import Version
from pandas import (
Categorical,
CategoricalIndex,
DataFrame,
Index,
IntervalIndex,
MultiIndex,
RangeIndex,
Series,
date_range,
period_range,
timedelta_range,
)
indices_dict: dict[str, Index] = {
"object": Index([f"pandas_{i}" for i in range(10)], dtype=object),
"string": Index([f"pandas_{i}" for i in range(10)], dtype="str"),
"datetime": date_range("2020-01-01", periods=10),
"datetime-tz": date_range("2020-01-01", periods=10, tz="US/Pacific"),
"period": period_range("2020-01-01", periods=10, freq="D"),
"timedelta": timedelta_range(start="1 day", periods=10, freq="D"),
"range": RangeIndex(10),
"int8": Index(np.arange(10), dtype="int8"),
"int16": Index(np.arange(10), dtype="int16"),
"int32": Index(np.arange(10), dtype="int32"),
"int64": Index(np.arange(10), dtype="int64"),
"uint8": Index(np.arange(10), dtype="uint8"),
"uint16": Index(np.arange(10), dtype="uint16"),
"uint32": Index(np.arange(10), dtype="uint32"),
"uint64": Index(np.arange(10), dtype="uint64"),
"float32": Index(np.arange(10), dtype="float32"),
"float64": Index(np.arange(10), dtype="float64"),
"bool-object": Index([True, False] * 5, dtype=object),
"bool-dtype": Index([True, False] * 5, dtype=bool),
"complex64": Index(
np.arange(10, dtype="complex64") + 1.0j * np.arange(10, dtype="complex64")
),
"complex128": Index(
np.arange(10, dtype="complex128") + 1.0j * np.arange(10, dtype="complex128")
),
"categorical": CategoricalIndex(list("abcd") * 2),
"interval": IntervalIndex.from_breaks(np.linspace(0, 100, num=11, dtype="int")),
"empty": Index([]),
# "tuples": MultiIndex.from_tuples(zip(["foo", "bar", "baz"], [1, 2, 3])),
# "mi-with-dt64tz-level": _create_mi_with_dt64tz_level(),
# "multi": _create_multiindex(),
"repeats": Index([0, 0, 1, 1, 2, 2]),
"nullable_int": Index(np.arange(10), dtype="Int64"),
"nullable_uint": Index(np.arange(10), dtype="UInt16"),
"nullable_float": Index(np.arange(10), dtype="Float32"),
"nullable_bool": Index(np.arange(10).astype(bool), dtype="boolean"),
"string-python": Index(
pd.array([f"pandas_{i}" for i in range(10)], dtype="string[python]")
),
}
@pytest.fixture(
params=[
key for key, value in indices_dict.items() if not isinstance(value, MultiIndex)
]
)
def index_flat(request):
"""
index fixture, but excluding MultiIndex cases.
"""
key = request.param
return indices_dict[key].copy()
class TestDataFrameToXArray:
@pytest.fixture
def df(self):
return DataFrame(
{
"a": list("abcd"),
"b": list(range(1, 5)),
"c": np.arange(3, 7).astype("u1"),
"d": np.arange(4.0, 8.0, dtype="float64"),
"e": [True, False, True, False],
"f": Categorical(list("abcd")),
"g": date_range("20130101", periods=4),
"h": date_range("20130101", periods=4, tz="US/Eastern"),
}
)
def test_to_xarray_index_types(self, index_flat, df):
index = index_flat
# MultiIndex is tested in test_to_xarray_with_multiindex
if len(index) == 0:
pytest.skip("Test doesn't make sense for empty index")
from xarray import Dataset
df.index = index[:4]
df.index.name = "foo"
df.columns.name = "bar"
result = df.to_xarray()
assert result.sizes["foo"] == 4
assert len(result.coords) == 1
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, Dataset)
# idempotency
# datetimes w/tz are preserved
# column names are lost
expected = df.copy()
expected.columns.name = None
tm.assert_frame_equal(result.to_dataframe(), expected)
def test_to_xarray_empty(self, df):
from xarray import Dataset
df.index.name = "foo"
result = df[0:0].to_xarray()
assert result.sizes["foo"] == 0
assert isinstance(result, Dataset)
def test_to_xarray_with_multiindex(self, df):
from xarray import Dataset
# MultiIndex
df.index = MultiIndex.from_product([["a"], range(4)], names=["one", "two"])
result = df.to_xarray()
assert result.sizes["one"] == 1
assert result.sizes["two"] == 4
assert len(result.coords) == 2
assert len(result.data_vars) == 8
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, Dataset)
result = result.to_dataframe()
expected = df.copy()
expected["f"] = expected["f"].astype(
object if Version(pd.__version__) < Version("3.0.0dev0") else str
)
expected.columns.name = None
tm.assert_frame_equal(result, expected)
class TestSeriesToXArray:
def test_to_xarray_index_types(self, index_flat):
index = index_flat
# MultiIndex is tested in test_to_xarray_with_multiindex
from xarray import DataArray
ser = Series(range(len(index)), index=index, dtype="int64")
ser.index.name = "foo"
result = ser.to_xarray()
repr(result)
assert len(result) == len(index)
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
# idempotency
tm.assert_series_equal(result.to_series(), ser)
def test_to_xarray_empty(self):
from xarray import DataArray
ser = Series([], dtype=object)
ser.index.name = "foo"
result = ser.to_xarray()
assert len(result) == 0
assert len(result.coords) == 1
tm.assert_almost_equal(list(result.coords.keys()), ["foo"])
assert isinstance(result, DataArray)
def test_to_xarray_with_multiindex(self):
from xarray import DataArray
mi = MultiIndex.from_product([["a", "b"], range(3)], names=["one", "two"])
ser = Series(range(6), dtype="int64", index=mi)
result = ser.to_xarray()
assert len(result) == 2
tm.assert_almost_equal(list(result.coords.keys()), ["one", "two"])
assert isinstance(result, DataArray)
res = result.to_series()
tm.assert_series_equal(res, ser)
|