1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
|
# -*- coding: utf-8 -*-
r"""
Compound Refractive Lenses
--------------------------
Files in ``\examples\withRaycing\04_Lenses``
This example demonstrates refraction in x-ray regime. Locus that refracts a
collimated beam into a point focus is a paraboloid. The focal distance of such
a vacuum-to-solid interface is, as in the usual optics, 2\ *p*/*δ* where *p*
is the focal parameter of the lens paraboloid and *δ* = 1 - Re(*n*), *n* is the
refractive index [snigirev]_. As for the usual lenses, the diopters of several
consecutive lenses are summed up to give the total diopter:
:math:`\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \ldots`.
This example considers focusing of collimated x-rays of 9 keV at a distance
*q* = 5 m from the lenses. The lenses are double-sided paraboloids (then *f* =
*p*/*δ*) with *p* = 1 mm and zero spacing between the apices of the
paraboloids. The thickness of each lens is 2 mm. Their number is an integer
number *N* = round(*p*/*qδ*).
The following images demonstrate the focusing along the optical axis close to
the nominal focal position for Be and Al CRL's. The real focal position
deviates from the nominal one, where d\ *q* = 0, due to the rounding of
*p*/*qδ*:
.. imagezoom:: _images/CRL-3D.*
+------------+------------+
| |CRL_Be| | |CRL_Al| |
+------------+------------+
.. |CRL_Be| animation:: _images/CRL-Be
.. |CRL_Al| animation:: _images/CRL-Al
This graph shows the relative flux in the focused beam at 9 keV after the given
number of double-sided lenses which give approximately equal focal distance of
*q* = 5 m. As seen, low absorbing materials are preferred:
.. imagezoom:: _images/CRL-2-Flux.*
This graph shows the depth of focus as a function of the on-axis coordinate
around the nominal focal position. For heavy materials the depth of focus is
larger due to the higher absorption of the peripherical rays of the incoming
beam. Such lenses act effectively also as apertures thus reducing the focal
spot at the expense of flux:
.. imagezoom:: _images/CRL-2-depthOfFocus.*
.. [snigirev] A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, and B. Lengeler,
*Focusing High-Energy X Rays by Compound Refractive Lenses*, Applied
Optics **37** (1998), 653-62.
"""
__author__ = "Konstantin Klementiev, Roman Chernikov"
__date__ = "08 Mar 2016"
#import matplotlib as mpl
#mpl.use('agg')
import os, sys; sys.path.append(os.path.join('..', '..', '..')) # analysis:ignore
import numpy as np
import matplotlib.pyplot as plt
import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
import xrt.backends.raycing.oes as roe
import xrt.backends.raycing.run as rr
import xrt.backends.raycing.materials as rm
import xrt.backends.raycing.screens as rsc
import xrt.plotter as xrtp
import xrt.runner as xrtr
showIn3D = False
parabolaParam = 1. # mm
zmax = 1. # mm
E0 = 9000. # eV
p = 1000. # source to 1st lens
q = 5000. # 1st lens to focus
xyLimits = -5, 5
#Lens = roe.ParaboloidFlatLens
Lens = roe.DoubleParaboloidLens
#Lens = roe.ParabolicCylinderFlatLens
if Lens == roe.DoubleParaboloidLens:
lensName = '2-'
elif Lens == roe.ParaboloidFlatLens:
lensName = '1-'
else:
lensName = '3-'
mBeryllium = rm.Material('Be', rho=1.848, kind='lens')
#mDiamond = rm.Material('C', rho=3.52, kind='lens')
mAluminum = rm.Material('Al', rho=2.7, kind='lens')
#mSilicon = rm.Material('Si', rho=2.33, kind='lens')
#mNickel = rm.Material('Ni', rho=8.9, kind='lens')
#mLead = rm.Material('Pb', rho=11.35, kind='lens')
def build_beamline(nrays=1e4):
beamLine = raycing.BeamLine(height=0)
# rs.CollimatedMeshSource(beamLine, 'CollimatedMeshSource', dx=2, dz=2,
# nx=21, nz=21, energies=(E0,), withCentralRay=False, autoAppendToBL=True)
rs.GeometricSource(
beamLine, 'CollimatedSource', nrays=nrays,
dx=0.5, dz=0.5, distxprime=None, distzprime=None, energies=(E0,))
beamLine.fsm1 = rsc.Screen(beamLine, 'FSM1', (0, p - 100, 0))
beamLine.lens = Lens(
beamLine, 'CRL', [0, p, 0], pitch=np.pi/2, t=0,
material=mBeryllium,
focus=parabolaParam,
zmax=zmax,
nCRL=(q, E0),
alarmLevel=0.1)
beamLine.fsm2 = rsc.Screen(beamLine, 'FSM2')
beamLine.fsm2.dqs = np.linspace(-140, 140, 71)
# beamLine.fsm2.dqs = np.linspace(-70, 70, 15)
return beamLine
def run_process(beamLine):
beamSource = beamLine.sources[0].shine()
outDict = {'beamSource': beamSource}
beamFSM1 = beamLine.fsm1.expose(beamSource)
outDict['beamFSM1'] = beamFSM1
lglobal, llocal1, llocal2 = beamLine.lens.multiple_refract(beamSource)
for i, dq in enumerate(beamLine.fsm2.dqs):
beamLine.fsm2.center[1] = p + q + dq
outDict['beamFSM2_{0:02d}'.format(i)] = beamLine.fsm2.expose(lglobal)
if showIn3D:
beamLine.prepare_flow()
return outDict
rr.run_process = run_process
def define_plots(beamLine):
plots = []
xrtp.yTextPosNraysR = 0.82
xrtp.yTextPosNrays1 = 0.52
plot0 = xrtp.XYCPlot(
'beamFSM1', (1,),
xaxis=xrtp.XYCAxis(
r'$x$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
yaxis=xrtp.XYCAxis(
r'$z$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
ePos=0, title=beamLine.fsm1.name)
plots.append(plot0)
# plot1 = xrtp.XYCPlot(
# 'beamLensLocal1_{0:02d}'.format(0), (1,),
# xaxis=xrtp.XYCAxis(
# r'$x$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
# yaxis=xrtp.XYCAxis(
# r'$y$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
# ePos=0, title='LensFootprint1_00')
# plots.append(plot1)
fwhmFormatStrF = '%.2f'
plotsFSM2 = []
for i, dq in enumerate(beamLine.fsm2.dqs):
plot2 = xrtp.XYCPlot(
'beamFSM2_{0:02d}'.format(i), (1,),
xaxis=xrtp.XYCAxis(
r'$x$', u'µm', limits=xyLimits, bins=250, ppb=1),
yaxis=xrtp.XYCAxis(
r'$z$', u'µm', limits=xyLimits, bins=250, ppb=1),
ePos=0, title=beamLine.fsm2.name+'-{0:02d}'.format(i))
plot2.xaxis.fwhmFormatStr = fwhmFormatStrF
plot2.yaxis.fwhmFormatStr = fwhmFormatStrF
plot2.textPanel = plot2.fig.text(
0.2, 0.75, '', transform=plot2.fig.transFigure, size=14, color='r',
ha='left')
plot2.textPanelTemplate = '{0}: d$q=${1:+.0f} mm'.format('{0}', dq)
plots.append(plot2)
plotsFSM2.append(plot2)
# plot3 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
# xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
# yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
# caxis=xrtp.XYCAxis('degree of polarization', '',
# data=raycing.get_polarization_degree, limits=[0, 1]),
# ePos=1, title=beamLine.fsm2.name+'PolDegree'+'-{0:02d}'.format(i))
# plot3.textPanel = plot3.fig.text(
# 0.2, 0.75, '', transform=plot3.fig.transFigure,
# size=14, color='r', ha='left')
# plots.append(plot3)
#
# plot4 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
# xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
# yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
# caxis=xrtp.XYCAxis('circular polarization rate', '',
# data=raycing.get_circular_polarization_rate, limits=[-1, 1]),
# ePos=1, title=beamLine.fsm2.name+'CircPolRate'+'-{0:02d}'.format(i))
# plot4.textPanel = plot4.fig.text(
# 0.2, 0.75, '', transform=plot4.fig.transFigure,
# size=14, color='r', ha='left')
# plots.append(plot4)
#
# plot5 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
# xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
# yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
# caxis=xrtp.XYCAxis('ratio of ellipse axes', '',
# data=raycing.get_ratio_ellipse_axes, limits=[-1, 1]),
# ePos=1,
# title=beamLine.fsm2.name+'PolAxesRatio'+'-{0:02d}'.format(i))
# plot5.textPanel = plot5.fig.text(
# 0.2, 0.75, '', transform=plot5.fig.transFigure,
# size=14, color='r', ha='left')
# plots.append(plot5)
#
# plot6 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
# xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
# yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
# caxis=xrtp.XYCAxis('angle of polarization ellipse', '',
# data=raycing.get_polarization_psi, limits=[-90, 90]),
# ePos=1, title=beamLine.fsm2.name+'PolPsi'+'-{0:02d}'.format(i))
# plot6.ax1dHistE.set_yticks([-90,-45,0,45,90])
# plot6.textPanel = plot6.fig.text(
# 0.2, 0.75, '', transform=plot6.fig.transFigure,
# size=14, color='r', ha='left')
# plots.append(plot6)
return plots, plotsFSM2
def plot_generator(plots, plotsFSM2, beamLine):
# materials = mBeryllium, mDiamond, mAluminum, mSilicon, mNickel, mLead
materials = mBeryllium, mAluminum
print('At E = {0} eV and parabola focus = {1} mm:'.format(
E0, parabolaParam))
nCRLs = []
for material in materials:
beamLine.lens.material = material
beamLine.lens.center = [0, p, 0]
nCRL = beamLine.lens.get_nCRL(q, E0)
nCRLs.append(nCRL)
print(' n({0}) = {1}'.format(material.elements[0].name, nCRL))
# polarization = [
# 'horizontal', 'vertical', '+45', '-45', 'right', 'left', None]
polarization = 'hor',
figDF = plt.figure(figsize=(7, 5), dpi=72)
ax1 = plt.subplot(111)
ax1.set_title(r'FWHM size of beam cross-section near focal position')
ax1.set_xlabel(r'd$q$ (mm)', fontsize=14)
ax1.set_ylabel(u'FWHM size (µm)', fontsize=14)
figI = plt.figure(figsize=(7, 5), dpi=72)
ax2 = plt.subplot(111)
ax2.set_title(r'relative flux at sample position')
ax2.set_xlabel('material', fontsize=14)
ax2.set_ylabel(u'flux (a.u.)', fontsize=14)
prefix = 'CRL-block-'
for pol in polarization:
beamLine.sources[0].polarization = pol
suffix = pol
if suffix is None:
suffix = 'none'
xMaterials = []
yFlux = []
for material, nCRL in zip(materials, nCRLs):
beamLine.lens.material = material
elem = material.elements[0].name
print(elem)
for plot in plots:
fileName = '{0}{1}{2}-{3}-{4}'.format(
prefix, lensName, elem, suffix, plot.title)
plot.saveName = fileName + '.png'
# plot.persistentName = fileName + '.pickle'
try:
plot.textPanel.set_text(
plot.textPanelTemplate.format(elem))
except AttributeError:
pass
yield
xCurve = []
yCurve = []
for dq, plot in zip(beamLine.fsm2.dqs, plotsFSM2):
if plot.dx < (xyLimits[1] - xyLimits[0]) * 0.5:
# print(dq, plot.dx)
xCurve.append(dq)
yCurve.append(plot.dx)
yFlux.append(plotsFSM2[-1].intensity)
ax1.plot(
xCurve, yCurve, 'o', label='{0}, n={1:.0f}'.format(
elem, round(nCRL)))
xMaterials.append(elem)
ax1.legend(loc=4) # lower right
figDF.savefig(prefix + lensName + 'depthOfFocus.png')
# plt.close(figDF)
rects = ax2.bar(np.arange(len(materials)) + 0.1,
np.array(yFlux)/max(yFlux), bottom=1e-3, log=True)
for rect, material, nCRL in zip(rects, materials, nCRLs):
height = rect.get_height()
ax2.text(
rect.get_x()+rect.get_width()/2., 0.9*height,
'n=%d' % nCRL, ha='center', va='top', color='w')
ax2.set_xticks(np.arange(len(materials)) + 0.5)
ax2.set_xticklabels(xMaterials)
ax2.set_ylim(1e-3, 1)
figI.savefig(prefix + lensName + 'Flux.png')
def main():
beamLine = build_beamline()
if showIn3D:
beamLine.glow(scale=1e3, centerAt='CRL_Exit')
return
plots, plotsFSM2 = define_plots(beamLine)
xrtr.run_ray_tracing(
plots, repeats=16, generator=plot_generator,
generatorArgs=[plots, plotsFSM2, beamLine],
updateEvery=1, beamLine=beamLine, processes='half')
#this is necessary to use multiprocessing in Windows, otherwise the new Python
#contexts cannot be initialized:
if __name__ == '__main__':
main()
|