File: writers.py

package info (click to toggle)
python-xarray 2025.10.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky
  • size: 11,652 kB
  • sloc: python: 117,125; makefile: 260; sh: 47
file content (1034 lines) | stat: -rw-r--r-- 34,466 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
from __future__ import annotations

import importlib
import io
import os
from collections.abc import Callable, Hashable, Iterable, Mapping, MutableMapping
from io import IOBase
from itertools import starmap
from numbers import Number
from os import PathLike
from typing import TYPE_CHECKING, Any, Literal, get_args, overload

import numpy as np

from xarray import backends, conventions
from xarray.backends.api import (
    _normalize_path,
    delayed_close_after_writes,
)
from xarray.backends.common import AbstractWritableDataStore, ArrayWriter, BytesIOProxy
from xarray.backends.locks import get_dask_scheduler
from xarray.backends.store import AbstractDataStore
from xarray.core.dataset import Dataset
from xarray.core.datatree import DataTree
from xarray.core.options import OPTIONS
from xarray.core.types import NetcdfWriteModes, ZarrWriteModes
from xarray.core.utils import emit_user_level_warning

if TYPE_CHECKING:
    from dask.delayed import Delayed

    from xarray.backends import ZarrStore
    from xarray.backends.api import T_NetcdfEngine, T_NetcdfTypes
    from xarray.core.types import ZarrStoreLike


T_DataTreeNetcdfEngine = Literal["netcdf4", "h5netcdf", "pydap"]
T_DataTreeNetcdfTypes = Literal["NETCDF4"]


WRITEABLE_STORES: dict[T_NetcdfEngine, Callable] = {
    "netcdf4": backends.NetCDF4DataStore.open,
    "scipy": backends.ScipyDataStore,
    "h5netcdf": backends.H5NetCDFStore.open,
}


def get_writable_netcdf_store(
    target,
    engine: T_NetcdfEngine,
    *,
    format: T_NetcdfTypes | None,
    mode: NetcdfWriteModes,
    autoclose: bool,
    invalid_netcdf: bool,
    auto_complex: bool | None,
) -> AbstractWritableDataStore:
    """Create a store for writing to a netCDF file."""
    try:
        store_open = WRITEABLE_STORES[engine]
    except KeyError as err:
        raise ValueError(f"unrecognized engine for to_netcdf: {engine!r}") from err

    if format is not None:
        format = format.upper()  # type: ignore[assignment]

    kwargs = dict(autoclose=True) if autoclose else {}
    if invalid_netcdf:
        if engine == "h5netcdf":
            kwargs["invalid_netcdf"] = invalid_netcdf
        else:
            raise ValueError(
                f"unrecognized option 'invalid_netcdf' for engine {engine}"
            )
    if auto_complex is not None:
        kwargs["auto_complex"] = auto_complex

    return store_open(target, mode=mode, format=format, **kwargs)


def _validate_dataset_names(dataset: Dataset) -> None:
    """DataArray.name and Dataset keys must be a string or None"""

    def check_name(name: Hashable):
        if isinstance(name, str):
            if not name:
                raise ValueError(
                    f"Invalid name {name!r} for DataArray or Dataset key: "
                    "string must be length 1 or greater for "
                    "serialization to netCDF or zarr files"
                )
        elif name is not None:
            raise TypeError(
                f"Invalid name {name!r} for DataArray or Dataset key: "
                "must be either a string or None for serialization to netCDF "
                "or zarr files"
            )

    for k in dataset.variables:
        check_name(k)


def _validate_attrs(dataset, engine, invalid_netcdf=False):
    """`attrs` must have a string key and a value which is either: a number,
    a string, an ndarray, a list/tuple of numbers/strings, or a numpy.bool_.

    Notes
    -----
    A numpy.bool_ is only allowed when using the h5netcdf engine with
    `invalid_netcdf=True`.
    """

    valid_types = (str, Number, np.ndarray, np.number, list, tuple, bytes)
    if invalid_netcdf and engine == "h5netcdf":
        valid_types += (np.bool_,)

    def check_attr(name, value, valid_types):
        if isinstance(name, str):
            if not name:
                raise ValueError(
                    f"Invalid name for attr {name!r}: string must be "
                    "length 1 or greater for serialization to "
                    "netCDF files"
                )
        else:
            raise TypeError(
                f"Invalid name for attr: {name!r} must be a string for "
                "serialization to netCDF files"
            )

        if not isinstance(value, valid_types):
            raise TypeError(
                f"Invalid value for attr {name!r}: {value!r}. For serialization to "
                "netCDF files, its value must be of one of the following types: "
                f"{', '.join([vtype.__name__ for vtype in valid_types])}"
            )

        if isinstance(value, bytes) and engine == "h5netcdf":
            try:
                value.decode("utf-8")
            except UnicodeDecodeError as e:
                raise ValueError(
                    f"Invalid value provided for attribute '{name!r}': {value!r}. "
                    "Only binary data derived from UTF-8 encoded strings is allowed "
                    f"for the '{engine}' engine. Consider using the 'netcdf4' engine."
                ) from e

            if b"\x00" in value:
                raise ValueError(
                    f"Invalid value provided for attribute '{name!r}': {value!r}. "
                    f"Null characters are not permitted for the '{engine}' engine. "
                    "Consider using the 'netcdf4' engine."
                )

    # Check attrs on the dataset itself
    for k, v in dataset.attrs.items():
        check_attr(k, v, valid_types)

    # Check attrs on each variable within the dataset
    for variable in dataset.variables.values():
        for k, v in variable.attrs.items():
            check_attr(k, v, valid_types)


def get_default_netcdf_write_engine(
    path_or_file: str | IOBase | None,
    format: T_NetcdfTypes | None,
) -> Literal["netcdf4", "h5netcdf", "scipy"]:
    """Return the default netCDF library to use for writing a netCDF file."""

    module_names = {
        "netcdf4": "netCDF4",
        "scipy": "scipy",
        "h5netcdf": "h5netcdf",
    }
    candidates = list(OPTIONS["netcdf_engine_order"])

    if format is not None:
        format = format.upper()  # type: ignore[assignment]
        if format not in {
            "NETCDF4",
            "NETCDF4_CLASSIC",
            "NETCDF3_64BIT",
            "NETCDF3_CLASSIC",
        }:
            raise ValueError(f"unexpected {format=}")
        # TODO: allow format='NETCDF4_CLASSIC' to default to using h5netcdf,
        # when the oldest supported version of h5netcdf supports it:
        # https://github.com/h5netcdf/h5netcdf/pull/283
        if format != "NETCDF4":
            candidates.remove("h5netcdf")
        if format not in {"NETCDF3_64BIT", "NETCDF3_CLASSIC"}:
            candidates.remove("scipy")

    nczarr_mode = isinstance(path_or_file, str) and path_or_file.endswith(
        "#mode=nczarr"
    )
    if nczarr_mode:
        candidates[:] = ["netcdf4"]

    if isinstance(path_or_file, IOBase):
        candidates.remove("netcdf4")

    for engine in candidates:
        module_name = module_names[engine]
        if importlib.util.find_spec(module_name) is not None:
            return engine

    if nczarr_mode:
        format_str = " in NCZarr format"
    else:
        format_str = f" with {format=}" if format is not None else ""
    libraries = ", ".join(module_names[c] for c in candidates)
    raise ValueError(
        f"cannot write NetCDF files{format_str} because none of the suitable "
        f"backend libraries ({libraries}) are installed"
    )


def _sanitize_unlimited_dims(dataset, unlimited_dims):
    msg_origin = "unlimited_dims-kwarg"
    if unlimited_dims is None:
        unlimited_dims = dataset.encoding.get("unlimited_dims", None)
        msg_origin = "dataset.encoding"
    if unlimited_dims is not None:
        if isinstance(unlimited_dims, str) or not isinstance(unlimited_dims, Iterable):
            unlimited_dims = [unlimited_dims]
        else:
            unlimited_dims = list(unlimited_dims)
        dataset_dims = set(dataset.dims)
        unlimited_dims = set(unlimited_dims)
        if undeclared_dims := (unlimited_dims - dataset_dims):
            msg = (
                f"Unlimited dimension(s) {undeclared_dims!r} declared in {msg_origin!r}, "
                f"but not part of current dataset dimensions. "
                f"Consider removing {undeclared_dims!r} from {msg_origin!r}."
            )
            if msg_origin == "unlimited_dims-kwarg":
                raise ValueError(msg)
            else:
                emit_user_level_warning(msg)
        return unlimited_dims


# multifile=True returns writer and datastore
@overload
def to_netcdf(
    dataset: Dataset,
    path_or_file: str | os.PathLike | None = None,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    compute: bool = True,
    *,
    multifile: Literal[True],
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> tuple[ArrayWriter, AbstractDataStore]: ...


# path=None writes to bytes or memoryview, depending on store
@overload
def to_netcdf(
    dataset: Dataset,
    path_or_file: None = None,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    compute: bool = True,
    multifile: Literal[False] = False,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> memoryview: ...


# compute=False returns dask.Delayed
@overload
def to_netcdf(
    dataset: Dataset,
    path_or_file: str | os.PathLike,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    *,
    compute: Literal[False],
    multifile: Literal[False] = False,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> Delayed: ...


# default return None
@overload
def to_netcdf(
    dataset: Dataset,
    path_or_file: str | os.PathLike | IOBase,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    compute: Literal[True] = True,
    multifile: Literal[False] = False,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> None: ...


# if compute cannot be evaluated at type check time
# we may get back either Delayed or None
@overload
def to_netcdf(
    dataset: Dataset,
    path_or_file: str | os.PathLike,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    compute: bool = False,
    multifile: Literal[False] = False,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> Delayed | None: ...


# if multifile cannot be evaluated at type check time
# we may get back either writer and datastore or Delayed or None
@overload
def to_netcdf(
    dataset: Dataset,
    path_or_file: str | os.PathLike,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    compute: bool = False,
    multifile: bool = False,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> tuple[ArrayWriter, AbstractDataStore] | Delayed | None: ...


# Any
@overload
def to_netcdf(
    dataset: Dataset,
    path_or_file: str | os.PathLike | IOBase | None,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    compute: bool = False,
    multifile: bool = False,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> tuple[ArrayWriter, AbstractDataStore] | memoryview | Delayed | None: ...


def to_netcdf(
    dataset: Dataset,
    path_or_file: str | os.PathLike | IOBase | None = None,
    mode: NetcdfWriteModes = "w",
    format: T_NetcdfTypes | None = None,
    group: str | None = None,
    engine: T_NetcdfEngine | None = None,
    encoding: Mapping[Hashable, Mapping[str, Any]] | None = None,
    unlimited_dims: Iterable[Hashable] | None = None,
    compute: bool = True,
    multifile: bool = False,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> tuple[ArrayWriter, AbstractDataStore] | memoryview | Delayed | None:
    """This function creates an appropriate datastore for writing a dataset to
    disk as a netCDF file

    See `Dataset.to_netcdf` for full API docs.

    The ``multifile`` argument is only for the private use of save_mfdataset.
    """
    if encoding is None:
        encoding = {}

    normalized_path = _normalize_path(path_or_file)

    if engine is None:
        engine = get_default_netcdf_write_engine(normalized_path, format)

    # validate Dataset keys, DataArray names, and attr keys/values
    _validate_dataset_names(dataset)
    _validate_attrs(dataset, engine, invalid_netcdf)
    # sanitize unlimited_dims
    unlimited_dims = _sanitize_unlimited_dims(dataset, unlimited_dims)

    autoclose = _get_netcdf_autoclose(dataset, engine)

    if normalized_path is None:
        if not compute:
            raise NotImplementedError(
                "to_netcdf() with compute=False is not yet implemented when "
                "returning a memoryview"
            )
        target = BytesIOProxy()
    else:
        target = normalized_path  # type: ignore[assignment]

    store = get_writable_netcdf_store(
        target,
        engine,
        mode=mode,
        format=format,
        autoclose=autoclose,
        invalid_netcdf=invalid_netcdf,
        auto_complex=auto_complex,
    )
    if group is not None:
        store = store.get_child_store(group)

    writer = ArrayWriter()

    # TODO: figure out how to refactor this logic (here and in save_mfdataset)
    # to avoid this mess of conditionals
    try:
        # TODO: allow this work (setting up the file for writing array data)
        # to be parallelized with dask
        dump_to_store(
            dataset, store, writer, encoding=encoding, unlimited_dims=unlimited_dims
        )
        if autoclose:
            store.close()

        if multifile:
            return writer, store

        writes = writer.sync(compute=compute)

    finally:
        if not multifile and not autoclose:  # type: ignore[redundant-expr,unused-ignore]
            if compute:
                store.close()
            else:
                store.sync()

    if path_or_file is None:
        assert isinstance(target, BytesIOProxy)  # created in this function
        return target.getbuffer()

    if not compute:
        return delayed_close_after_writes(writes, store)

    return None


def dump_to_store(
    dataset, store, writer=None, encoder=None, encoding=None, unlimited_dims=None
):
    """Store dataset contents to a backends.*DataStore object."""
    if writer is None:
        writer = ArrayWriter()

    if encoding is None:
        encoding = {}

    variables, attrs = conventions.encode_dataset_coordinates(dataset)

    check_encoding = set()
    for k, enc in encoding.items():
        # no need to shallow copy the variable again; that already happened
        # in encode_dataset_coordinates
        variables[k].encoding = enc
        check_encoding.add(k)

    if encoder:
        variables, attrs = encoder(variables, attrs)

    store.store(variables, attrs, check_encoding, writer, unlimited_dims=unlimited_dims)


def save_mfdataset(
    datasets,
    paths,
    mode="w",
    format=None,
    groups=None,
    engine=None,
    compute=True,
    **kwargs,
):
    """Write multiple datasets to disk as netCDF files simultaneously.

    This function is intended for use with datasets consisting of dask.array
    objects, in which case it can write the multiple datasets to disk
    simultaneously using a shared thread pool.

    When not using dask, it is no different than calling ``to_netcdf``
    repeatedly.

    Parameters
    ----------
    datasets : list of Dataset
        List of datasets to save.
    paths : list of str or list of path-like objects
        List of paths to which to save each corresponding dataset.
    mode : {"w", "a"}, optional
        Write ("w") or append ("a") mode. If mode="w", any existing file at
        these locations will be overwritten.
    format : {"NETCDF4", "NETCDF4_CLASSIC", "NETCDF3_64BIT", \
              "NETCDF3_CLASSIC"}, optional
        File format for the resulting netCDF file:

        * NETCDF4: Data is stored in an HDF5 file, using netCDF4 API
          features.
        * NETCDF4_CLASSIC: Data is stored in an HDF5 file, using only
          netCDF 3 compatible API features.
        * NETCDF3_64BIT: 64-bit offset version of the netCDF 3 file format,
          which fully supports 2+ GB files, but is only compatible with
          clients linked against netCDF version 3.6.0 or later.
        * NETCDF3_CLASSIC: The classic netCDF 3 file format. It does not
          handle 2+ GB files very well.

        All formats are supported by the netCDF4-python library.
        scipy.io.netcdf only supports the last two formats.

        The default format is NETCDF4 if you are saving a file to disk and
        have the netCDF4-python library available. Otherwise, xarray falls
        back to using scipy to write netCDF files and defaults to the
        NETCDF3_64BIT format (scipy does not support netCDF4).
    groups : list of str, optional
        Paths to the netCDF4 group in each corresponding file to which to save
        datasets (only works for format="NETCDF4"). The groups will be created
        if necessary.
    engine : {"netcdf4", "h5netcdf", "scipy"}, optional
        Engine to use when writing netCDF files. If not provided, the
        default engine is chosen based on available dependencies, by default
        preferring "netcdf4" over "h5netcdf" over "scipy" (customizable via
        ``netcdf_engine_order`` in ``xarray.set_options()``).
    compute : bool
        If true compute immediately, otherwise return a
        ``dask.delayed.Delayed`` object that can be computed later.
    **kwargs : dict, optional
        Additional arguments are passed along to ``to_netcdf``.

    Examples
    --------
    Save a dataset into one netCDF per year of data:

    >>> ds = xr.Dataset(
    ...     {"a": ("time", np.linspace(0, 1, 48))},
    ...     coords={"time": pd.date_range("2010-01-01", freq="ME", periods=48)},
    ... )
    >>> ds
    <xarray.Dataset> Size: 768B
    Dimensions:  (time: 48)
    Coordinates:
      * time     (time) datetime64[ns] 384B 2010-01-31 2010-02-28 ... 2013-12-31
    Data variables:
        a        (time) float64 384B 0.0 0.02128 0.04255 ... 0.9574 0.9787 1.0
    >>> years, datasets = zip(*ds.groupby("time.year"))
    >>> paths = [f"{y}.nc" for y in years]
    >>> xr.save_mfdataset(datasets, paths)
    """
    if mode == "w" and len(set(paths)) < len(paths):
        raise ValueError(
            "cannot use mode='w' when writing multiple datasets to the same path"
        )

    for obj in datasets:
        if not isinstance(obj, Dataset):
            raise TypeError(
                "save_mfdataset only supports writing Dataset "
                f"objects, received type {type(obj)}"
            )

    if groups is None:
        groups = [None] * len(datasets)

    if len({len(datasets), len(paths), len(groups)}) > 1:
        raise ValueError(
            "must supply lists of the same length for the "
            "datasets, paths and groups arguments to "
            "save_mfdataset"
        )

    writers, stores = zip(
        *[
            to_netcdf(
                ds,
                path,
                mode,
                format,
                group,
                engine,
                compute=compute,
                multifile=True,
                **kwargs,
            )
            for ds, path, group in zip(datasets, paths, groups, strict=True)
        ],
        strict=True,
    )

    try:
        writes = [w.sync(compute=compute) for w in writers]
    finally:
        for store in stores:
            if compute:
                store.close()
            else:
                store.sync()

    if not compute:
        import dask

        return dask.delayed(
            list(starmap(delayed_close_after_writes, zip(writes, stores, strict=True)))
        )


def get_writable_zarr_store(
    store: ZarrStoreLike | None = None,
    *,
    chunk_store: MutableMapping | str | os.PathLike | None = None,
    mode: ZarrWriteModes | None = None,
    synchronizer=None,
    group: str | None = None,
    consolidated: bool | None = None,
    append_dim: Hashable | None = None,
    region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
    safe_chunks: bool = True,
    align_chunks: bool = False,
    storage_options: dict[str, str] | None = None,
    zarr_version: int | None = None,
    zarr_format: int | None = None,
    write_empty_chunks: bool | None = None,
) -> backends.ZarrStore:
    """Create a store for writing to Zarr."""
    from xarray.backends.zarr import _choose_default_mode, _get_mappers

    kwargs, mapper, chunk_mapper = _get_mappers(
        storage_options=storage_options, store=store, chunk_store=chunk_store
    )
    mode = _choose_default_mode(mode=mode, append_dim=append_dim, region=region)

    if mode == "r+":
        already_consolidated = consolidated
        consolidate_on_close = False
    else:
        already_consolidated = False
        consolidate_on_close = consolidated or consolidated is None

    return backends.ZarrStore.open_group(
        store=mapper,
        mode=mode,
        synchronizer=synchronizer,
        group=group,
        consolidated=already_consolidated,
        consolidate_on_close=consolidate_on_close,
        chunk_store=chunk_mapper,
        append_dim=append_dim,
        write_region=region,
        safe_chunks=safe_chunks,
        align_chunks=align_chunks,
        zarr_version=zarr_version,
        zarr_format=zarr_format,
        write_empty=write_empty_chunks,
        **kwargs,
    )


# compute=True returns ZarrStore
@overload
def to_zarr(
    dataset: Dataset,
    store: ZarrStoreLike | None = None,
    chunk_store: MutableMapping | str | os.PathLike | None = None,
    mode: ZarrWriteModes | None = None,
    synchronizer=None,
    group: str | None = None,
    encoding: Mapping | None = None,
    *,
    compute: Literal[True] = True,
    consolidated: bool | None = None,
    append_dim: Hashable | None = None,
    region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
    safe_chunks: bool = True,
    align_chunks: bool = False,
    storage_options: dict[str, str] | None = None,
    zarr_version: int | None = None,
    write_empty_chunks: bool | None = None,
    chunkmanager_store_kwargs: dict[str, Any] | None = None,
) -> backends.ZarrStore: ...


# compute=False returns dask.Delayed
@overload
def to_zarr(
    dataset: Dataset,
    store: ZarrStoreLike | None = None,
    chunk_store: MutableMapping | str | os.PathLike | None = None,
    mode: ZarrWriteModes | None = None,
    synchronizer=None,
    group: str | None = None,
    encoding: Mapping | None = None,
    *,
    compute: Literal[False],
    consolidated: bool | None = None,
    append_dim: Hashable | None = None,
    region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
    safe_chunks: bool = True,
    align_chunks: bool = False,
    storage_options: dict[str, str] | None = None,
    zarr_version: int | None = None,
    write_empty_chunks: bool | None = None,
    chunkmanager_store_kwargs: dict[str, Any] | None = None,
) -> Delayed: ...


def to_zarr(
    dataset: Dataset,
    store: ZarrStoreLike | None = None,
    chunk_store: MutableMapping | str | os.PathLike | None = None,
    mode: ZarrWriteModes | None = None,
    synchronizer=None,
    group: str | None = None,
    encoding: Mapping | None = None,
    *,
    compute: bool = True,
    consolidated: bool | None = None,
    append_dim: Hashable | None = None,
    region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
    safe_chunks: bool = True,
    align_chunks: bool = False,
    storage_options: dict[str, str] | None = None,
    zarr_version: int | None = None,
    zarr_format: int | None = None,
    write_empty_chunks: bool | None = None,
    chunkmanager_store_kwargs: dict[str, Any] | None = None,
) -> backends.ZarrStore | Delayed:
    """This function creates an appropriate datastore for writing a dataset to
    a zarr ztore

    See `Dataset.to_zarr` for full API docs.
    """

    # validate Dataset keys, DataArray names
    _validate_dataset_names(dataset)

    # Load empty arrays to avoid bug saving zero length dimensions (Issue #5741)
    # TODO: delete when min dask>=2023.12.1
    # https://github.com/dask/dask/pull/10506
    for v in dataset.variables.values():
        if v.size == 0:
            v.load()

    if encoding is None:
        encoding = {}

    zstore = get_writable_zarr_store(
        store,
        chunk_store=chunk_store,
        mode=mode,
        synchronizer=synchronizer,
        group=group,
        consolidated=consolidated,
        append_dim=append_dim,
        region=region,
        safe_chunks=safe_chunks,
        align_chunks=align_chunks,
        storage_options=storage_options,
        zarr_version=zarr_version,
        zarr_format=zarr_format,
        write_empty_chunks=write_empty_chunks,
    )

    dataset = zstore._validate_and_autodetect_region(dataset)
    zstore._validate_encoding(encoding)

    writer = ArrayWriter()

    # TODO: figure out how to properly handle unlimited_dims
    try:
        dump_to_store(dataset, zstore, writer, encoding=encoding)
        writes = writer.sync(
            compute=compute, chunkmanager_store_kwargs=chunkmanager_store_kwargs
        )
    finally:
        if compute:
            zstore.close()

    if not compute:
        return delayed_close_after_writes(writes, zstore)

    return zstore


def _datatree_to_netcdf(
    dt: DataTree,
    filepath: str | PathLike | io.IOBase | None = None,
    mode: NetcdfWriteModes = "w",
    encoding: Mapping[str, Any] | None = None,
    unlimited_dims: Mapping | None = None,
    format: T_DataTreeNetcdfTypes | None = None,
    engine: T_DataTreeNetcdfEngine | None = None,
    group: str | None = None,
    write_inherited_coords: bool = False,
    compute: bool = True,
    invalid_netcdf: bool = False,
    auto_complex: bool | None = None,
) -> None | memoryview | Delayed:
    """Implementation of `DataTree.to_netcdf`."""

    if format not in [None, *get_args(T_DataTreeNetcdfTypes)]:
        raise ValueError("DataTree.to_netcdf only supports the NETCDF4 format")

    if engine not in [None, *get_args(T_DataTreeNetcdfEngine)]:
        raise ValueError(
            "DataTree.to_netcdf only supports the netcdf4 and h5netcdf engines"
        )

    normalized_path = _normalize_path(filepath)

    if engine is None:
        engine = get_default_netcdf_write_engine(
            path_or_file=normalized_path,
            format="NETCDF4",  # required for supporting groups
        )  # type: ignore[assignment]

    if group is not None:
        raise NotImplementedError(
            "specifying a root group for the tree has not been implemented"
        )

    if encoding is None:
        encoding = {}

    # In the future, we may want to expand this check to insure all the provided encoding
    # options are valid. For now, this simply checks that all provided encoding keys are
    # groups in the datatree.
    if set(encoding) - set(dt.groups):
        raise ValueError(
            f"unexpected encoding group name(s) provided: {set(encoding) - set(dt.groups)}"
        )

    if normalized_path is None:
        if not compute:
            raise NotImplementedError(
                "to_netcdf() with compute=False is not yet implemented when "
                "returning a memoryview"
            )
        target = BytesIOProxy()
    else:
        target = normalized_path  # type: ignore[assignment]

    if unlimited_dims is None:
        unlimited_dims = {}

    scheduler = get_dask_scheduler()
    have_chunks = any(
        v.chunks is not None for node in dt.subtree for v in node.variables.values()
    )
    autoclose = have_chunks and scheduler in ["distributed", "multiprocessing"]

    root_store = get_writable_netcdf_store(
        target,
        engine,  # type: ignore[arg-type]
        mode=mode,
        format=format,
        autoclose=autoclose,
        invalid_netcdf=invalid_netcdf,
        auto_complex=auto_complex,
    )

    writer = ArrayWriter()

    # TODO: allow this work (setting up the file for writing array data)
    # to be parallelized with dask
    try:
        for node in dt.subtree:
            at_root = node is dt
            dataset = node.to_dataset(inherit=write_inherited_coords or at_root)
            node_store = (
                root_store if at_root else root_store.get_child_store(node.path)
            )
            dump_to_store(
                dataset,
                node_store,
                writer,
                encoding=encoding.get(node.path),
                unlimited_dims=unlimited_dims.get(node.path),
            )

        if autoclose:
            root_store.close()

        writes = writer.sync(compute=compute)

    finally:
        if compute:
            root_store.close()
        else:
            root_store.sync()

    if filepath is None:
        assert isinstance(target, BytesIOProxy)  # created in this function
        return target.getbuffer()

    if not compute:
        return delayed_close_after_writes(writes, root_store)

    return None


def _datatree_to_zarr(
    dt: DataTree,
    store: ZarrStoreLike,
    mode: ZarrWriteModes = "w-",
    encoding: Mapping[str, Any] | None = None,
    synchronizer=None,
    group: str | None = None,
    write_inherited_coords: bool = False,
    *,
    chunk_store: MutableMapping | str | PathLike | None = None,
    compute: bool = True,
    consolidated: bool | None = None,
    append_dim: Hashable | None = None,
    region: Mapping[str, slice | Literal["auto"]] | Literal["auto"] | None = None,
    safe_chunks: bool = True,
    align_chunks: bool = False,
    storage_options: dict[str, str] | None = None,
    zarr_version: int | None = None,
    zarr_format: int | None = None,
    write_empty_chunks: bool | None = None,
    chunkmanager_store_kwargs: dict[str, Any] | None = None,
) -> ZarrStore | Delayed:
    """Implementation of `DataTree.to_zarr`."""

    if group is not None:
        raise NotImplementedError(
            "specifying a root group for the tree has not been implemented"
        )

    if append_dim is not None:
        raise NotImplementedError(
            "specifying ``append_dim`` with ``DataTree.to_zarr`` has not been implemented"
        )

    if encoding is None:
        encoding = {}

    # In the future, we may want to expand this check to insure all the provided encoding
    # options are valid. For now, this simply checks that all provided encoding keys are
    # groups in the datatree.
    if set(encoding) - set(dt.groups):
        raise ValueError(
            f"unexpected encoding group name(s) provided: {set(encoding) - set(dt.groups)}"
        )

    root_store = get_writable_zarr_store(
        store,
        chunk_store=chunk_store,
        mode=mode,
        synchronizer=synchronizer,
        group=group,
        consolidated=consolidated,
        append_dim=append_dim,
        region=region,
        safe_chunks=safe_chunks,
        align_chunks=align_chunks,
        storage_options=storage_options,
        zarr_version=zarr_version,
        zarr_format=zarr_format,
        write_empty_chunks=write_empty_chunks,
    )

    writer = ArrayWriter()

    try:
        for rel_path, node in dt.subtree_with_keys:
            at_root = node is dt
            dataset = node.to_dataset(inherit=write_inherited_coords or at_root)
            # Use a relative path for group, because absolute paths are broken
            # with consolidated metadata in zarr 3.1.2 and earlier:
            # https://github.com/zarr-developers/zarr-python/pull/3428
            node_store = root_store if at_root else root_store.get_child_store(rel_path)

            dataset = node_store._validate_and_autodetect_region(dataset)
            node_store._validate_encoding(encoding)

            dump_to_store(
                dataset,
                node_store,
                writer,
                encoding=encoding.get(node.path),
            )
        writes = writer.sync(
            compute=compute, chunkmanager_store_kwargs=chunkmanager_store_kwargs
        )
    finally:
        if compute:
            root_store.close()

    if not compute:
        return delayed_close_after_writes(writes, root_store)

    return root_store


def _get_netcdf_autoclose(dataset: Dataset, engine: T_NetcdfEngine) -> bool:
    """Should we close files after each write operations?"""
    scheduler = get_dask_scheduler()
    have_chunks = any(v.chunks is not None for v in dataset.variables.values())

    autoclose = have_chunks and scheduler in ["distributed", "multiprocessing"]
    if autoclose and engine == "scipy":
        raise NotImplementedError(
            f"Writing netCDF files with the {engine} backend "
            f"is not currently supported with dask's {scheduler} scheduler"
        )
    return autoclose