1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
from __future__ import annotations
import importlib
import itertools
import sys
import warnings
from collections.abc import Hashable, Iterable, Iterator, Mapping
from functools import lru_cache
from numbers import Number
from typing import TYPE_CHECKING, Any, TypeVar, cast
import numpy as np
from packaging.version import Version
from xarray.namedarray._typing import ErrorOptionsWithWarn, _DimsLike
if TYPE_CHECKING:
from typing import TypeGuard
from numpy.typing import NDArray
try:
from dask.array.core import Array as DaskArray
from dask.typing import DaskCollection
except ImportError:
DaskArray = NDArray # type: ignore[assignment, misc]
DaskCollection: Any = NDArray # type: ignore[no-redef]
from xarray.core.types import T_ChunkDim
from xarray.namedarray._typing import DuckArray, _Dim, duckarray
from xarray.namedarray.parallelcompat import ChunkManagerEntrypoint
K = TypeVar("K")
V = TypeVar("V")
T = TypeVar("T")
@lru_cache
def module_available(module: str, minversion: str | None = None) -> bool:
"""Checks whether a module is installed without importing it.
Use this for a lightweight check and lazy imports.
Parameters
----------
module : str
Name of the module.
minversion : str, optional
Minimum version of the module
Returns
-------
available : bool
Whether the module is installed.
"""
if importlib.util.find_spec(module) is None:
return False
if minversion is not None:
version = importlib.metadata.version(module)
return Version(version) >= Version(minversion)
return True
def is_dask_collection(x: object) -> TypeGuard[DaskCollection]:
if module_available("dask"):
from dask.base import is_dask_collection
# use is_dask_collection function instead of dask.typing.DaskCollection
# see https://github.com/pydata/xarray/pull/8241#discussion_r1476276023
return is_dask_collection(x)
return False
def is_duck_array(value: Any) -> TypeGuard[duckarray[Any, Any]]:
# TODO: replace is_duck_array with runtime checks via _arrayfunction_or_api protocol on
# python 3.12 and higher (see https://github.com/pydata/xarray/issues/8696#issuecomment-1924588981)
if isinstance(value, np.ndarray):
return True
return (
hasattr(value, "ndim")
and hasattr(value, "shape")
and hasattr(value, "dtype")
and (
(hasattr(value, "__array_function__") and hasattr(value, "__array_ufunc__"))
or hasattr(value, "__array_namespace__")
)
)
def is_duck_dask_array(x: duckarray[Any, Any]) -> TypeGuard[DaskArray]:
return is_duck_array(x) and is_dask_collection(x)
def to_0d_object_array(
value: object,
) -> NDArray[np.object_]:
"""Given a value, wrap it in a 0-D numpy.ndarray with dtype=object."""
result = np.empty((), dtype=object)
result[()] = value
return result
def is_dict_like(value: Any) -> TypeGuard[Mapping[Any, Any]]:
return hasattr(value, "keys") and hasattr(value, "__getitem__")
def drop_missing_dims(
supplied_dims: Iterable[_Dim],
dims: Iterable[_Dim],
missing_dims: ErrorOptionsWithWarn,
) -> _DimsLike:
"""Depending on the setting of missing_dims, drop any dimensions from supplied_dims that
are not present in dims.
Parameters
----------
supplied_dims : Iterable of Hashable
dims : Iterable of Hashable
missing_dims : {"raise", "warn", "ignore"}
"""
if missing_dims == "raise":
supplied_dims_set = {val for val in supplied_dims if val is not ...}
if invalid := supplied_dims_set - set(dims):
raise ValueError(
f"Dimensions {invalid} do not exist. Expected one or more of {dims}"
)
return supplied_dims
elif missing_dims == "warn":
if invalid := set(supplied_dims) - set(dims):
warnings.warn(
f"Dimensions {invalid} do not exist. Expected one or more of {dims}",
stacklevel=2,
)
return [val for val in supplied_dims if val in dims or val is ...]
elif missing_dims == "ignore":
return [val for val in supplied_dims if val in dims or val is ...]
else:
raise ValueError(
f"Unrecognised option {missing_dims} for missing_dims argument"
)
def infix_dims(
dims_supplied: Iterable[_Dim],
dims_all: Iterable[_Dim],
missing_dims: ErrorOptionsWithWarn = "raise",
) -> Iterator[_Dim]:
"""
Resolves a supplied list containing an ellipsis representing other items, to
a generator with the 'realized' list of all items
"""
if ... in dims_supplied:
dims_all_list = list(dims_all)
if len(set(dims_all)) != len(dims_all_list):
raise ValueError("Cannot use ellipsis with repeated dims")
if list(dims_supplied).count(...) > 1:
raise ValueError("More than one ellipsis supplied")
other_dims = [d for d in dims_all if d not in dims_supplied]
existing_dims = drop_missing_dims(dims_supplied, dims_all, missing_dims)
for d in existing_dims:
if d is ...:
yield from other_dims
else:
yield d
else:
existing_dims = drop_missing_dims(dims_supplied, dims_all, missing_dims)
if set(existing_dims) ^ set(dims_all):
raise ValueError(
f"{dims_supplied} must be a permuted list of {dims_all}, unless `...` is included"
)
yield from existing_dims
def either_dict_or_kwargs(
pos_kwargs: Mapping[Any, T] | None,
kw_kwargs: Mapping[str, T],
func_name: str,
) -> Mapping[Hashable, T]:
if pos_kwargs is None or pos_kwargs == {}:
# Need an explicit cast to appease mypy due to invariance; see
# https://github.com/python/mypy/issues/6228
return cast(Mapping[Hashable, T], kw_kwargs)
if not is_dict_like(pos_kwargs):
raise ValueError(f"the first argument to .{func_name} must be a dictionary")
if kw_kwargs:
raise ValueError(
f"cannot specify both keyword and positional arguments to .{func_name}"
)
return pos_kwargs
def _get_chunk( # type: ignore[no-untyped-def]
data: DuckArray[Any],
chunks,
chunkmanager: ChunkManagerEntrypoint[Any],
*,
preferred_chunks,
dims=None,
) -> Mapping[Any, T_ChunkDim]:
"""
Return map from each dim to chunk sizes, accounting for backend's preferred chunks.
"""
from xarray.core.common import _contains_cftime_datetimes
from xarray.core.utils import emit_user_level_warning
from xarray.structure.chunks import _get_breaks_cached
dims = chunks.keys() if dims is None else dims
shape = data.shape
# Determine the explicit requested chunks.
preferred_chunk_shape = tuple(
itertools.starmap(preferred_chunks.get, zip(dims, shape, strict=True))
)
if isinstance(chunks, Number) or (chunks == "auto"):
chunks = dict.fromkeys(dims, chunks)
chunk_shape = tuple(
chunks.get(dim, None) or preferred_chunk_sizes
for dim, preferred_chunk_sizes in zip(dims, preferred_chunk_shape, strict=True)
)
limit: int | None
if _contains_cftime_datetimes(data):
limit, dtype = fake_target_chunksize(data, chunkmanager.get_auto_chunk_size())
else:
limit = None
dtype = data.dtype
chunk_shape = chunkmanager.normalize_chunks(
chunk_shape,
shape=shape,
dtype=dtype,
limit=limit,
previous_chunks=preferred_chunk_shape,
)
# Warn where requested chunks break preferred chunks, provided that the variable
# contains data.
if data.size: # type: ignore[unused-ignore,attr-defined] # DuckArray protocol doesn't include 'size' - should it?
for dim, size, chunk_sizes in zip(dims, shape, chunk_shape, strict=True):
if preferred_chunk_sizes := preferred_chunks.get(dim):
disagreement = _get_breaks_cached(
size=size,
chunk_sizes=chunk_sizes,
preferred_chunk_sizes=preferred_chunk_sizes,
)
if disagreement:
emit_user_level_warning(
"The specified chunks separate the stored chunks along "
f'dimension "{dim}" starting at index {disagreement}. This could '
"degrade performance. Instead, consider rechunking after loading.",
)
return dict(zip(dims, chunk_shape, strict=True))
def fake_target_chunksize(
data: DuckArray[Any],
limit: int,
) -> tuple[int, np.dtype[Any]]:
"""
The `normalize_chunks` algorithm takes a size `limit` in bytes, but will not
work for object dtypes. So we rescale the `limit` to an appropriate one based
on `float64` dtype, and pass that to `normalize_chunks`.
Arguments
---------
data : Variable or ChunkedArray
The data for which we want to determine chunk sizes.
limit : int
The target chunk size in bytes. Passed to the chunk manager's `normalize_chunks` method.
"""
# Short circuit for non-object dtypes
from xarray.core.common import _contains_cftime_datetimes
if not _contains_cftime_datetimes(data):
return limit, data.dtype
from xarray.core.formatting import first_n_items
output_dtype = np.dtype(np.float64)
nbytes_approx: int = sys.getsizeof(first_n_items(data, 1)) # type: ignore[no-untyped-call]
f64_nbytes = output_dtype.itemsize
limit = int(limit * (f64_nbytes / nbytes_approx))
return limit, output_dtype
class ReprObject:
"""Object that prints as the given value, for use with sentinel values."""
__slots__ = ("_value",)
_value: str
def __init__(self, value: str):
self._value = value
def __repr__(self) -> str:
return self._value
def __eq__(self, other: ReprObject | Any) -> bool:
# TODO: What type can other be? ArrayLike?
return self._value == other._value if isinstance(other, ReprObject) else False
def __hash__(self) -> int:
return hash((type(self), self._value))
def __dask_tokenize__(self) -> object:
from dask.base import normalize_token
return normalize_token((type(self), self._value))
|