1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868
|
# -*- coding: utf-8 -*-
# Parser for XPath in -*- python -*-, as defined in REC-xpath-19991116
# Copyright 2000, Martin v. Löwis
# This parser is generated by Amit J Patel's YAPPS
# http://theory.stanford.edu/~amitp/Yapps/ for documentation and updates
# The generated Scanner class is not used, and redefined at the end.
# Therefore, the token definitions are for illustration only, and to
# let YAPPS know what the tokens are.
# The grammar rules attempt to follow the XPath recommendation closely,
# both in textual order and presentation. The following changes have been
# made:
# - left-recursion was replaced with right-recursion
# - left-factorization was applied where necessary
# - semantic values were attached to non-terminals
from string import *
import re
from yappsrt import *
class XPathScanner(Scanner):
patterns = [
("'mod'", re.compile('mod')),
("'div'", re.compile('div')),
("'-'", re.compile('-')),
("'>='", re.compile('>=')),
("'>'", re.compile('>')),
("'<='", re.compile('<=')),
("'<'", re.compile('<')),
("'!='", re.compile('!=')),
("'='", re.compile('=')),
("'and'", re.compile('and')),
("'or'", re.compile('or')),
("','", re.compile(',')),
("'@'", re.compile('@')),
("'::'", re.compile('::')),
("'//'", re.compile('//')),
("'/'", re.compile('/')),
('Literal', re.compile('"[^"]*"|\'[^\']*')),
('Number', re.compile('\\d+(.\\d*)?|.\\d+')),
('VariableReference', re.compile('\\$[a-zA-Z_][:a-zA-Z0-9_.-]*')),
('NodeType', re.compile('comment|text|processing-instruction|node')),
('AxisName', re.compile('ancestor|ancestor-or-self|attribute|child|descendant|descendant-or-self|following|following-sibling|namespace|parent|preceding|preceding-sibling|self')),
('NCName', re.compile('[a-zA-Z_][a-zA-Z0-9_.-]*')),
('NCNameStar', re.compile('[a-zA-Z_][a-zA-Z0-9_.-]*:\\*')),
('QName', re.compile('[a-zA-Z_][a-zA-Z0-9_.-]*(:[a-zA-Z_][a-zA-Z0-9_.-])?')),
('MultiplyOperator', re.compile('\\*')),
('LPAREN', re.compile('\\(')),
('RPAREN', re.compile('\\)')),
('STAR', re.compile('\\*')),
('PLUS', re.compile('\\+')),
('LBRACKET', re.compile('\\[')),
('RBRACKET', re.compile('\\]')),
('FunctionName', re.compile('[a-zA-Z_][a-zA-Z0-9_.-]*(:[a-zA-Z_][a-zA-Z0-9_.-]*)?')),
('DOT', re.compile('\\.')),
('DOTDOT', re.compile('\\.\\.')),
('BAR', re.compile('\\|')),
('END', re.compile('#')),
('ID', re.compile('id')),
('KEY', re.compile('key')),
]
def __init__(self, str):
Scanner.__init__(self,None,[],str)
class XPath(Parser):
def Start(self):
LocationPath = self.LocationPath()
END = self._scan('END')
return LocationPath
def FullExpr(self):
Expr = self.Expr()
END = self._scan('END')
return Expr
def LocationPath(self):
_token_ = self._peek()
if _token_ in ['AxisName', 'NodeType', 'DOT', 'DOTDOT', "'@'", 'STAR', 'QName', 'NCNameStar', 'NCName']:
RelativeLocationPath = self.RelativeLocationPath()
return RelativeLocationPath
elif _token_ in ["'/'", "'//'"]:
AbsoluteLocationPath = self.AbsoluteLocationPath()
return AbsoluteLocationPath
else:
raise SyntaxError(self._pos, 'Could not match LocationPath')
def AbsoluteLocationPath(self):
_token_ = self._peek()
if _token_ == "'/'":
self._scan("'/'")
OptRelativeLocationPath = self.OptRelativeLocationPath()
return self.absoluteLocationPath(OptRelativeLocationPath)
elif _token_ == "'//'":
AbbreviatedAbsoluteLocationPath = self.AbbreviatedAbsoluteLocationPath()
return AbbreviatedAbsoluteLocationPath
else:
raise SyntaxError(self._pos, 'Could not match AbsoluteLocationPath')
def OptRelativeLocationPath(self):
_token_ = self._peek()
if _token_ not in ["'@'", "'::'", "'//'", "'/'", 'Literal', 'Number', 'VariableReference', 'NodeType', 'AxisName', 'NCName', 'NCNameStar', 'QName', 'LPAREN', 'STAR', 'LBRACKET', 'FunctionName', 'DOT', 'DOTDOT', 'ID', 'KEY']:
return None
elif _token_ not in ["'::'", "'//'", "'/'", 'Literal', 'Number', 'VariableReference', 'LPAREN', 'LBRACKET', 'FunctionName', 'ID', 'KEY']:
RelativeLocationPath = self.RelativeLocationPath()
return RelativeLocationPath
else:
raise SyntaxError(self._pos, 'Could not match OptRelativeLocationPath')
def RelativeLocationPath(self):
Step = self.Step()
RelativeLocationPaths = self.RelativeLocationPaths(Step)
return RelativeLocationPaths
def RelativeLocationPaths(self, v):
_token_ = self._peek()
if _token_ not in ["'@'", "'::'", "'//'", "'/'", 'Literal', 'Number', 'VariableReference', 'NodeType', 'AxisName', 'NCName', 'NCNameStar', 'QName', 'LPAREN', 'STAR', 'LBRACKET', 'FunctionName', 'DOT', 'DOTDOT', 'ID', 'KEY']:
return v
elif _token_ == "'/'":
self._scan("'/'")
Step = self.Step()
RelativeLocationPaths = self.RelativeLocationPaths(self.rlp(v,Step))
return RelativeLocationPaths
elif _token_ == "'//'":
self._scan("'//'")
Step = self.Step()
RelativeLocationPaths = self.RelativeLocationPaths(self.arlp(v,Step))
return RelativeLocationPaths
else:
raise SyntaxError(self._pos, 'Could not match RelativeLocationPaths')
def Step(self):
_token_ = self._peek()
if _token_ in ['AxisName', 'NodeType', "'@'", 'STAR', 'QName', 'NCNameStar', 'NCName']:
AxisSpecifier = self.AxisSpecifier()
NodeTest = self.NodeTest()
Predicates = self.Predicates()
return self.step(AxisSpecifier,NodeTest,Predicates)
elif _token_ in ['DOT', 'DOTDOT']:
AbbreviatedStep = self.AbbreviatedStep()
return AbbreviatedStep
else:
raise SyntaxError(self._pos, 'Could not match Step')
def Predicates(self):
_token_ = self._peek()
if _token_ not in ["'@'", "'::'", 'Literal', 'Number', 'VariableReference', 'NodeType', 'AxisName', 'NCName', 'NCNameStar', 'QName', 'LPAREN', 'STAR', 'LBRACKET', 'FunctionName', 'DOT', 'DOTDOT', 'ID', 'KEY']:
return []
elif _token_ == 'LBRACKET':
Predicate = self.Predicate()
Predicates = self.Predicates()
return [Predicate]+Predicates
else:
raise SyntaxError(self._pos, 'Could not match Predicates')
def AxisSpecifier(self):
_token_ = self._peek()
if _token_ == 'AxisName':
AxisName = self._scan('AxisName')
self._scan("'::'")
return self.axisSpecifier(self.anMap[AxisName])
elif _token_ in ["'@'", 'NodeType', 'STAR', 'QName', 'NCNameStar', 'NCName']:
AbbreviatedAxisSpecifier = self.AbbreviatedAxisSpecifier()
return AbbreviatedAxisSpecifier
else:
raise SyntaxError(self._pos, 'Could not match AxisSpecifier')
def NodeTest(self):
_token_ = self._peek()
if _token_ in ['STAR', 'QName', 'NCNameStar', 'NCName']:
NameTest = self.NameTest()
return NameTest
elif _token_ == 'NodeType':
NodeType = self._scan('NodeType')
LPAREN = self._scan('LPAREN')
OptLiteral = self.OptLiteral()
RPAREN = self._scan('RPAREN')
return self.mkNodeTest(NodeType,OptLiteral)
else:
raise SyntaxError(self._pos, 'Could not match NodeTest')
def OptLiteral(self):
_token_ = self._peek()
if _token_ == 'RPAREN':
return None
elif _token_ == 'Literal':
Literal = self._scan('Literal')
return Literal
else:
raise SyntaxError(self._pos, 'Could not match OptLiteral')
def NameTest(self):
_token_ = self._peek()
if _token_ == 'STAR':
STAR = self._scan('STAR')
return self.nameTest(None,"*")
elif _token_ == 'QName':
QName = self._scan('QName')
return self.mkQName(QName)
elif _token_ == 'NCNameStar':
NCNameStar = self._scan('NCNameStar')
return self.nameTest(NCNameStar[:-2],'*')
elif _token_ == 'NCName':
NCName = self._scan('NCName')
return self.nameTest(None,NCName)
else:
raise SyntaxError(self._pos, 'Could not match NameTest')
def Predicate(self):
LBRACKET = self._scan('LBRACKET')
PredicateExpr = self.PredicateExpr()
RBRACKET = self._scan('RBRACKET')
return PredicateExpr
def PredicateExpr(self):
Expr = self.Expr()
return Expr
def AbbreviatedAbsoluteLocationPath(self):
self._scan("'//'")
RelativeLocationPath = self.RelativeLocationPath()
return self.aalp(RelativeLocationPath)
def AbbreviatedStep(self):
_token_ = self._peek()
if _token_ == 'DOT':
DOT = self._scan('DOT')
return self.abbreviatedStep(0)
elif _token_ == 'DOTDOT':
DOTDOT = self._scan('DOTDOT')
return self.abbreviatedStep(1)
else:
raise SyntaxError(self._pos, 'Could not match AbbreviatedStep')
def AbbreviatedAxisSpecifier(self):
_token_ = self._peek()
if _token_ in ['NodeType', 'STAR', 'QName', 'NCNameStar', 'NCName']:
return self.axisSpecifier(pyxpath.CHILD_AXIS)
elif _token_ == "'@'":
self._scan("'@'")
return self.axisSpecifier(pyxpath.ATTRIBUTE_AXIS)
else:
raise SyntaxError(self._pos, 'Could not match AbbreviatedAxisSpecifier')
def Expr(self):
OrExpr = self.OrExpr()
return OrExpr
def PrimaryExpr(self):
_token_ = self._peek()
if _token_ == 'VariableReference':
VariableReference = self._scan('VariableReference')
return self.mkVariableReference(VariableReference)
elif _token_ == 'LPAREN':
LPAREN = self._scan('LPAREN')
Expr = self.Expr()
RPAREN = self._scan('RPAREN')
return Expr
elif _token_ == 'Literal':
Literal = self._scan('Literal')
return self.literal(Literal)
elif _token_ == 'Number':
Number = self._scan('Number')
return self.number(Number)
elif _token_ in ['FunctionName', 'ID', 'KEY']:
FunctionCall = self.FunctionCall()
return FunctionCall
else:
raise SyntaxError(self._pos, 'Could not match PrimaryExpr')
def FunctionCall(self):
_token_ = self._peek()
if _token_ == 'FunctionName':
FunctionName = self._scan('FunctionName')
LPAREN = self._scan('LPAREN')
Arguments = self.Arguments()
RPAREN = self._scan('RPAREN')
return self.mkFunctionCall(FunctionName,Arguments)
elif _token_ == 'ID':
ID = self._scan('ID')
LPAREN = self._scan('LPAREN')
Arguments = self.Arguments()
RPAREN = self._scan('RPAREN')
return self.functionCall(None,'id',Arguments)
elif _token_ == 'KEY':
KEY = self._scan('KEY')
LPAREN = self._scan('LPAREN')
Arguments = self.Arguments()
RPAREN = self._scan('RPAREN')
return self.functionCall(None,'key',Arguments)
else:
raise SyntaxError(self._pos, 'Could not match FunctionCall')
def Arguments(self):
_token_ = self._peek()
if _token_ == 'RPAREN':
return []
elif _token_ not in ["'mod'", "'div'", "'>='", "'>'", "'<='", "'<'", "'!='", "'='", "'and'", "'or'", "','", "'::'", 'MultiplyOperator', 'PLUS', 'LBRACKET', 'RBRACKET', 'BAR', 'END']:
Argument = self.Argument()
KommaArguments = self.KommaArguments([Argument])
return KommaArguments
else:
raise SyntaxError(self._pos, 'Could not match Arguments')
def KommaArguments(self, v):
_token_ = self._peek()
if _token_ == 'RPAREN':
return v
elif _token_ == "','":
self._scan("','")
Argument = self.Argument()
KommaArguments = self.KommaArguments(v+[Argument])
return KommaArguments
else:
raise SyntaxError(self._pos, 'Could not match KommaArguments')
def Argument(self):
Expr = self.Expr()
return Expr
def UnionExpr(self):
PathExpr = self.PathExpr()
UnionExprs = self.UnionExprs(PathExpr)
return UnionExprs
def UnionExprs(self, v):
_token_ = self._peek()
if _token_ not in ["'@'", "'::'", "'//'", "'/'", 'Literal', 'Number', 'VariableReference', 'NodeType', 'AxisName', 'NCName', 'NCNameStar', 'QName', 'LPAREN', 'STAR', 'LBRACKET', 'FunctionName', 'DOT', 'DOTDOT', 'BAR', 'ID', 'KEY']:
return v
elif _token_ == 'BAR':
BAR = self._scan('BAR')
PathExpr = self.PathExpr()
UnionExprs = self.UnionExprs(self.nop(self.UNION,v,PathExpr))
return UnionExprs
else:
raise SyntaxError(self._pos, 'Could not match UnionExprs')
def PathExpr(self):
_token_ = self._peek()
if _token_ in ["'/'", "'//'", 'AxisName', 'NodeType', 'DOT', 'DOTDOT', "'@'", 'STAR', 'QName', 'NCNameStar', 'NCName']:
LocationPath = self.LocationPath()
return LocationPath
elif _token_ in ['VariableReference', 'LPAREN', 'Literal', 'Number', 'FunctionName', 'ID', 'KEY']:
FilterExpr = self.FilterExpr()
PathExprRest = self.PathExprRest(FilterExpr)
return PathExprRest
else:
raise SyntaxError(self._pos, 'Could not match PathExpr')
def PathExprRest(self, v):
_token_ = self._peek()
if _token_ not in ["'@'", "'::'", "'//'", "'/'", 'Literal', 'Number', 'VariableReference', 'NodeType', 'AxisName', 'NCName', 'NCNameStar', 'QName', 'LPAREN', 'STAR', 'LBRACKET', 'FunctionName', 'DOT', 'DOTDOT', 'ID', 'KEY']:
return v
elif _token_ == "'/'":
self._scan("'/'")
RelativeLocationPath = self.RelativeLocationPath()
return self.pathExpr(v,RelativeLocationPath)
elif _token_ == "'//'":
self._scan("'//'")
RelativeLocationPath = self.RelativeLocationPath()
return self.abbreviatedPathExpr(v,RelativeLocationPath)
else:
raise SyntaxError(self._pos, 'Could not match PathExprRest')
def FilterExpr(self):
PrimaryExpr = self.PrimaryExpr()
FilterExprs = self.FilterExprs(PrimaryExpr)
return FilterExprs
def FilterExprs(self, v):
_token_ = self._peek()
if _token_ not in ["'@'", "'::'", 'Literal', 'Number', 'VariableReference', 'NodeType', 'AxisName', 'NCName', 'NCNameStar', 'QName', 'LPAREN', 'STAR', 'LBRACKET', 'FunctionName', 'DOT', 'DOTDOT', 'ID', 'KEY']:
return v
elif _token_ == 'LBRACKET':
Predicate = self.Predicate()
e=[Predicate]
while self._peek() == 'LBRACKET':
Predicate = self.Predicate()
e.append(Predicate)
return self.filterExpr(v,e)
else:
raise SyntaxError(self._pos, 'Could not match FilterExprs')
def OrExpr(self):
AndExpr = self.AndExpr()
OrExprs = self.OrExprs(AndExpr)
return OrExprs
def OrExprs(self, v):
_token_ = self._peek()
if _token_ == "'or'":
self._scan("'or'")
AndExpr = self.AndExpr()
OrExprs = self.OrExprs(self.bop(self.OR,v,AndExpr))
return OrExprs
elif _token_ in ['END', 'RPAREN', 'RBRACKET', "','"]:
return v
else:
raise SyntaxError(self._pos, 'Could not match OrExprs')
def AndExpr(self):
EqualityExpr = self.EqualityExpr()
AndExprs = self.AndExprs(EqualityExpr)
return AndExprs
def AndExprs(self, v):
_token_ = self._peek()
if _token_ == "'and'":
self._scan("'and'")
EqualityExpr = self.EqualityExpr()
AndExprs = self.AndExprs(self.bop(self.AND,v,EqualityExpr))
return AndExprs
elif _token_ in ["'or'", 'END', 'RPAREN', 'RBRACKET', "','"]:
return v
else:
raise SyntaxError(self._pos, 'Could not match AndExprs')
def EqualityExpr(self):
RelationalExpr = self.RelationalExpr()
EqualityExprs = self.EqualityExprs(RelationalExpr)
return EqualityExprs
def EqualityExprs(self, v):
_token_ = self._peek()
if _token_ == "'='":
self._scan("'='")
RelationalExpr = self.RelationalExpr()
EqualityExprs = self.EqualityExprs(self.bop(self.EQ,v,RelationalExpr))
return EqualityExprs
elif _token_ == "'!='":
self._scan("'!='")
RelationalExpr = self.RelationalExpr()
EqualityExprs = self.EqualityExprs(self.bop(self.NEQ,v,RelationalExpr))
return EqualityExprs
elif _token_ in ["'and'", "'or'", 'END', 'RPAREN', 'RBRACKET', "','"]:
return v
else:
raise SyntaxError(self._pos, 'Could not match EqualityExprs')
def RelationalExpr(self):
AdditiveExpr = self.AdditiveExpr()
RelationalExprs = self.RelationalExprs(AdditiveExpr)
return RelationalExprs
def RelationalExprs(self, v):
_token_ = self._peek()
if _token_ == "'<'":
self._scan("'<'")
AdditiveExpr = self.AdditiveExpr()
RelationalExprs = self.RelationalExprs(self.bop(self.LT,v,AdditiveExpr))
return RelationalExprs
elif _token_ == "'<='":
self._scan("'<='")
AdditiveExpr = self.AdditiveExpr()
RelationalExprs = self.RelationalExprs(self.bop(self.LE,v,AdditiveExpr))
return RelationalExprs
elif _token_ == "'>'":
self._scan("'>'")
AdditiveExpr = self.AdditiveExpr()
RelationalExprs = self.RelationalExprs(self.bop(self.GT,v,AdditiveExpr))
return RelationalExprs
elif _token_ == "'>='":
self._scan("'>='")
AdditiveExpr = self.AdditiveExpr()
RelationalExprs = self.RelationalExprs(self.bop(self.GE,v,AdditiveExpr))
return RelationalExprs
elif _token_ in ["'='", "'!='", "'and'", "'or'", 'END', 'RPAREN', 'RBRACKET', "','"]:
return v
else:
raise SyntaxError(self._pos, 'Could not match RelationalExprs')
def AdditiveExpr(self):
MultiplicativeExpr = self.MultiplicativeExpr()
AdditiveExprs = self.AdditiveExprs(MultiplicativeExpr)
return AdditiveExprs
def AdditiveExprs(self, v):
_token_ = self._peek()
if _token_ == 'PLUS':
PLUS = self._scan('PLUS')
MultiplicativeExpr = self.MultiplicativeExpr()
AdditiveExprs = self.AdditiveExprs(self.nop(self.PLUS,v,MultiplicativeExpr))
return AdditiveExprs
elif _token_ == "'-'":
self._scan("'-'")
MultiplicativeExpr = self.MultiplicativeExpr()
AdditiveExprs = self.AdditiveExprs(self.nop(self.MINUS,v,MultiplicativeExpr))
return AdditiveExprs
elif _token_ in ["'<'", "'<='", "'>'", "'>='", "'='", "'!='", "'and'", "'or'", 'END', 'RPAREN', 'RBRACKET', "','"]:
return v
else:
raise SyntaxError(self._pos, 'Could not match AdditiveExprs')
def MultiplicativeExpr(self):
UnaryExpr = self.UnaryExpr()
MultiplicativeExprs = self.MultiplicativeExprs(UnaryExpr)
return MultiplicativeExprs
def MultiplicativeExprs(self, v):
_token_ = self._peek()
if _token_ == 'MultiplyOperator':
MultiplyOperator = self._scan('MultiplyOperator')
UnaryExpr = self.UnaryExpr()
MultiplicativeExprs = self.MultiplicativeExprs(self.nop(self.TIMES,v,UnaryExpr))
return MultiplicativeExprs
elif _token_ == "'div'":
self._scan("'div'")
UnaryExpr = self.UnaryExpr()
MultiplicativeExprs = self.MultiplicativeExprs(self.nop(self.DIV,v,UnaryExpr))
return MultiplicativeExprs
elif _token_ == "'mod'":
self._scan("'mod'")
UnaryExpr = self.UnaryExpr()
MultiplicativeExprs = self.MultiplicativeExprs(self.nop(self.MOD,v,UnaryExpr))
return MultiplicativeExprs
elif _token_ not in ["'@'", "'::'", "'//'", "'/'", 'Literal', 'Number', 'VariableReference', 'NodeType', 'AxisName', 'NCName', 'NCNameStar', 'QName', 'LPAREN', 'STAR', 'LBRACKET', 'FunctionName', 'DOT', 'DOTDOT', 'BAR', 'ID', 'KEY']:
return v
else:
raise SyntaxError(self._pos, 'Could not match MultiplicativeExprs')
def UnaryExpr(self):
_token_ = self._peek()
if _token_ == "'-'":
self._scan("'-'")
UnaryExpr = self.UnaryExpr()
return self.unaryExpr(UnaryExpr)
elif _token_ not in ["'mod'", "'div'", "'>='", "'>'", "'<='", "'<'", "'!='", "'='", "'and'", "'or'", "','", "'::'", 'MultiplyOperator', 'RPAREN', 'PLUS', 'LBRACKET', 'RBRACKET', 'BAR', 'END']:
UnionExpr = self.UnionExpr()
return UnionExpr
else:
raise SyntaxError(self._pos, 'Could not match UnaryExpr')
def FullPattern(self):
Pattern = self.Pattern()
END = self._scan('END')
return Pattern
def Pattern(self):
LocationPathPattern = self.LocationPathPattern()
p = self.pattern(LocationPathPattern)
while self._peek() == 'BAR':
BAR = self._scan('BAR')
LocationPathPattern = self.LocationPathPattern()
p.append(LocationPathPattern)
return p
def LocationPathPattern(self):
_token_ = self._peek()
if _token_ == "'/'":
self._scan("'/'")
OptRelativePathPattern = self.OptRelativePathPattern()
return self.locationPathPattern(None,1,OptRelativePathPattern)
elif _token_ in ['ID', 'KEY']:
IdKeyPattern = self.IdKeyPattern()
IdTail = self.IdTail()
return self.locationPathPattern(IdKeyPattern,IdTail[0],IdTail[1])
elif _token_ in ['NodeType', "'@'", 'AxisName', 'STAR', 'QName', 'NCNameStar', 'NCName']:
RelativePathPattern = self.RelativePathPattern()
return RelativePathPattern
elif _token_ == "'//'":
self._scan("'//'")
RelativePathPattern = self.RelativePathPattern()
return self.locationPathPattern(None,0,RelativePathPattern)
else:
raise SyntaxError(self._pos, 'Could not match LocationPathPattern')
def OptRelativePathPattern(self):
_token_ = self._peek()
if _token_ in ['BAR', 'END']:
return None
elif _token_ in ['NodeType', "'@'", 'AxisName', 'STAR', 'QName', 'NCNameStar', 'NCName']:
RelativePathPattern = self.RelativePathPattern()
return RelativePathPattern
else:
raise SyntaxError(self._pos, 'Could not match OptRelativePathPattern')
def IdTail(self):
_token_ = self._peek()
if _token_ in ['BAR', 'END']:
return (0,None)
elif _token_ == "'/'":
self._scan("'/'")
RelativePathPattern = self.RelativePathPattern()
return (1,RelativePathPattern)
elif _token_ == "'//'":
self._scan("'//'")
RelativePathPattern = self.RelativePathPattern()
return (0,RelativePathPattern)
else:
raise SyntaxError(self._pos, 'Could not match IdTail')
def IdKeyPattern(self):
_token_ = self._peek()
if _token_ == 'ID':
ID = self._scan('ID')
LPAREN = self._scan('LPAREN')
Argument = self.Argument()
RPAREN = self._scan('RPAREN')
return self.functionCall(None,"id", [Argument])
elif _token_ == 'KEY':
KEY = self._scan('KEY')
LPAREN = self._scan('LPAREN')
Argument = self.Argument()
a1=Argument
self._scan("','")
Argument = self.Argument()
RPAREN = self._scan('RPAREN')
return self.functionCall(None,"key", [a1,Argument])
else:
raise SyntaxError(self._pos, 'Could not match IdKeyPattern')
def RelativePathPattern(self):
StepPattern = self.StepPattern()
p=StepPattern
while self._peek() in ["'/'", "'//'"]:
_token_ = self._peek()
if _token_ == "'/'":
self._scan("'/'")
StepPattern = self.StepPattern()
p=self.rpp(p, 1, StepPattern)
elif _token_ == "'//'":
self._scan("'//'")
StepPattern = self.StepPattern()
p=self.rpp(p, 0, StepPattern)
else:
raise SyntaxError(self._pos, 'Could not match RelativePathPattern')
return p
def StepPattern(self):
ChildOrAttributeAxisSpecifier = self.ChildOrAttributeAxisSpecifier()
NodeTest = self.NodeTest()
pred=[]
while self._peek() == 'LBRACKET':
Predicate = self.Predicate()
pred.append(Predicate)
return self.stepPattern(ChildOrAttributeAxisSpecifier,NodeTest,pred)
def ChildOrAttributeAxisSpecifier(self):
_token_ = self._peek()
if _token_ in ["'@'", 'NodeType', 'STAR', 'QName', 'NCNameStar', 'NCName']:
AbbreviatedAxisSpecifier = self.AbbreviatedAxisSpecifier()
return AbbreviatedAxisSpecifier
elif _token_ == 'AxisName':
AxisName = self._scan('AxisName')
self._scan("'::'")
return self.axisSpecifier(self.anMap[AxisName])
else:
raise SyntaxError(self._pos, 'Could not match ChildOrAttributeAxisSpecifier')
def parse(rule, text):
P = XPath(XPathScanner(text))
return wrap_error_reporter(P, rule)
# Reimplement scanner, to properly use disambiguation
import re, sys
NCName = "[a-zA-Z_](\w|[_.-])*"
# In this version of QName, the namespace prefix is not optional.
# As a result, QName matches iff there is a colon, NCName otherwise.
# All appearances of QName in the grammar then need to allow NCName
# as an alternative; currently, QName is used only once.
QName = NCName + ":" + NCName
XPathExpr="""
(?P<Literal>\"[^\"]*\"|\'[^\']*\')|
(?P<Number>\\d+(\\.\\d*)?|\\.\\d+)|
(?P<VariableReference>\\$""" + NCName + "(:" + NCName + """)?)|
(?P<QName>"""+QName+""")|
(?P<NCNameStar>"""+NCName+""":\*)|
(?P<NCName>"""+NCName+""")|
(?P<LPAREN>\\()|
(?P<RPAREN>\\))|
(?P<STAR>\\*)|
(?P<PLUS>\\+)|
(?P<LBRACKET>\\[)|
(?P<RBRACKET>\\])|
(?P<DOTDOT>\\.\\.)|
(?P<DOT>\\.)|
(?P<BAR>\\|)|
(?P<Operator>//|::|>=|<=|!=)|
(?P<SingleOperator>[<>=,/@:-])|
(?P<ExprWhiteSpace>[ \t\n\r]+)
"""
_xpath_exp = re.compile(XPathExpr,re.VERBOSE)
OperatorName = ['and','or','mod','div']
AxisName = ['ancestor', 'ancestor-or-self', 'attribute', 'child',
'descendant', 'descendant-or-self', 'following',
'following-sibling', 'namespace', 'parent', 'preceding',
'preceding-sibling', 'self']
SpecialPreceding = map(repr,["@","::","(","["] + OperatorName + ['/', '//', '+', '-', '=', '!=', '<', '<=', '>', '>=']) + ["BAR","MultiplyOperator"]
if sys.hexversion > 0x2000000:
def _get_type(match):
return match.lastgroup,match.group()
else:
def _get_type(match):
type = val = None
for t,v in match.groupdict().items():
if v is None: continue
if val:
raise SyntaxError(pos,
"ambiguity:%s could be %s or %s" % (val,type,t))
type = t
val = v
return type,val
class XPathScanner:
def __init__(self,input):
self.tokens = tokens = []
pos = 0
# Process all tokens, advancing pos for each one
while pos != len(input):
m = _xpath_exp.match(input, pos)
if not m:
msg = "Bad Token"
raise SyntaxError(pos, msg)
type, val = _get_type(m)
if type == "ExprWhiteSpace":
# If we got white space, ignore it
pos = pos + len(val)
continue
if type in ['SingleOperator', 'Operator']:
type = repr(str(val))
start = pos
pos = pos + len(val)
tokens.append((start, pos, type, val))
# If we are at the end of the string, add END token
tokens.append((pos,pos,'END',""))
# Adjust token type according to additional semantic rules
for i in range(len(tokens)-1):
start,stop,type,val = tokens[i]
changed = 0
# If there is a preceding token and the preceding token is not
# one of @, ::, (, [, , or an Operator
if i>=1 and tokens[i-1][2] not in SpecialPreceding:
if type == 'STAR':
# then a * must be recognized as a MultiplyOperator
type = 'MultiplyOperator'
tokens[i] = (start,stop,type,val)
elif type == 'NCName' and val in OperatorName:
# and an NCName must be recognized as an OperatorName
type = repr(str(val))
tokens[i] = (start,stop,type,val)
# If the character following an NCName (possibly after
# intervening ExprWhitespace) is (
if tokens[i][2] in ['QName','NCName'] and tokens[i+1][2]=='LPAREN':
# then the token must be recognized as a NodeType or a
# FunctionName
if val in ['comment','text','processing-instruction','node']:
type = 'NodeType'
elif val == 'id':
type = 'ID'
elif val == 'key':
type = 'KEY'
else:
type = 'FunctionName'
tokens[i] = (start,stop,type,val)
# If the two characters following an NCName (possibly
# after intervening ExprWhitespace) are ::
if tokens[i][2] == 'NCName' and tokens[i+1][3]=='::' \
and val in AxisName:
# then the token must be recognized as an AxisName.
type = 'AxisName'
tokens[i] = (start,stop,type,val)
def token(self, i, expected):
return self.tokens[i]
# redefine to add additional attributes
import pyxpath,string
GeneratedXPath = XPath
class XPath(GeneratedXPath):
OR = pyxpath.OR_OPERATOR
AND = pyxpath.AND_OPERATOR
EQ = pyxpath.EQ_OPERATOR
NEQ = pyxpath.NEQ_OPERATOR
LT = pyxpath.LT_OPERATOR
GT = pyxpath.GT_OPERATOR
LE = pyxpath.LE_OPERATOR
GE = pyxpath.GE_OPERATOR
PLUS = pyxpath.PLUS_OPERATOR
MINUS = pyxpath.MINUS_OPERATOR
TIMES = pyxpath.TIMES_OPERATOR
DIV = pyxpath.DIV_OPERATOR
MOD = pyxpath.MOD_OPERATOR
UNION = pyxpath.UNION_OPERATOR
def __init__(self, scanner, factory):
GeneratedXPath.__init__(self, scanner)
self.factory = factory
# shorthands
self.rlp = self.factory.createRelativeLocationPath
self.arlp = self.factory.createAbbreviatedRelativeLocationPath
self.aalp = self.factory.createAbbreviatedAbsoluteLocationPath
self.nop = self.factory.createNumericExpr
self.bop = self.factory.createBooleanExpr
self.rpp = self.factory.createRelativePathPattern
def __getattr__(self, name):
# convert
newname = "create"+string.upper(name[0])+name[1:]
try:
return getattr(self.factory, newname)
except AttributeError:
raise AttributeError,"parser has no attribute "+name
anMap = {
'ancestor':pyxpath.ANCESTOR_AXIS,
'ancestor-or-self':pyxpath.ANCESTOR_OR_SELF_AXIS,
'attribute':pyxpath.ATTRIBUTE_AXIS,
'child':pyxpath.CHILD_AXIS,
'descendant':pyxpath.DESCENDANT_AXIS,
'descendant-or-self':pyxpath.DESCENDANT_OR_SELF_AXIS,
'following':pyxpath.FOLLOWING_AXIS,
'following-sibling':pyxpath.FOLLOWING_SIBLING_AXIS,
'namespace':pyxpath.NAMESPACE_AXIS,
'parent':pyxpath.PARENT_AXIS,
'preceding':pyxpath.PRECEDING_AXIS,
'preceding-sibling':pyxpath.PRECEDING_SIBLING_AXIS,
'self':pyxpath.SELF_AXIS
}
nodeTestMap = {
'node': pyxpath.NODE,
'comment': pyxpath.COMMENT,
'text': pyxpath.TEXT,
'processing-instruction': pyxpath.PROCESSING_INSTRUCTION
}
def mkNodeTest(self,op,val):
type = self.nodeTestMap[op]
if type != pyxpath.PROCESSING_INSTRUCTION and val is not None:
raise SyntaxError("parameter not allowed for "+op)
return self.factory.createNodeTest(type,val)
def mkQName(self,str):
prefix,local = string.split(str,":")
return self.factory.createNameTest(prefix,local)
def mkVariableReference(self, qname):
colon = string.find(qname,':')
if colon == -1:
return self.variableReference(None, qname[1:])
return self.variableReference(qname[1:colon],qname[colon+1:])
def mkFunctionCall(self, qname, args):
colon = string.find(qname,':')
if colon == -1:
return self.functionCall(None, qname, args)
return self.functionCall(qname[:colon],qname[colon+1:],args)
|