1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
import warnings
import numpy as np
import numpy.testing as npt
import pytest
from packaging.version import Version
pytest.importorskip("hypothesis")
# isort: split
import hypothesis.extra.numpy as npst
import hypothesis.strategies as st
from hypothesis import given
from hypothesis.extra.array_api import make_strategies_namespace
from xarray.core.options import set_options
from xarray.core.variable import Variable
from xarray.testing.strategies import (
attrs,
dimension_names,
dimension_sizes,
supported_dtypes,
unique_subset_of,
variables,
)
ALLOWED_ATTRS_VALUES_TYPES = (int, bool, str, np.ndarray)
class TestDimensionNamesStrategy:
@given(dimension_names())
def test_types(self, dims):
assert isinstance(dims, list)
for d in dims:
assert isinstance(d, str)
@given(dimension_names())
def test_unique(self, dims):
assert len(set(dims)) == len(dims)
@given(st.data(), st.tuples(st.integers(0, 10), st.integers(0, 10)).map(sorted))
def test_number_of_dims(self, data, ndims):
min_dims, max_dims = ndims
dim_names = data.draw(dimension_names(min_dims=min_dims, max_dims=max_dims))
assert isinstance(dim_names, list)
assert min_dims <= len(dim_names) <= max_dims
class TestDimensionSizesStrategy:
@given(dimension_sizes())
def test_types(self, dims):
assert isinstance(dims, dict)
for d, n in dims.items():
assert isinstance(d, str)
assert len(d) >= 1
assert isinstance(n, int)
assert n >= 0
@given(st.data(), st.tuples(st.integers(0, 10), st.integers(0, 10)).map(sorted))
def test_number_of_dims(self, data, ndims):
min_dims, max_dims = ndims
dim_sizes = data.draw(dimension_sizes(min_dims=min_dims, max_dims=max_dims))
assert isinstance(dim_sizes, dict)
assert min_dims <= len(dim_sizes) <= max_dims
@given(st.data())
def test_restrict_names(self, data):
capitalized_names = st.text(st.characters(), min_size=1).map(str.upper)
dim_sizes = data.draw(dimension_sizes(dim_names=capitalized_names))
for dim in dim_sizes.keys():
assert dim.upper() == dim
def check_dict_values(dictionary: dict, allowed_attrs_values_types) -> bool:
"""Helper function to assert that all values in recursive dict match one of a set of types."""
for value in dictionary.values():
if isinstance(value, allowed_attrs_values_types) or value is None:
continue
elif isinstance(value, dict):
# If the value is a dictionary, recursively check it
if not check_dict_values(value, allowed_attrs_values_types):
return False
else:
# If the value is not an integer or a dictionary, it's not valid
return False
return True
class TestAttrsStrategy:
@given(attrs())
def test_type(self, attrs):
assert isinstance(attrs, dict)
check_dict_values(attrs, ALLOWED_ATTRS_VALUES_TYPES)
class TestVariablesStrategy:
@given(variables())
def test_given_nothing(self, var):
assert isinstance(var, Variable)
@given(st.data())
def test_given_incorrect_types(self, data):
with pytest.raises(TypeError, match="dims must be provided as a"):
data.draw(variables(dims=["x", "y"])) # type: ignore[arg-type]
with pytest.raises(TypeError, match="dtype must be provided as a"):
data.draw(variables(dtype=np.dtype("int32"))) # type: ignore[arg-type]
with pytest.raises(TypeError, match="attrs must be provided as a"):
data.draw(variables(attrs=dict())) # type: ignore[arg-type]
with pytest.raises(TypeError, match="Callable"):
data.draw(variables(array_strategy_fn=np.array([0]))) # type: ignore[arg-type]
@given(st.data(), dimension_names())
def test_given_fixed_dim_names(self, data, fixed_dim_names):
var = data.draw(variables(dims=st.just(fixed_dim_names)))
assert list(var.dims) == fixed_dim_names
@given(st.data(), dimension_sizes())
def test_given_fixed_dim_sizes(self, data, dim_sizes):
var = data.draw(variables(dims=st.just(dim_sizes)))
assert var.dims == tuple(dim_sizes.keys())
assert var.shape == tuple(dim_sizes.values())
@given(st.data(), supported_dtypes())
def test_given_fixed_dtype(self, data, dtype):
var = data.draw(variables(dtype=st.just(dtype)))
assert var.dtype == dtype
@given(st.data(), npst.arrays(shape=npst.array_shapes(), dtype=supported_dtypes()))
def test_given_fixed_data_dims_and_dtype(self, data, arr):
def fixed_array_strategy_fn(*, shape=None, dtype=None):
"""The fact this ignores shape and dtype is only okay because compatible shape & dtype will be passed separately."""
return st.just(arr)
dim_names = data.draw(dimension_names(min_dims=arr.ndim, max_dims=arr.ndim))
dim_sizes = dict(zip(dim_names, arr.shape, strict=True))
var = data.draw(
variables(
array_strategy_fn=fixed_array_strategy_fn,
dims=st.just(dim_sizes),
dtype=st.just(arr.dtype),
)
)
npt.assert_equal(var.data, arr)
assert var.dtype == arr.dtype
@given(st.data(), st.integers(0, 3))
def test_given_array_strat_arbitrary_size_and_arbitrary_data(self, data, ndims):
dim_names = data.draw(dimension_names(min_dims=ndims, max_dims=ndims))
def array_strategy_fn(*, shape=None, dtype=None):
return npst.arrays(shape=shape, dtype=dtype)
var = data.draw(
variables(
array_strategy_fn=array_strategy_fn,
dims=st.just(dim_names),
dtype=supported_dtypes(),
)
)
assert var.ndim == ndims
@given(st.data())
def test_catch_unruly_dtype_from_custom_array_strategy_fn(self, data):
def dodgy_array_strategy_fn(*, shape=None, dtype=None):
"""Dodgy function which ignores the dtype it was passed"""
return npst.arrays(shape=shape, dtype=npst.floating_dtypes())
with pytest.raises(
ValueError, match="returned an array object with a different dtype"
):
data.draw(
variables(
array_strategy_fn=dodgy_array_strategy_fn,
dtype=st.just(np.dtype("int32")),
)
)
@given(st.data())
def test_catch_unruly_shape_from_custom_array_strategy_fn(self, data):
def dodgy_array_strategy_fn(*, shape=None, dtype=None):
"""Dodgy function which ignores the shape it was passed"""
return npst.arrays(shape=(3, 2), dtype=dtype)
with pytest.raises(
ValueError, match="returned an array object with a different shape"
):
data.draw(
variables(
array_strategy_fn=dodgy_array_strategy_fn,
dims=st.just({"a": 2, "b": 1}),
dtype=supported_dtypes(),
)
)
@given(st.data())
def test_make_strategies_namespace(self, data):
"""
Test not causing a hypothesis.InvalidArgument by generating a dtype that's not in the array API.
We still want to generate dtypes not in the array API by default, but this checks we don't accidentally override
the user's choice of dtypes with non-API-compliant ones.
"""
if Version(np.__version__) >= Version("2.0.0.dev0"):
nxp = np
else:
# requires numpy>=1.26.0, and we expect a UserWarning to be raised
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore", category=UserWarning, message=".+See NEP 47."
)
from numpy import ( # type: ignore[attr-defined,no-redef,unused-ignore]
array_api as nxp,
)
nxp_st = make_strategies_namespace(nxp)
data.draw(
variables(
array_strategy_fn=nxp_st.arrays,
dtype=nxp_st.scalar_dtypes(),
)
)
class TestUniqueSubsetOf:
@given(st.data())
def test_invalid(self, data):
with pytest.raises(TypeError, match="must be an Iterable or a Mapping"):
data.draw(unique_subset_of(0)) # type: ignore[call-overload]
with pytest.raises(ValueError, match="length-zero object"):
data.draw(unique_subset_of({}))
@given(st.data(), dimension_sizes(min_dims=1))
def test_mapping(self, data, dim_sizes):
subset_of_dim_sizes = data.draw(unique_subset_of(dim_sizes))
for dim, length in subset_of_dim_sizes.items():
assert dim in dim_sizes
assert dim_sizes[dim] == length
@given(st.data(), dimension_names(min_dims=1))
def test_iterable(self, data, dim_names):
subset_of_dim_names = data.draw(unique_subset_of(dim_names))
for dim in subset_of_dim_names:
assert dim in dim_names
class TestReduction:
"""
These tests are for checking that the examples given in the docs page on testing actually work.
"""
@given(st.data(), variables(dims=dimension_names(min_dims=1)))
def test_mean(self, data, var):
"""
Test that given a Variable of at least one dimension,
the mean of the Variable is always equal to the mean of the underlying array.
"""
with set_options(use_numbagg=False):
# specify arbitrary reduction along at least one dimension
reduction_dims = data.draw(unique_subset_of(var.dims, min_size=1))
# create expected result (using nanmean because arrays with Nans will be generated)
reduction_axes = tuple(var.get_axis_num(dim) for dim in reduction_dims)
expected = np.nanmean(var.data, axis=reduction_axes)
# assert property is always satisfied
result = var.mean(dim=reduction_dims).data
npt.assert_equal(expected, result)
|