1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
|
from __future__ import annotations
import pickle
from unittest.mock import patch
import numpy as np
import pytest
import xarray as xr
import xarray.ufuncs as xu
from xarray.tests import assert_allclose, assert_array_equal, mock, requires_dask
from xarray.tests import assert_identical as assert_identical_
def assert_identical(a, b):
assert type(a) is type(b) or float(a) == float(b)
if isinstance(a, xr.DataArray | xr.Dataset | xr.Variable):
assert_identical_(a, b)
else:
assert_array_equal(a, b)
@pytest.mark.parametrize(
"a",
[
xr.Variable(["x"], [0, 0]),
xr.DataArray([0, 0], dims="x"),
xr.Dataset({"y": ("x", [0, 0])}),
],
)
def test_unary(a):
assert_allclose(a + 1, np.cos(a))
def test_binary():
args = [
0,
np.zeros(2),
xr.Variable(["x"], [0, 0]),
xr.DataArray([0, 0], dims="x"),
xr.Dataset({"y": ("x", [0, 0])}),
]
for n, t1 in enumerate(args):
for t2 in args[n:]:
assert_identical(t2 + 1, np.maximum(t1, t2 + 1))
assert_identical(t2 + 1, np.maximum(t2, t1 + 1))
assert_identical(t2 + 1, np.maximum(t1 + 1, t2))
assert_identical(t2 + 1, np.maximum(t2 + 1, t1))
def test_binary_out():
args = [
1,
np.ones(2),
xr.Variable(["x"], [1, 1]),
xr.DataArray([1, 1], dims="x"),
xr.Dataset({"y": ("x", [1, 1])}),
]
for arg in args:
actual_mantissa, actual_exponent = np.frexp(arg)
assert_identical(actual_mantissa, 0.5 * arg)
assert_identical(actual_exponent, arg)
def test_binary_coord_attrs():
t = xr.Variable("t", np.arange(2, 4), attrs={"units": "s"})
x = xr.DataArray(t.values**2, coords={"t": t}, attrs={"units": "s^2"})
y = xr.DataArray(t.values**3, coords={"t": t}, attrs={"units": "s^3"})
z1 = xr.apply_ufunc(np.add, x, y, keep_attrs=True)
assert z1.coords["t"].attrs == {"units": "s"}
z2 = xr.apply_ufunc(np.add, x, y, keep_attrs=False)
assert z2.coords["t"].attrs == {}
# Check also that input array's coordinate attributes weren't affected
assert t.attrs == {"units": "s"}
assert x.coords["t"].attrs == {"units": "s"}
def test_groupby():
ds = xr.Dataset({"a": ("x", [0, 0, 0])}, {"c": ("x", [0, 0, 1])})
ds_grouped = ds.groupby("c")
group_mean = ds_grouped.mean("x")
arr_grouped = ds["a"].groupby("c")
assert_identical(ds, np.maximum(ds_grouped, group_mean))
assert_identical(ds, np.maximum(group_mean, ds_grouped))
assert_identical(ds, np.maximum(arr_grouped, group_mean))
assert_identical(ds, np.maximum(group_mean, arr_grouped))
assert_identical(ds, np.maximum(ds_grouped, group_mean["a"]))
assert_identical(ds, np.maximum(group_mean["a"], ds_grouped))
assert_identical(ds.a, np.maximum(arr_grouped, group_mean.a))
assert_identical(ds.a, np.maximum(group_mean.a, arr_grouped))
with pytest.raises(ValueError, match=r"mismatched lengths for dimension"):
np.maximum(ds.a.variable, ds_grouped)
def test_alignment():
ds1 = xr.Dataset({"a": ("x", [1, 2])}, {"x": [0, 1]})
ds2 = xr.Dataset({"a": ("x", [2, 3]), "b": 4}, {"x": [1, 2]})
actual = np.add(ds1, ds2)
expected = xr.Dataset({"a": ("x", [4])}, {"x": [1]})
assert_identical_(actual, expected)
with xr.set_options(arithmetic_join="outer"):
actual = np.add(ds1, ds2)
expected = xr.Dataset(
{"a": ("x", [np.nan, 4, np.nan]), "b": np.nan}, coords={"x": [0, 1, 2]}
)
assert_identical_(actual, expected)
def test_kwargs():
x = xr.DataArray(0)
result = np.add(x, 1, dtype=np.float64)
assert result.dtype == np.float64
def test_xarray_defers_to_unrecognized_type():
class Other:
def __array_ufunc__(self, *args, **kwargs):
return "other"
xarray_obj = xr.DataArray([1, 2, 3])
other = Other()
assert np.maximum(xarray_obj, other) == "other"
assert np.sin(xarray_obj, out=other) == "other"
def test_xarray_handles_dask():
da = pytest.importorskip("dask.array")
x = xr.DataArray(np.ones((2, 2)), dims=["x", "y"])
y = da.ones((2, 2), chunks=(2, 2))
result = np.add(x, y)
assert result.chunks == ((2,), (2,))
assert isinstance(result, xr.DataArray)
def test_dask_defers_to_xarray():
da = pytest.importorskip("dask.array")
x = xr.DataArray(np.ones((2, 2)), dims=["x", "y"])
y = da.ones((2, 2), chunks=(2, 2))
result = np.add(y, x)
assert result.chunks == ((2,), (2,))
assert isinstance(result, xr.DataArray)
def test_gufunc_methods():
xarray_obj = xr.DataArray([1, 2, 3])
with pytest.raises(NotImplementedError, match=r"reduce method"):
np.add.reduce(xarray_obj, 1)
def test_out():
xarray_obj = xr.DataArray([1, 2, 3])
# xarray out arguments should raise
with pytest.raises(NotImplementedError, match=r"`out` argument"):
np.add(xarray_obj, 1, out=xarray_obj)
# but non-xarray should be OK
other = np.zeros((3,))
np.add(other, xarray_obj, out=other)
assert_identical(other, np.array([1, 2, 3]))
def test_gufuncs():
xarray_obj = xr.DataArray([1, 2, 3])
fake_gufunc = mock.Mock(signature="(n)->()", autospec=np.sin)
with pytest.raises(NotImplementedError, match=r"generalized ufuncs"):
xarray_obj.__array_ufunc__(fake_gufunc, "__call__", xarray_obj)
class DuckArray(np.ndarray):
# Minimal subclassed duck array with its own self-contained namespace,
# which implements a few ufuncs
def __new__(cls, array):
obj = np.asarray(array).view(cls)
return obj
def __array_namespace__(self):
return DuckArray
@staticmethod
def sin(x):
return np.sin(x)
@staticmethod
def add(x, y):
return x + y
class DuckArray2(DuckArray):
def __array_namespace__(self):
return DuckArray2
class TestXarrayUfuncs:
@pytest.fixture(autouse=True)
def setUp(self):
self.x = xr.DataArray([1, 2, 3])
self.xd = xr.DataArray(DuckArray([1, 2, 3]))
self.xd2 = xr.DataArray(DuckArray2([1, 2, 3]))
self.xt = xr.DataArray(np.datetime64("2021-01-01", "ns"))
@pytest.mark.filterwarnings("ignore::RuntimeWarning")
@pytest.mark.parametrize("name", xu.__all__)
def test_ufuncs(self, name, request):
xu_func = getattr(xu, name)
np_func = getattr(np, name, None)
if np_func is None and np.lib.NumpyVersion(np.__version__) < "2.0.0":
pytest.skip(f"Ufunc {name} is not available in numpy {np.__version__}.")
if name == "isnat":
args = (self.xt,)
elif hasattr(np_func, "nin") and np_func.nin == 2:
args = (self.x, self.x)
else:
args = (self.x,)
expected = np_func(*args)
actual = xu_func(*args)
if name in ["angle", "iscomplex"]:
np.testing.assert_equal(expected, actual.values)
else:
assert_identical(actual, expected)
def test_ufunc_pickle(self):
a = 1.0
cos_pickled = pickle.loads(pickle.dumps(xu.cos))
assert_identical(cos_pickled(a), xu.cos(a))
def test_ufunc_scalar(self):
actual = xu.sin(1)
assert isinstance(actual, float)
def test_ufunc_duck_array_dataarray(self):
actual = xu.sin(self.xd)
assert isinstance(actual.data, DuckArray)
def test_ufunc_duck_array_variable(self):
actual = xu.sin(self.xd.variable)
assert isinstance(actual.data, DuckArray)
def test_ufunc_duck_array_dataset(self):
ds = xr.Dataset({"a": self.xd})
actual = xu.sin(ds)
assert isinstance(actual.a.data, DuckArray)
@requires_dask
def test_ufunc_duck_dask(self):
import dask.array as da
x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3]))))
actual = xu.sin(x)
assert isinstance(actual.data._meta, DuckArray)
@requires_dask
@pytest.mark.xfail(reason="dask ufuncs currently dispatch to numpy")
def test_ufunc_duck_dask_no_array_ufunc(self):
import dask.array as da
# dask ufuncs currently only preserve duck arrays that implement __array_ufunc__
with patch.object(DuckArray, "__array_ufunc__", new=None, create=True):
x = xr.DataArray(da.from_array(DuckArray(np.array([1, 2, 3]))))
actual = xu.sin(x)
assert isinstance(actual.data._meta, DuckArray)
def test_ufunc_mixed_arrays_compatible(self):
actual = xu.add(self.xd, self.x)
assert isinstance(actual.data, DuckArray)
def test_ufunc_mixed_arrays_incompatible(self):
with pytest.raises(ValueError, match=r"Mixed array types"):
xu.add(self.xd, self.xd2)
|