1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
"""Cryptographical calculations of KNX specification example frames."""
from cryptography.hazmat.primitives import hashes, serialization
from cryptography.hazmat.primitives.asymmetric.x25519 import (
X25519PrivateKey,
X25519PublicKey,
)
from cryptography.hazmat.primitives.ciphers import Cipher, algorithms, modes
from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC
def bytes_xor(a: bytes, b: bytes) -> bytes: # pylint: disable=invalid-name
"""XOR two bytes values."""
return (int.from_bytes(a, "big") ^ int.from_bytes(b, "big")).to_bytes(len(a), "big")
def byte_pad(data: bytes, block_size: int) -> bytes:
"""Pad data with 0x00 until its length is a multiple of block_size."""
if remainder := len(data) % block_size:
return data + bytes(block_size - remainder)
return data
def sha256_hash(data: bytes) -> bytes:
"""Calculate SHA256 hash of data."""
digest = hashes.Hash(hashes.SHA256())
digest.update(data)
return digest.finalize()
def calculate_message_authentication_code_cbc(
key: bytes,
additional_data: bytes,
payload: bytes = b"",
block_0: bytes = bytes(16),
# counter_0: bytes = bytes(16),
) -> bytes:
"""Calculate the message authentication code (MAC) for a message with AES-CBC."""
blocks = (
block_0 + len(additional_data).to_bytes(2, "big") + additional_data + payload
)
y_cipher = Cipher(algorithms.AES(key), modes.CBC(bytes(16)))
y_encryptor = y_cipher.encryptor()
y_blocks = (
y_encryptor.update(byte_pad(blocks, block_size=16)) + y_encryptor.finalize()
)
# only calculate, no ctr encryption
return y_blocks[-16:]
# s_cipher = Cipher(algorithms.AES(key), modes.CTR(counter_0))
# s_encryptor = s_cipher.encryptor()
# return s_encryptor.update(y_blocks[-16:]) + s_encryptor.finalize()
def encrypt_data_ctr(
key: bytes,
mac_cbc: bytes,
payload: bytes = b"",
counter_0: bytes = bytes(16),
) -> bytes:
"""
Encrypt data with AES-CTR.
Payload is optional; expected plain KNX/IP frame bytes.
MAC shall be encrypted with counter 0, KNXnet/IP frame with incremented counters.
Encrypted MAC is appended to the end of encrypted payload data (if there is any).
"""
s_cipher = Cipher(algorithms.AES(key), modes.CTR(counter_0))
s_encryptor = s_cipher.encryptor()
mac = s_encryptor.update(mac_cbc)
data = s_encryptor.update(payload) + s_encryptor.finalize()
return data + mac
def decrypt_ctr(
session_key: bytes,
payload: bytes,
counter_0: bytes = bytes(16),
) -> bytes:
"""
Decrypt data from SecureWrapper.
MAC is expected to be the last 16 octets of the payload. This will be sliced and
decoded first with counter 0.
Returns a tuple of (KNX/IP frame bytes, MAC TR for verification).
"""
cipher = Cipher(algorithms.AES(session_key), modes.CTR(counter_0))
decryptor = cipher.decryptor()
mac_tr = decryptor.update(payload[-16:]) # MAC is encrypted with counter 0
decrypted_data = decryptor.update(payload[:-16]) + decryptor.finalize()
return (decrypted_data, mac_tr)
def calculate_wrapper(
session_key: bytes,
encapsulated_frame: bytes,
secure_session_id: bytes = bytes.fromhex("00 01"),
sequence_number: bytes = bytes.fromhex("00 00 00 00 00 00"),
serial_number: bytes = bytes.fromhex("00 fa 12 34 56 78"),
message_tag: bytes = bytes.fromhex("af fe"),
) -> bytes:
"""Calculate the payload and mac for a secure wrapper."""
print("# SecureWrapper")
total_length = (
6 # KNX/IP Header
+ len(secure_session_id)
+ len(sequence_number)
+ len(serial_number)
+ len(message_tag)
+ len(encapsulated_frame)
+ 16 # MAC
)
wrapper_header = bytes.fromhex("06 10 09 50") + total_length.to_bytes(2, "big")
a_data = wrapper_header + secure_session_id
p_data = encapsulated_frame
q_payload_length = len(p_data).to_bytes(2, "big")
b_0_secure_wrapper = (
sequence_number + serial_number + message_tag + q_payload_length
)
ctr_0_secure_wrapper = (
sequence_number + serial_number + message_tag + bytes.fromhex("ff") + bytes(1)
) # last octet is the counter to increment by 1 each step
mac_cbc = calculate_message_authentication_code_cbc(
session_key,
additional_data=a_data,
payload=p_data,
block_0=b_0_secure_wrapper,
)
encrypted_data = encrypt_data_ctr(
session_key,
mac_cbc=mac_cbc,
payload=p_data,
counter_0=ctr_0_secure_wrapper,
)
# encrypted data
# ctr_1_secure_wrapper = (int.from_bytes(ctr_0_secure_wrapper, "big") + 1).to_bytes(
# 16, "big"
# )
# cipher = Cipher(algorithms.AES(session_key), modes.CTR(ctr_1_secure_wrapper))
# encryptor = cipher.encryptor()
# enc_frame = encryptor.update(p_data) + encryptor.finalize()
print(f"encrypted_data: {encrypted_data[16:].hex()}")
dec_frame, mac_tr = decrypt_ctr(
session_key,
payload=encrypted_data,
counter_0=ctr_0_secure_wrapper,
)
assert dec_frame == p_data
assert mac_tr == mac_cbc # verification of MAC
return encrypted_data
def main() -> None:
"""Recalculate KNX specification example frames."""
################
# SessionRequest
################
print("# SessionRequest")
client_private_key = X25519PrivateKey.from_private_bytes(
bytes.fromhex(
"b8 fa bd 62 66 5d 8b 9e 8a 9d 8b 1f 4b ca 42 c8 c2 78 9a 61 10 f5 0e 9d d7 85 b3 ed e8 83 f3 78"
)
)
client_public_key_raw = client_private_key.public_key().public_bytes(
serialization.Encoding.Raw, serialization.PublicFormat.Raw
) # append to SessionRequest (15-46)
print(f"Public key: {client_public_key_raw.hex()}")
#################
# SessionResponse
#################
print("# SessionResponse")
peer_public_key = X25519PublicKey.from_public_bytes(
bytes.fromhex(
"bd f0 99 90 99 23 14 3e f0 a5 de 0b 3b e3 68 7b c5 bd 3c f5 f9 e6 f9 01 69 9c d8 70 ec 1f f8 24"
)
)
pub_keys_xor = bytes_xor(
client_public_key_raw,
peer_public_key.public_bytes(
encoding=serialization.Encoding.Raw,
format=serialization.PublicFormat.Raw,
),
)
peer_device_authentication_password = "trustme"
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=16,
salt=b"device-authentication-code.1.secure.ip.knx.org",
iterations=65536,
)
# TODO: is encoding "latin-1" correct? (also used for device names in DIBs)
peer_device_authentication_code = kdf.derive(
peer_device_authentication_password.encode("latin-1")
)
assert peer_device_authentication_code == bytes.fromhex(
"e1 58 e4 01 20 47 bd 6c c4 1a af bc 5c 04 c1 fc"
)
_a_data = bytes.fromhex(
"06 10 09 52 00 38 00 01 b7 52 be 24 64 59 26 0f 6b 0c 48 01 fb d5 a6 75 99 f8 3b 40 57 b3 ef 1e 79 e4 69 ac 17 23 4e 15"
)
ctr_0_session_response = (
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x00"
)
message_authentication_code_cbc = calculate_message_authentication_code_cbc(
peer_device_authentication_code,
additional_data=_a_data[:8]
+ pub_keys_xor, # knx_ip_header + secure_session_id + bytes_xor(client_pub_key, server_pub_key)
)
message_authentication_code = encrypt_data_ctr(
peer_device_authentication_code,
mac_cbc=message_authentication_code_cbc,
counter_0=ctr_0_session_response,
)
assert message_authentication_code == bytes.fromhex(
"a9 22 50 5a aa 43 61 63 57 0b d5 49 4c 2d f2 a3"
)
ecdh_shared_secret = client_private_key.exchange(peer_public_key)
print(f"ECDH shared secret: {ecdh_shared_secret.hex()}")
session_key = sha256_hash(ecdh_shared_secret)[:16]
print(f"Session key: {session_key.hex()}")
_, mac_tr = decrypt_ctr(
peer_device_authentication_code,
payload=message_authentication_code,
counter_0=ctr_0_session_response,
)
assert mac_tr == message_authentication_code_cbc # verification of MAC
#####################
# SessionAuthenticate
#####################
# shall be wrapped in SecureWrapper
print("# SessionAuthenticate")
password_string = "secret"
kdf = PBKDF2HMAC(
algorithm=hashes.SHA256(),
length=16,
salt=b"user-password.1.secure.ip.knx.org",
iterations=65536,
)
password_hash = kdf.derive(password_string.encode("latin-1"))
print(f"Password hash: {password_hash.hex(' ')}")
assert password_hash == bytes.fromhex(
"03 fc ed b6 66 60 25 1e c8 1a 1a 71 69 01 69 6a"
)
authenticate_wrapper = bytes.fromhex(
"06 10 09 50 00 3e 00 01 00 00 00 00 00 00 00 fa 12 34 56 78 af fe"
"79 15 a4 f3 6e 6e 42 08"
"d2 8b 4a 20 7d 8f 35 c0"
"d1 38 c2 6a 7b 5e 71 69"
"52 db a8 e7 e4 bd 80 bd"
"7d 86 8a 3a e7 87 49 de"
)
session_authenticate = bytes.fromhex(
"06 10 09 53 00 18 00 01"
+ "1f 1d 59 ea 9f 12 a1 52 e5 d9 72 7f 08 46 2c de" # MAC
)
mac_cbc_authenticate = calculate_message_authentication_code_cbc(
password_hash,
additional_data=session_authenticate[:8] + pub_keys_xor,
block_0=bytes(16),
)
ctr_0_session_authenticate = (
b"\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xff\x00"
)
assert (
encrypt_data_ctr(
password_hash,
mac_cbc=mac_cbc_authenticate,
counter_0=ctr_0_session_authenticate,
)
== session_authenticate[8:]
)
assert (
calculate_wrapper(
session_key,
encapsulated_frame=session_authenticate,
secure_session_id=authenticate_wrapper[6:8],
sequence_number=authenticate_wrapper[8:14],
serial_number=authenticate_wrapper[14:20],
message_tag=authenticate_wrapper[20:22],
)
== authenticate_wrapper[22:]
)
# verify MAC
_, mac_tr = decrypt_ctr(
password_hash,
payload=session_authenticate[8:],
counter_0=ctr_0_session_authenticate,
)
assert mac_tr == mac_cbc_authenticate
###############
# SessionStatus
###############
# shall be wrapped in SecureWrapper
print("# SessionStatus")
status_wrapper = bytes.fromhex(
"06 10 09 50 00 2e 00 01 00 00 00 00 00 00 00 fa aa aa aa aa af fe"
"26 15 6d b5 c7 49 88 8f"
"a3 73 c3 e0 b4 bd e4 49"
"7c 39 5e 4b 1c 2f 46 a1"
)
session_status = bytes.fromhex("06 10 09 54 00 08 00 00")
assert (
calculate_wrapper(
session_key,
encapsulated_frame=session_status,
secure_session_id=status_wrapper[6:8],
sequence_number=status_wrapper[8:14],
serial_number=status_wrapper[14:20],
message_tag=status_wrapper[20:22],
)
== status_wrapper[22:]
)
if __name__ == "__main__":
main()
|