File: undulatorVortex.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (364 lines) | stat: -rw-r--r-- 14,350 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
# -*- coding: utf-8 -*-
r"""
.. _OAM-HelicalU:

Orbital Angular Momentum of helical undulator radiation
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The images below are produced by
``\examples\withRaycing\01_SynchrotronSources\undulatorVortex.py``.

This example calculates flux and Orbital Angular Momentum (OAM) of helical
undulator radiation. The calculation is done on a 3D (energy, theta, psi) or 4D
(energy, theta, psi, gamma) rectangular mesh for zero and true electron beam
energy spread, respectively. To calculate OAM projection along the propagation
direction, we first calculate *OAM intensity* :math:`I^l_s` for the field
:math:`E_s`

.. math::
    I^l_s = E_s^* i\left(\psi\frac{\partial}{\partial\theta}-
    \theta\frac{\partial}{\partial\psi}\right) E_s

and similarly for the field :math:`E_p`. OAM intensity is an incoherent
distribution, similarly to the "usual" intensity, as the phase information is
lost in it, and therefore it is suitable for incoherent accumulation of fields
originated from different electrons distributed within emittance and energy
spread distributions. After averaging intensity and OAM intensity over electron
beam energy spread distribution and convolving with electron beam angular
distributions, we obtain *vorticity* – the averaged normalized OAM value:

.. math::
    l_s = \int I^l_s d\theta d\psi \bigg/ \int I_s d\theta d\psi

and similarly for the field :math:`E_p`.

The images below were calculated at the maximum flux energies at the 1st to 4th
harmonics. As a reminder, the flux is maximized at energies slightly below the
formal harmonic energies; at these energies the transverse distribution is of a
donut shape. As a second reminder, the radiation from a helical undulator has
only the first harmonic on the undulator axis but also has higher harmonics at
finite observation angles.

The coloring of the transverse images is done by field phase. For this purpose,
the radiation field (here, :math:`E_s`) was *coherently* averaged over electron
beam energy spread distribution and electron beam angular distributions. This
operation is physically illegal but was used here only for the visual effect.
The measurable values – intensity, flux and vorticity – were determined by the
correct incoherent averaging. The image brightness represents intensity.

+--------------+------------------------+------------------------+
|              |   zero emittance,      |   true emittance,      |
|              |   zero energy spread   |   true energy spread   |
+==============+========================+========================+
|   |resTxt|   |       .. centered::  |U48results|               |
+--------------+------------------------+------------------------+
| 1st harmonic |      |U48Esh1-00|      |      |U48Esh1-ff|      |
+--------------+------------------------+------------------------+
| 2nd harmonic |      |U48Esh2-00|      |      |U48Esh2-ff|      |
+--------------+------------------------+------------------------+
| 3rd harmonic |      |U48Esh3-00|      |      |U48Esh3-ff|      |
+--------------+------------------------+------------------------+
| 4th harmonic |      |U48Esh4-00|      |      |U48Esh4-ff|      |
+--------------+------------------------+------------------------+

.. |resTxt| replace:: Flux and vorticity
.. |U48results| imagezoom:: _images/U48-flux-vorticity.png
.. |U48Esh1-00| imagezoom:: _images/U48-00-Es-OAM-transverse-image-140-352.727eV.png
.. |U48Esh1-ff| imagezoom:: _images/U48-ff-Es-OAM-transverse-image-140-352.727eV.png
   :loc: upper-right-corner
.. |U48Esh2-00| imagezoom:: _images/U48-00-Es-OAM-transverse-image-386-621.091eV.png
.. |U48Esh2-ff| imagezoom:: _images/U48-ff-Es-OAM-transverse-image-386-621.091eV.png
   :loc: upper-right-corner
.. |U48Esh3-00| imagezoom:: _images/U48-00-Es-OAM-transverse-image-660-920.000eV.png
.. |U48Esh3-ff| imagezoom:: _images/U48-ff-Es-OAM-transverse-image-660-920.000eV.png
   :loc: upper-right-corner
.. |U48Esh4-00| imagezoom:: _images/U48-00-Es-OAM-transverse-image-935-1220.000eV.png
.. |U48Esh4-ff| imagezoom:: _images/U48-ff-Es-OAM-transverse-image-935-1220.000eV.png
   :loc: upper-right-corner

As expected, vorticity approximately equals the harmonic number minus one in
the perfect case of zero emittance and zero energy spread. This pattern is
quite strongly affected by electron beam energy spread. Emittance plays a much
lesser role as the used angular acceptance is much bigger than the electron
beam angular distributions (360 µrad vs 5.8 and 2.0 µrad rms).
"""
__author__ = "Konstantin Klementiev"
__date__ = "22 Jan 2023"
import os, sys; sys.path.append(os.path.join('..', '..', '..'))  # analysis:ignore
import time
import pickle
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

# import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs


# APPLE II period 48 mm, Kx=Ky=2, ID length=4m
period, n = 48., 83
Kx = Ky = 2  # E1 = 356.1 eV

prefix = 'U48-ff'
thetaMax, psiMax = 180e-6, 180e-6  # rad
energy = np.linspace(200., 1400., 1101)
imageEnergy = [352., 621., 919., 1220.]
# energy = np.array(imageEnergy)
imageIndex = np.searchsorted(energy, imageEnergy)

Source = rs.Undulator
undulatorKwargs = dict(
    eE=3., eI=0.3,
    betaX=9., betaZ=2.,  # m

    # eEpsilonX=0., eEpsilonZ=0.,
    eEpsilonX=0.300, eEpsilonZ=0.008,  # nmrad
    # eEspread=0.,
    eEspread=0.001,

    period=period, n=n, Ky=Ky, Kx=Kx,

    phaseDeg=90,
    xPrimeMax=1e3*thetaMax, zPrimeMax=1e3*psiMax,  # mrad
    xPrimeMaxAutoReduce=False,
    zPrimeMaxAutoReduce=False,

    # distE='BW',
    eMin=energy[0], eMax=energy[-1],

    targetOpenCL='GPU',
    )


def plot_flux(energy, flux, vorticity, distE='0.1%bw'):
    fig = plt.figure(figsize=(6, 6))
    ax = fig.add_subplot(111)
    ax.set_xlabel(r'Energy (eV)')
    if distE == '0.1%bw':
        ylabel = r'Flux (ph/s/0.1%bw)'
    elif distE == 'eV':
        ylabel = r'Flux (ph/s/eV)'
    ax.set_ylabel(ylabel)
    if distE == '0.1%bw':
        y = flux * energy * 1e-3
    elif distE == 'eV':
        y = flux
    ax.plot(energy, y)
    ax.set_ylim(0, None)
    # fig.savefig(prefix+"-spectral-flux.png")


def plot_results():
    outName = "U48-00-grid_method.pickle"
    with open(outName, 'rb') as f:
        energy, flux00, vEss00 = pickle.load(f)[0:3]
    outName = "U48-f0-grid_method.pickle"
    with open(outName, 'rb') as f:
        energy, fluxF0, vEssF0 = pickle.load(f)[0:3]
    outName = "U48-ff-grid_method.pickle"
    with open(outName, 'rb') as f:
        energy, fluxFF, vEssFF = pickle.load(f)[0:3]

    fig = plt.figure(figsize=(6, 6))
    ax = fig.add_subplot(111)
    ax.set_xlabel(r'Energy (eV)')
    ax.set_ylabel(r'Flux (ph/s/0.1%bw)')
    ax2 = ax.twinx()
    ax2.set_ylabel(u'Vorticity')

    y = flux00 * energy * 1e-3
    ax.plot(energy, y, label='flux, 0 emittance, 0 eSpread')
    y = fluxF0 * energy * 1e-3
    ax.plot(energy, y, label='flux, true emittance, 0 eSpread')
    y = fluxFF * energy * 1e-3
    ax.plot(energy, y, label='flux, true emittance, true eSpread')
    ax.set_ylim(0, None)
    ax.legend(loc=(0.22, 0.84))

    ax2.plot(energy, vEss00, '--', label='vort, 0 emittance, 0 eSpread')
    ax2.plot(energy, vEssF0, '--', label='vort, true emittance, 0 eSpread')
    ax2.plot(energy, vEssFF, '--', label='vort, true emittance, true eSpread')
    ax2.set_ylim(0, 3.7)
    ax2.legend(loc=(0.22, 0.68))

    fig.savefig(prefix+"-flux-vorticity.png")
    plt.show()


def intensity_in_transverse_plane(ie, theta, psi, I0):
    fig = plt.figure(figsize=(6, 6))
    ax = fig.add_subplot(111)
    ax.set_xlabel(r'θ (µrad)')
    ax.set_ylabel(r'ψ (µrad)')
    e = energy[ie]
    ax.imshow(I0[:, :].T,
              extent=[theta[0]*1e6, theta[-1]*1e6, psi[0]*1e6, psi[-1]*1e6])
    ax.text(0.98, 0.98, '@E={0:.1f}eV'.format(e),
            ha='right', va='top', color='white', transform=ax.transAxes)
    fig.savefig(prefix+"-transverse-image-{0}-{1:.3f}eV.png".format(ie, e))
    plt.close(fig)


def colored_intensity_in_transverse_plane(energy, theta, psi, I0):
    fig = plt.figure(figsize=(7, 6))
    ax = fig.add_axes([0.15*6/7, 0.15, 0.7*6/7, 0.7])
    ax.set_xlabel(r'θ (µrad)')
    ax.set_ylabel(r'ψ (µrad)')
    axC = fig.add_axes([0.95*6/7, 0.15, 0.05, 0.7])
    plt.setp(axC.get_xticklabels(), visible=False)
    axC.yaxis.set_label_position("right")
    axC.yaxis.tick_right()
    axC.set_xlim([0, 1])
    axC.set_ylim([energy[0], energy[-1]])
    axC.set_ylabel('energy (eV)')

    hue, _, _ = np.meshgrid(energy, theta, psi, indexing='ij')
    hue -= hue.min()
    hue /= hue.max()
    sat = np.ones_like(hue)
    val = I0 / I0.max()
    hsvI0 = np.stack((hue, sat, val), axis=3)  # (len(energy), ntheta, npsi, 3)
    rgbI0 = mpl.colors.hsv_to_rgb(hsvI0)
    rgbI0sum = rgbI0.sum(axis=0)
    ax.imshow(np.swapaxes(rgbI0sum, 0, 1) / rgbI0sum.max(),
              extent=[theta[0]*1e6, theta[-1]*1e6, psi[0]*1e6, psi[-1]*1e6])

    hue = np.array(energy)[:, np.newaxis]
    hue -= hue.min()
    hue /= hue.max()
    sat = np.ones_like(hue)
    val = np.ones_like(hue)
    hsvC = np.stack((hue, sat, val), axis=2)  # numpy1.10
    rgbC = mpl.colors.hsv_to_rgb(hsvC)
    axC.imshow(rgbC / rgbC.max(), aspect='auto', origin='lower',
               extent=[0, 1, energy[0], energy[-1]])
    fig.savefig(prefix+"-spectral-transverse-image.png")


def colored_phase_in_transverse_plane(ie, theta, psi, I0, phase, vorticity,
                                      fieldLabel):
    fig = plt.figure(figsize=(7, 6))
    ax = fig.add_axes([0.15*6/7, 0.15, 0.7*6/7, 0.7])
    ax.set_xlabel(r'θ (µrad)')
    ax.set_ylabel(r'ψ (µrad)')
    e = energy[ie]
    axC = fig.add_axes([0.95*6/7, 0.15, 0.05, 0.7])
    plt.setp(axC.get_xticklabels(), visible=False)
    axC.yaxis.set_label_position("right")
    axC.yaxis.tick_right()
    axC.set_xlim([0, 1])
    axC.set_ylim([-1, 1])  # in units of pi
    formatter = mpl.ticker.FormatStrFormatter('%g' + r'$ \pi$')
    axC.yaxis.set_major_formatter(formatter)
    axC.set_ylabel('phase')

    val = I0 / I0.max()
    sat = np.ones_like(val)
    hue = (phase/np.pi + 1) * 0.5
    hsvI0 = np.stack((hue, sat, val), axis=2)
    rgbI0 = mpl.colors.hsv_to_rgb(hsvI0)  # (len(energy), ntheta, npsi, 3)
    ax.imshow(np.swapaxes(rgbI0, 0, 1) / rgbI0.max(),
              extent=[theta[0]*1e6, theta[-1]*1e6, psi[0]*1e6, psi[-1]*1e6])
    ax.text(0, 1.01, '@E={0:.1f}eV'.format(e),
            ha='left', va='bottom', color='k', transform=ax.transAxes)
    ax.text(1, 1.01, '{0} vorticity={1:.2f}'.format(fieldLabel, vorticity),
            ha='right', va='bottom', color='k', transform=ax.transAxes)

    hue = np.linspace(-1, 1, 101)[:, np.newaxis]
    hue -= hue.min()
    hue /= hue.max()
    sat = np.ones_like(hue)
    val = np.ones_like(hue)
    hsvC = np.stack((hue, sat, val), axis=2)  # numpy1.10
    rgbC = mpl.colors.hsv_to_rgb(hsvC)
    axC.imshow(rgbC / rgbC.max(), aspect='auto', origin='lower',
               extent=[0, 1, -1, 1])

    fig.savefig(prefix+"-{0}-OAM-transverse-image-{1}-{2:.3f}eV.png".format(
        fieldLabel, ie, e))
    plt.close(fig)


def grid_method():
    if undulatorKwargs['eEspread'] == 0:
        ntheta, npsi = 801, 801
        eSpreadNSamples = None
    else:
        ntheta, npsi = 251, 251
        eSpreadNSamples = 41
    dtheta, dpsi = 2*thetaMax/(ntheta-1), 2*psiMax/(npsi-1)

    xprime = (undulatorKwargs['eEpsilonX']*1e-9/undulatorKwargs['betaX'])**0.5
    zprime = (undulatorKwargs['eEpsilonZ']*1e-9/undulatorKwargs['betaZ'])**0.5
    print(xprime, zprime)
    marginFactorX = 6*xprime/thetaMax + 1  # ±3σ
    marginFactorZ = 6*zprime/psiMax + 1  # ±3σ
    # print(marginFactorX, marginFactorZ)
    ntheta = int(ntheta*marginFactorX)
    npsi = int(npsi*marginFactorZ)

    thetaPlus = np.arange(ntheta)*dtheta
    psiPlus = np.arange(npsi)*dpsi
    thetaPlus -= thetaPlus[-1]*0.5
    psiPlus -= psiPlus[-1]*0.5
    whereTheta = (-thetaMax-1e-12 < thetaPlus) & (thetaPlus < thetaMax+1e-12)
    wherePsi = (-psiMax-1e-12 < psiPlus) & (psiPlus < psiMax+1e-12)
    theta = thetaPlus[whereTheta]
    psi = psiPlus[wherePsi]

    source = Source(**undulatorKwargs)
    print('E1 = ', source.E1)

    flux = np.zeros_like(energy)
    vEss = np.zeros_like(energy)
    vEps = np.zeros_like(energy)
    I0stack = np.zeros((len(energy), len(theta), len(psi)))
    for ie, e in enumerate(energy):
        print(u'energy {0:.1f} eV, {1} of {2}'.format(e, ie+1, len(energy)))
        Is, Ip, OAMs, OAMp, Es, Ep = source.intensities_on_mesh(
            [e], thetaPlus, psiPlus, eSpreadNSamples=eSpreadNSamples,
            resultKind='vortex')
        fluxIs = np.trapz(np.trapz(
            Is[0, whereTheta, :][:, wherePsi], psi), theta)
        fluxIp = np.trapz(np.trapz(
            Ip[0, whereTheta, :][:, wherePsi], psi), theta)
        flux[ie] = fluxIs + fluxIp

        lEs = OAMs[0, whereTheta, :][:, wherePsi] / fluxIs
        lEp = OAMp[0, whereTheta, :][:, wherePsi] / fluxIp
        vEs = np.trapz(np.trapz(lEs, psi), theta)
        vEp = np.trapz(np.trapz(lEp, psi), theta)
        vEss[ie] = vEs
        vEps[ie] = vEp
        print('vorticity: Es = {0}, Ep = {1}'.format(vEs, vEp))
        I0 = (Is + Ip)[0, whereTheta, :][:, wherePsi]
        I0stack[ie, :, :] = I0
        if ie in imageIndex:
            intensity_in_transverse_plane(ie, theta, psi, I0)
            phEs = np.angle(Es[0, whereTheta, :][:, wherePsi])
            phEp = np.angle(Ep[0, whereTheta, :][:, wherePsi])
            colored_phase_in_transverse_plane(
                ie, theta, psi, I0, phEs, vEs, 'Es')
            colored_phase_in_transverse_plane(
                ie, theta, psi, I0, phEp, vEp, 'Ep')

    integrand = flux/energy*1e3 if source.distE == 'BW' else flux
    totalPhPerS = np.trapz(integrand, energy)
    print('total flux = {0:.3g} ph/s'.format(totalPhPerS))

    dump = [energy, flux, vEss, vEps, totalPhPerS]
    outName = prefix+"-grid_method.pickle"
    with open(outName, 'wb') as f:
        pickle.dump(dump, f, protocol=2)

    plot_flux(energy, flux, vEs)
    # colored_intensity_in_transverse_plane(energy, theta, psi, I0stack)
    plt.show()


if __name__ == '__main__':
    t0 = time.time()
    # raycing._VERBOSITY_ = 100
    grid_method()
    # plot_results()
    print("Done in {0} s".format(time.time()-t0))