File: sensor_expose_loop_test.py

package info (click to toggle)
python-xknx 3.10.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 4,044 kB
  • sloc: python: 40,087; javascript: 8,556; makefile: 32; sh: 12
file content (394 lines) | stat: -rw-r--r-- 18,344 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
"""Unit test for Sensor and ExposeSensor objects."""

from unittest.mock import AsyncMock, Mock, call

import pytest

from xknx import XKNX
from xknx.devices import BinarySensor, ExposeSensor, Sensor
from xknx.dpt import DPTArray, DPTBinary
from xknx.telegram import AddressFilter, Telegram, TelegramDirection
from xknx.telegram.address import GroupAddress, InternalGroupAddress
from xknx.telegram.apci import GroupValueRead, GroupValueResponse, GroupValueWrite


class TestSensorExposeLoop:
    """Process incoming Telegrams and send the values to the bus again."""

    test_cases = [
        ("absolute_temperature", DPTArray((0x44, 0xD7, 0xD2, 0x87)), 1726.579),
        ("acceleration", DPTArray((0x45, 0x94, 0xD8, 0x5C)), 4763.045),
        ("acceleration_angular", DPTArray((0x45, 0xEA, 0x62, 0x33)), 7500.275),
        ("activation_energy", DPTArray((0x46, 0x0, 0x3E, 0xEE)), 8207.732),
        ("active_energy", DPTArray((0x26, 0x37, 0x49, 0x7F)), 641157503),
        ("active_energy_kwh", DPTArray((0x37, 0x5, 0x5, 0xEA)), 923076074),
        ("activity", DPTArray((0x45, 0x76, 0x0, 0xA4)), 3936.04),
        ("amplitude", DPTArray((0x45, 0x9A, 0xED, 0x8)), 4957.629),
        ("angle", DPTArray((0xE4,)), 322),
        ("angle_deg", DPTArray((0x44, 0x5C, 0x20, 0x2B)), 880.5026),
        ("angle_rad", DPTArray((0x44, 0x36, 0x75, 0x1)), 729.8282),
        ("angular_frequency", DPTArray((0x43, 0xBC, 0x20, 0x8D)), 376.2543),
        ("angular_momentum", DPTArray((0xC2, 0x75, 0xB7, 0xB5)), -61.4294),
        ("angular_velocity", DPTArray((0xC4, 0xD9, 0x10, 0xB4)), -1736.522),
        ("apparant_energy", DPTArray((0xD3, 0xBD, 0x1E, 0xA5)), -742580571),
        ("apparant_energy_kvah", DPTArray((0x49, 0x40, 0xC9, 0x9)), 1228982537),
        ("area", DPTArray((0x45, 0x63, 0x1E, 0xCD)), 3633.925),
        ("brightness", DPTArray((0xC3, 0x56)), 50006),
        ("capacitance", DPTArray((0x45, 0xC9, 0x1D, 0x9E)), 6435.702),
        ("charge_density_surface", DPTArray((0x45, 0xDB, 0x66, 0x9A)), 7020.825),
        ("charge_density_volume", DPTArray((0xC4, 0x8C, 0x33, 0xD7)), -1121.62),
        ("color_temperature", DPTArray((0x6C, 0x95)), 27797),
        ("common_temperature", DPTArray((0x45, 0xD9, 0xC6, 0x3F)), 6968.781),
        ("compressibility", DPTArray((0x45, 0x89, 0x94, 0xAA)), 4402.583),
        ("conductance", DPTArray((0x45, 0xA6, 0x28, 0xFA)), 5317.122),
        ("counter_pulses", DPTArray((0x9D,)), -99),
        ("current", DPTArray((0xCA, 0xCC)), 51916),
        ("delta_time_hrs", DPTArray((0x47, 0x80)), 18304),
        ("delta_time_min", DPTArray((0xB9, 0x7B)), -18053),
        ("delta_time_ms", DPTArray((0x58, 0x77)), 22647),
        ("delta_time_sec", DPTArray((0xA3, 0x6A)), -23702),
        ("density", DPTArray((0x44, 0xA5, 0xCB, 0x2B)), 1326.349),
        ("electrical_conductivity", DPTArray((0xC4, 0xC6, 0xF5, 0x71)), -1591.67),
        ("electric_charge", DPTArray((0x46, 0x14, 0xF6, 0xA0)), 9533.656),
        ("electric_current", DPTArray((0x45, 0xAD, 0x45, 0x8F)), 5544.695),
        ("electric_current_density", DPTArray((0x45, 0x7C, 0x57, 0xF8)), 4037.498),
        ("electric_dipole_moment", DPTArray((0x39, 0x01, 0x74, 0x2F)), 0.0001234568),
        ("electric_displacement", DPTArray((0xC5, 0x34, 0x8B, 0x02)), -2888.688),
        ("electric_field_strength", DPTArray((0xC6, 0x17, 0x1C, 0x39)), -9671.056),
        ("electric_flux", DPTArray((0x45, 0x8F, 0x6C, 0xFE)), 4589.624),
        ("electric_flux_density", DPTArray((0xC6, 0x0, 0x50, 0xA8)), -8212.164),
        ("electric_polarization", DPTArray((0x45, 0xF8, 0x89, 0xC7)), 7953.222),
        ("electric_potential", DPTArray((0xC6, 0x18, 0xA4, 0xAF)), -9769.171),
        ("electric_potential_difference", DPTArray((0xC6, 0xF, 0x1D, 0x6)), -9159.256),
        ("electromagnetic_moment", DPTArray((0x45, 0x82, 0x48, 0xAE)), 4169.085),
        ("electromotive_force", DPTArray((0x45, 0xBC, 0xEF, 0xEC)), 6045.99),
        ("energy", DPTArray((0x45, 0x4B, 0xB3, 0xF8)), 3259.248),
        ("enthalpy", DPTArray((0x76, 0xDD)), 287866.88),
        ("flow_rate_m3h", DPTArray((0x99, 0xEA, 0xC0, 0x55)), -1712668587),
        ("force", DPTArray((0x45, 0x9E, 0x2C, 0xE1)), 5061.61),
        ("frequency", DPTArray((0x45, 0xC2, 0x3C, 0x44)), 6215.533),
        ("heatcapacity", DPTArray((0xC5, 0xB3, 0x56, 0x7F)), -5738.812),
        ("heatflowrate", DPTArray((0x44, 0xEC, 0x80, 0x7B)), 1892.015),
        ("heat_quantity", DPTArray((0xC5, 0xA6, 0xB6, 0xD5)), -5334.854),
        ("humidity", DPTArray((0x7E, 0xE1)), 577044.48),
        ("impedance", DPTArray((0x45, 0xDD, 0x79, 0x6D)), 7087.178),
        ("illuminance", DPTArray((0x7C, 0x5E)), 366346.24),
        ("kelvin_per_percent", DPTArray((0xFA, 0xBD)), -441384.96),
        ("length", DPTArray((0xC5, 0x9D, 0xAE, 0xC5)), -5045.846),
        ("length_mm", DPTArray((0x56, 0xB9)), 22201),
        ("light_quantity", DPTArray((0x45, 0x4A, 0xF5, 0x68)), 3247.338),
        ("long_delta_timesec", DPTArray((0x45, 0xB2, 0x17, 0x54)), 1169299284),
        ("luminance", DPTArray((0x45, 0x18, 0xD9, 0x75)), 2445.591),
        ("luminous_flux", DPTArray((0x45, 0xBD, 0x16, 0x8)), 6050.754),
        ("luminous_intensity", DPTArray((0x46, 0xB, 0xBE, 0x7E)), 8943.623),
        ("magnetic_field_strength", DPTArray((0x44, 0x15, 0xF1, 0xAD)), 599.7762),
        ("magnetic_flux", DPTArray((0xC5, 0xCB, 0x3C, 0x98)), -6503.574),
        ("magnetic_flux_density", DPTArray((0x45, 0xB6, 0xBD, 0x42)), 5847.657),
        ("magnetic_moment", DPTArray((0xC3, 0x8E, 0x7F, 0x73)), -284.9957),
        ("magnetic_polarization", DPTArray((0x45, 0x8C, 0xFA, 0xCB)), 4511.349),
        ("magnetization", DPTArray((0x45, 0xF7, 0x9D, 0xA2)), 7923.704),
        ("magnetomotive_force", DPTArray((0xC6, 0x4, 0xC2, 0xDA)), -8496.713),
        ("mass", DPTArray((0x45, 0x8F, 0x70, 0xA4)), 4590.08),
        ("mass_flux", DPTArray((0xC6, 0x7, 0x34, 0xFF)), -8653.249),
        ("mol", DPTArray((0xC4, 0xA0, 0xF4, 0x6A)), -1287.638),
        ("momentum", DPTArray((0xC5, 0x27, 0xAA, 0x5A)), -2682.647),
        ("percent", DPTArray((0xE3,)), 89),
        ("percentU8", DPTArray((0x6B,)), 107),
        ("percentV8", DPTArray((0x20,)), 32),
        ("percentV16", DPTArray((0x8A, 0x2F)), -301.61),
        ("phaseanglerad", DPTArray((0x45, 0x54, 0xAC, 0x2D)), 3402.761),
        ("phaseangledeg", DPTArray((0xC5, 0x25, 0x13, 0x37)), -2641.201),
        ("power", DPTArray((0x45, 0xCB, 0xE2, 0x5C)), 6524.295),
        ("power_2byte", DPTArray((0x6D, 0x91)), 116736.00),
        ("power_density", DPTArray((0x65, 0x3E)), 54968.32),
        ("powerfactor", DPTArray((0xC5, 0x35, 0x28, 0x21)), -2898.508),
        ("ppm", DPTArray((0xF3, 0xC8)), -176947.20),
        ("pressure", DPTArray((0xC5, 0xE6, 0xE6, 0x62)), -7388.798),
        ("pressure_2byte", DPTArray((0x7C, 0xF4)), 415498.24),
        ("pulse", DPTArray((0xFC,)), 252),
        ("pulse_2byte_signed", DPTArray((0x80, 0x44)), -32700),
        ("rain_amount", DPTArray((0xF0, 0x1)), -335380.48),
        ("reactance", DPTArray((0x45, 0xB0, 0x50, 0x91)), 5642.071),
        ("reactive_energy", DPTArray((0x1A, 0x49, 0x6D, 0xA7)), 441019815),
        ("reactive_energy_kvarh", DPTArray((0xCC, 0x62, 0x5, 0x31)), -865991375),
        ("resistance", DPTArray((0xC5, 0xFC, 0x5F, 0xC3)), -8075.97),
        ("resistivity", DPTArray((0xC5, 0x57, 0x76, 0xC5)), -3447.423),
        ("rotation_angle", DPTArray((0x2D, 0xDC)), 11740),
        ("scene_number", DPTArray((0x1,)), 2),
        ("self_inductance", DPTArray((0xC4, 0xA1, 0xB0, 0x8)), -1293.501),
        ("solid_angle", DPTArray((0xC5, 0xC6, 0xE5, 0x48)), -6364.66),
        ("sound_intensity", DPTArray((0xC4, 0xF2, 0x56, 0xE9)), -1938.716),
        ("speed", DPTArray((0xC5, 0xCD, 0x1C, 0x6A)), -6563.552),
        ("stress", DPTArray((0x45, 0xDC, 0xA8, 0xF2)), 7061.118),
        ("surface_tension", DPTArray((0x46, 0xB, 0xAC, 0x11)), 8939.017),
        (
            "string",
            DPTArray(
                (
                    0x4B,
                    0x4E,
                    0x58,
                    0x20,
                    0x69,
                    0x73,
                    0x20,
                    0x4F,
                    0x4B,
                    0x0,
                    0x0,
                    0x0,
                    0x0,
                    0x0,
                )
            ),
            "KNX is OK",
        ),
        ("temperature", DPTArray((0x77, 0x88)), 315883.52),
        ("temperature_a", DPTArray((0xF1, 0xDB)), -257720.32),
        ("temperature_difference", DPTArray((0xC6, 0xC, 0x50, 0xBC)), -8980.184),
        ("temperature_difference_2byte", DPTArray((0xA9, 0xF4)), -495.36),
        ("temperature_f", DPTArray((0x67, 0xA9)), 80322.56),
        ("thermal_capacity", DPTArray((0x45, 0x83, 0xEA, 0xB2)), 4221.337),
        ("thermal_conductivity", DPTArray((0xC5, 0x9C, 0x4D, 0x23)), -5001.642),
        ("thermoelectric_power", DPTArray((0x41, 0xCF, 0x9E, 0x4F)), 25.9523),
        ("time_1", DPTArray((0x5E, 0x1E)), 32071.68),
        ("time_2", DPTArray((0xFB, 0x29)), -405995.52),
        ("time_period_100msec", DPTArray((0x6A, 0x35)), 2718900),
        ("time_period_10msec", DPTArray((0x32, 0x3)), 128030),
        ("time_period_hrs", DPTArray((0x29, 0xDE)), 10718),
        ("time_period_min", DPTArray((0x0, 0x54)), 84),
        ("time_period_msec", DPTArray((0x93, 0xC7)), 37831),
        ("time_period_sec", DPTArray((0xE0, 0xF5)), 57589),
        ("time_seconds", DPTArray((0x45, 0xEC, 0x91, 0x7D)), 7570.186),
        ("torque", DPTArray((0xC5, 0x9, 0x23, 0x60)), -2194.211),
        ("voltage", DPTArray((0x6D, 0xBF)), 120504.32),
        ("volume", DPTArray((0x46, 0x16, 0x98, 0x43)), 9638.065),
        ("volume_flow", DPTArray((0x7C, 0xF5)), 415825.92),
        ("volume_flux", DPTArray((0xC5, 0x4, 0x2D, 0x71)), -2114.84),
        ("weight", DPTArray((0x45, 0x20, 0x10, 0xE9)), 2561.057),
        ("work", DPTArray((0x45, 0x64, 0x5D, 0xBE)), 3653.859),
        ("wind_speed_ms", DPTArray((0x7D, 0x98)), 469237.76),
        ("wind_speed_kmh", DPTArray((0x7F, 0x55)), 615055.36),
        # # Generic DPT Without Min/Max and Unit.
        ("1byte_unsigned", DPTArray(0x08), 8),
        ("2byte_unsigned", DPTArray((0x30, 0x39)), 12345),
        ("2byte_signed", DPTArray((0x00, 0x01)), 1),
        ("2byte_float", DPTArray((0x2E, 0xA9)), 545.6),
        ("4byte_unsigned", DPTArray((0x00, 0x00, 0x00, 0x00)), 0),
        ("4byte_signed", DPTArray((0xFD, 0x1A, 0xA1, 0x09)), -48586487),
        ("4byte_float", DPTArray((0xC2, 0x09, 0xEE, 0xCC)), -34.4832),
    ]

    @pytest.mark.parametrize(("value_type", "test_payload", "test_value"), test_cases)
    async def test_array_sensor_loop(
        self, value_type: str, test_payload: DPTArray, test_value: float
    ) -> None:
        """Test sensor and expose_sensor with different values."""
        xknx = XKNX()
        xknx.cemi_handler = AsyncMock()
        await xknx.telegram_queue.start()

        expose = ExposeSensor(
            xknx,
            "TestExpose",
            group_address="1/1/1",
            value_type=value_type,
        )
        xknx.devices.async_add(expose)
        assert expose.resolve_state() is None
        # set a value from expose - HA sends strings for new values
        stringified_value = str(test_value)
        await expose.set(stringified_value)

        outgoing_telegram = Telegram(
            destination_address=GroupAddress("1/1/1"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueWrite(test_payload),
        )
        await xknx.telegrams.join()
        xknx.cemi_handler.send_telegram.assert_called_with(outgoing_telegram)
        assert expose.resolve_state() == test_value

        # init sensor after expose is set - with same group address
        sensor = Sensor(
            xknx,
            "TestSensor",
            group_address_state="1/1/1",
            value_type=value_type,
        )
        xknx.devices.async_add(sensor)
        assert sensor.resolve_state() is None

        # read sensor state (from expose as it has the same GA)
        # wait_for_result so we don't have to await self.xknx.telegrams.join()
        await sensor.sync(wait_for_result=True)
        read_telegram = Telegram(
            destination_address=GroupAddress("1/1/1"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueRead(),
        )
        response_telegram = Telegram(
            destination_address=GroupAddress("1/1/1"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueResponse(test_payload),
        )
        xknx.cemi_handler.send_telegram.assert_has_calls(
            [
                call(read_telegram),
                call(response_telegram),
            ]
        )
        # test if Sensor has successfully read from ExposeSensor
        assert sensor.resolve_state() == test_value
        assert expose.resolve_state() == sensor.resolve_state()
        await xknx.telegram_queue.stop()


class TestBinarySensorExposeLoop:
    """Process incoming Telegrams and send the values to the bus again."""

    @pytest.mark.parametrize(
        ("value_type", "test_payload", "test_value"),
        [
            ("binary", DPTBinary(0), False),
            ("binary", DPTBinary(1), True),
        ],
    )
    async def test_binary_sensor_loop(
        self, value_type: str, test_payload: DPTBinary, test_value: bool
    ) -> None:
        """Test binary_sensor and expose_sensor with binary values."""
        xknx = XKNX()
        xknx.cemi_handler = AsyncMock()
        await xknx.telegram_queue.start()

        expose = ExposeSensor(
            xknx,
            "TestExpose",
            group_address="1/1/1",
            value_type=value_type,
        )
        xknx.devices.async_add(expose)
        assert expose.resolve_state() is None

        await expose.set(test_value)
        await xknx.telegrams.join()
        outgoing_telegram = Telegram(
            destination_address=GroupAddress("1/1/1"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueWrite(test_payload),
        )
        xknx.cemi_handler.send_telegram.assert_called_with(outgoing_telegram)
        assert expose.resolve_state() == test_value

        bin_sensor = BinarySensor(
            xknx,
            "TestSensor",
            group_address_state="1/1/1",
        )
        xknx.devices.async_add(bin_sensor)
        assert bin_sensor.state is None

        # read sensor state (from expose as it has the same GA)
        # wait_for_result so we don't have to await self.xknx.telegrams.join()
        await bin_sensor.sync(wait_for_result=True)
        read_telegram = Telegram(
            destination_address=GroupAddress("1/1/1"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueRead(),
        )
        response_telegram = Telegram(
            destination_address=GroupAddress("1/1/1"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueResponse(test_payload),
        )
        xknx.cemi_handler.send_telegram.assert_has_calls(
            [
                call(read_telegram),
                call(response_telegram),
            ]
        )
        # test if Sensor has successfully read from ExposeSensor
        assert bin_sensor.state == test_value
        assert expose.resolve_state() == bin_sensor.state
        await xknx.telegram_queue.stop()


class TestBinarySensorInternalGroupAddressExposeLoop:
    """Process incoming Telegrams and send values to other devices."""

    @pytest.mark.parametrize(
        ("value_type", "test_payload", "test_value"),
        [
            ("binary", DPTBinary(0), False),
            ("binary", DPTBinary(1), True),
        ],
    )
    async def test_binary_sensor_loop(
        self, value_type: str, test_payload: DPTBinary, test_value: bool
    ) -> None:
        """Test binary_sensor and expose_sensor with binary values."""
        xknx = XKNX()
        xknx.cemi_handler = AsyncMock()

        telegram_callback = Mock()
        xknx.telegram_queue.register_telegram_received_cb(
            telegram_callback,
            address_filters=[AddressFilter("i-test")],
            match_for_outgoing=True,
        )
        await xknx.telegram_queue.start()

        expose = ExposeSensor(
            xknx,
            "TestExpose",
            group_address="i-test",
            value_type=value_type,
        )
        xknx.devices.async_add(expose)
        assert expose.resolve_state() is None

        await expose.set(test_value)
        await xknx.telegrams.join()
        outgoing_telegram = Telegram(
            destination_address=InternalGroupAddress("i-test"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueWrite(test_payload),
        )
        # InternalGroupAddress isn't passed to knxip_interface
        xknx.cemi_handler.send_telegram.assert_not_called()
        telegram_callback.assert_called_with(outgoing_telegram)
        assert expose.resolve_state() == test_value

        bin_sensor = BinarySensor(
            xknx,
            "TestSensor",
            group_address_state="i-test",
        )
        xknx.devices.async_add(bin_sensor)
        assert bin_sensor.state is None

        # read sensor state (from expose as it has the same GA)
        # wait_for_result so we don't have to await self.xknx.telegrams.join()
        await bin_sensor.sync(wait_for_result=True)
        read_telegram = Telegram(
            destination_address=InternalGroupAddress("i-test"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueRead(),
        )
        response_telegram = Telegram(
            destination_address=InternalGroupAddress("i-test"),
            direction=TelegramDirection.OUTGOING,
            payload=GroupValueResponse(test_payload),
        )
        xknx.cemi_handler.send_telegram.assert_not_called()
        telegram_callback.assert_has_calls(
            [
                call(read_telegram),
                call(response_telegram),
            ]
        )
        # test if Sensor has successfully read from ExposeSensor
        assert bin_sensor.state == test_value
        assert expose.resolve_state() == bin_sensor.state
        await xknx.telegram_queue.stop()