1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
|
"""
Useful for:
* users learning xarray
* building tutorials in the documentation.
"""
from __future__ import annotations
import os
import pathlib
import sys
from typing import TYPE_CHECKING
import numpy as np
from xarray.backends.api import open_dataset as _open_dataset
from xarray.backends.api import open_datatree as _open_datatree
from xarray.core.dataarray import DataArray
from xarray.core.dataset import Dataset
from xarray.core.datatree import DataTree
if TYPE_CHECKING:
from xarray.backends.api import T_Engine
_default_cache_dir_name = "xarray_tutorial_data"
base_url = "https://github.com/pydata/xarray-data"
version = "master"
def _construct_cache_dir(path):
import pooch
if isinstance(path, os.PathLike):
path = os.fspath(path)
elif path is None:
path = pooch.os_cache(_default_cache_dir_name)
return path
external_urls: dict = {}
file_formats = {
"air_temperature": 3,
"air_temperature_gradient": 4,
"ASE_ice_velocity": 4,
"basin_mask": 4,
"ersstv5": 4,
"rasm": 3,
"ROMS_example": 4,
"tiny": 3,
"eraint_uvz": 3,
}
def _check_netcdf_engine_installed(name):
version = file_formats.get(name)
if version == 3:
try:
import scipy # noqa: F401
except ImportError:
try:
import netCDF4
except ImportError as err:
raise ImportError(
f"opening tutorial dataset {name} requires either scipy or "
"netCDF4 to be installed."
) from err
if version == 4:
try:
import h5netcdf # noqa: F401
except ImportError:
try:
import netCDF4 # noqa: F401
except ImportError as err:
raise ImportError(
f"opening tutorial dataset {name} requires either h5netcdf "
"or netCDF4 to be installed."
) from err
# idea borrowed from Seaborn
def open_dataset(
name: str,
cache: bool = True,
cache_dir: str | os.PathLike | None = None,
*,
engine: T_Engine = None,
**kws,
) -> Dataset:
"""
Open a dataset from the online repository (requires internet).
If a local copy is found then always use that to avoid network traffic.
Available datasets:
* ``"air_temperature"``: NCEP reanalysis subset
* ``"air_temperature_gradient"``: NCEP reanalysis subset with approximate x,y gradients
* ``"basin_mask"``: Dataset with ocean basins marked using integers
* ``"ASE_ice_velocity"``: MEaSUREs InSAR-Based Ice Velocity of the Amundsen Sea Embayment, Antarctica, Version 1
* ``"rasm"``: Output of the Regional Arctic System Model (RASM)
* ``"ROMS_example"``: Regional Ocean Model System (ROMS) output
* ``"tiny"``: small synthetic dataset with a 1D data variable
* ``"era5-2mt-2019-03-uk.grib"``: ERA5 temperature data over the UK
* ``"eraint_uvz"``: data from ERA-Interim reanalysis, monthly averages of upper level data
* ``"ersstv5"``: NOAA's Extended Reconstructed Sea Surface Temperature monthly averages
Parameters
----------
name : str
Name of the file containing the dataset.
e.g. 'air_temperature'
cache_dir : path-like, optional
The directory in which to search for and write cached data.
cache : bool, optional
If True, then cache data locally for use on subsequent calls
**kws : dict, optional
Passed to xarray.open_dataset
See Also
--------
tutorial.load_dataset
open_dataset
load_dataset
"""
try:
import pooch
except ImportError as e:
raise ImportError(
"tutorial.open_dataset depends on pooch to download and manage datasets."
" To proceed please install pooch."
) from e
logger = pooch.get_logger()
logger.setLevel("WARNING")
cache_dir = _construct_cache_dir(cache_dir)
if name in external_urls:
url = external_urls[name]
else:
path = pathlib.Path(name)
if not path.suffix:
# process the name
default_extension = ".nc"
if engine is None:
_check_netcdf_engine_installed(name)
path = path.with_suffix(default_extension)
elif path.suffix == ".grib":
if engine is None:
engine = "cfgrib"
try:
import cfgrib # noqa: F401
except ImportError as e:
raise ImportError(
"Reading this tutorial dataset requires the cfgrib package."
) from e
url = f"{base_url}/raw/{version}/{path.name}"
headers = {"User-Agent": f"xarray {sys.modules['xarray'].__version__}"}
downloader = pooch.HTTPDownloader(headers=headers)
# retrieve the file
filepath = pooch.retrieve(
url=url, known_hash=None, path=cache_dir, downloader=downloader
)
ds = _open_dataset(filepath, engine=engine, **kws)
if not cache:
ds = ds.load()
pathlib.Path(filepath).unlink()
return ds
def load_dataset(*args, **kwargs) -> Dataset:
"""
Open, load into memory, and close a dataset from the online repository
(requires internet).
If a local copy is found then always use that to avoid network traffic.
Available datasets:
* ``"air_temperature"``: NCEP reanalysis subset
* ``"air_temperature_gradient"``: NCEP reanalysis subset with approximate x,y gradients
* ``"basin_mask"``: Dataset with ocean basins marked using integers
* ``"rasm"``: Output of the Regional Arctic System Model (RASM)
* ``"ROMS_example"``: Regional Ocean Model System (ROMS) output
* ``"tiny"``: small synthetic dataset with a 1D data variable
* ``"era5-2mt-2019-03-uk.grib"``: ERA5 temperature data over the UK
* ``"eraint_uvz"``: data from ERA-Interim reanalysis, monthly averages of upper level data
* ``"ersstv5"``: NOAA's Extended Reconstructed Sea Surface Temperature monthly averages
Parameters
----------
name : str
Name of the file containing the dataset.
e.g. 'air_temperature'
cache_dir : path-like, optional
The directory in which to search for and write cached data.
cache : bool, optional
If True, then cache data locally for use on subsequent calls
**kws : dict, optional
Passed to xarray.open_dataset
See Also
--------
tutorial.open_dataset
open_dataset
load_dataset
"""
with open_dataset(*args, **kwargs) as ds:
return ds.load()
def scatter_example_dataset(*, seed: int | None = None) -> Dataset:
"""
Create an example dataset.
Parameters
----------
seed : int, optional
Seed for the random number generation.
"""
rng = np.random.default_rng(seed)
A = DataArray(
np.zeros([3, 11, 4, 4]),
dims=["x", "y", "z", "w"],
coords={
"x": np.arange(3),
"y": np.linspace(0, 1, 11),
"z": np.arange(4),
"w": 0.1 * rng.standard_normal(4),
},
)
B = 0.1 * A.x**2 + A.y**2.5 + 0.1 * A.z * A.w
A = -0.1 * A.x + A.y / (5 + A.z) + A.w
ds = Dataset({"A": A, "B": B})
ds["w"] = ["one", "two", "three", "five"]
ds.x.attrs["units"] = "xunits"
ds.y.attrs["units"] = "yunits"
ds.z.attrs["units"] = "zunits"
ds.w.attrs["units"] = "wunits"
ds.A.attrs["units"] = "Aunits"
ds.B.attrs["units"] = "Bunits"
return ds
def open_datatree(
name: str,
cache: bool = True,
cache_dir: str | os.PathLike | None = None,
*,
engine: T_Engine = None,
**kws,
) -> DataTree:
"""
Open a dataset as a `DataTree` from the online repository (requires internet).
If a local copy is found then always use that to avoid network traffic.
Available datasets:
* ``"imerghh_730"``: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 from 2021-08-29T07:30:00.000Z
* ``"imerghh_830"``: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 from 2021-08-29T08:30:00.000Z
* ``"air_temperature"``: NCEP reanalysis subset
* ``"air_temperature_gradient"``: NCEP reanalysis subset with approximate x,y gradients
* ``"basin_mask"``: Dataset with ocean basins marked using integers
* ``"ASE_ice_velocity"``: MEaSUREs InSAR-Based Ice Velocity of the Amundsen Sea Embayment, Antarctica, Version 1
* ``"rasm"``: Output of the Regional Arctic System Model (RASM)
* ``"ROMS_example"``: Regional Ocean Model System (ROMS) output
* ``"tiny"``: small synthetic dataset with a 1D data variable
* ``"era5-2mt-2019-03-uk.grib"``: ERA5 temperature data over the UK
* ``"eraint_uvz"``: data from ERA-Interim reanalysis, monthly averages of upper level data
* ``"ersstv5"``: NOAA's Extended Reconstructed Sea Surface Temperature monthly averages
Parameters
----------
name : str
Name of the file containing the dataset.
e.g. 'air_temperature'
cache_dir : path-like, optional
The directory in which to search for and write cached data.
cache : bool, optional
If True, then cache data locally for use on subsequent calls
**kws : dict, optional
Passed to xarray.open_dataset
See Also
--------
tutorial.load_datatree
open_datatree
"""
try:
import pooch
except ImportError as e:
raise ImportError(
"tutorial.open_dataset depends on pooch to download and manage datasets."
" To proceed please install pooch."
) from e
logger = pooch.get_logger()
logger.setLevel("WARNING")
cache_dir = _construct_cache_dir(cache_dir)
if name in external_urls:
url = external_urls[name]
else:
path = pathlib.Path(name)
if not path.suffix:
# process the name
default_extension = ".nc"
if engine is None:
_check_netcdf_engine_installed(name)
path = path.with_suffix(default_extension)
elif path.suffix == ".grib":
if engine is None:
engine = "cfgrib"
try:
import cfgrib # noqa: F401
except ImportError as e:
raise ImportError(
"Reading this tutorial dataset requires the cfgrib package."
) from e
url = f"{base_url}/raw/{version}/{path.name}"
headers = {"User-Agent": f"xarray {sys.modules['xarray'].__version__}"}
downloader = pooch.HTTPDownloader(headers=headers)
# retrieve the file
filepath = pooch.retrieve(
url=url, known_hash=None, path=cache_dir, downloader=downloader
)
ds = _open_datatree(filepath, engine=engine, **kws)
if not cache:
ds = ds.load()
pathlib.Path(filepath).unlink()
return ds
def load_datatree(*args, **kwargs) -> DataTree:
"""
Open, load into memory (as a `DataTree`), and close a dataset from the online repository
(requires internet).
If a local copy is found then always use that to avoid network traffic.
Available datasets:
* ``"imerghh_730"``: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 from 2021-08-29T07:30:00.000Z
* ``"imerghh_830"``: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07 from 2021-08-29T08:30:00.000Z
* ``"air_temperature"``: NCEP reanalysis subset
* ``"air_temperature_gradient"``: NCEP reanalysis subset with approximate x,y gradients
* ``"basin_mask"``: Dataset with ocean basins marked using integers
* ``"ASE_ice_velocity"``: MEaSUREs InSAR-Based Ice Velocity of the Amundsen Sea Embayment, Antarctica, Version 1
* ``"rasm"``: Output of the Regional Arctic System Model (RASM)
* ``"ROMS_example"``: Regional Ocean Model System (ROMS) output
* ``"tiny"``: small synthetic dataset with a 1D data variable
* ``"era5-2mt-2019-03-uk.grib"``: ERA5 temperature data over the UK
* ``"eraint_uvz"``: data from ERA-Interim reanalysis, monthly averages of upper level data
* ``"ersstv5"``: NOAA's Extended Reconstructed Sea Surface Temperature monthly averages
Parameters
----------
name : str
Name of the file containing the dataset.
e.g. 'air_temperature'
cache_dir : path-like, optional
The directory in which to search for and write cached data.
cache : bool, optional
If True, then cache data locally for use on subsequent calls
**kws : dict, optional
Passed to xarray.open_datatree
See Also
--------
tutorial.open_datatree
open_datatree
"""
with open_datatree(*args, **kwargs) as ds:
return ds.load()
|