File: crl_stack.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (328 lines) | stat: -rw-r--r-- 12,521 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# -*- coding: utf-8 -*-
r"""
Compound Refractive Lenses
--------------------------

Files in ``\examples\withRaycing\04_Lenses``

This example demonstrates refraction in x-ray regime. Locus that refracts a
collimated beam into a point focus is a paraboloid. The focal distance of such
a vacuum-to-solid interface is, as in the usual optics, 2\ *p*/*δ* where *p*
is the focal parameter of the lens paraboloid and *δ* = 1 - Re(*n*), *n* is the
refractive index [snigirev]_. As for the usual lenses, the diopters of several
consecutive lenses are summed up to give the total diopter:
:math:`\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2} + \ldots`.

This example considers focusing of collimated x-rays of 9 keV at a distance
*q* = 5 m from the lenses. The lenses are double-sided paraboloids (then *f* =
*p*/*δ*) with *p* = 1 mm and zero spacing between the apices of the
paraboloids. The thickness of each lens is 2 mm. Their number is an integer
number *N* = round(*p*/*qδ*).

The following images demonstrate the focusing along the optical axis close to
the nominal focal position for Be and Al CRL's. The real focal position
deviates from the nominal one, where d\ *q* = 0, due to the rounding of
*p*/*qδ*:

.. imagezoom:: _images/CRL-3D.*

+------------+------------+
|  |CRL_Be|  |  |CRL_Al|  |
+------------+------------+

.. |CRL_Be| animation:: _images/CRL-Be
.. |CRL_Al| animation:: _images/CRL-Al

This graph shows the relative flux in the focused beam at 9 keV after the given
number of double-sided lenses which give approximately equal focal distance of
*q* = 5 m. As seen, low absorbing materials are preferred:

.. imagezoom:: _images/CRL-2-Flux.*

This graph shows the depth of focus as a function of the on-axis coordinate
around the nominal focal position. For heavy materials the depth of focus is
larger due to the higher absorption of the peripherical rays of the incoming
beam. Such lenses act effectively also as apertures thus reducing the focal
spot at the expense of flux:

.. imagezoom:: _images/CRL-2-depthOfFocus.*

.. [snigirev] A. Snigirev, V. Kohn, I. Snigireva, A. Souvorov, and B. Lengeler,
   *Focusing High-Energy X Rays by Compound Refractive Lenses*, Applied
   Optics **37** (1998), 653-62.
"""
__author__ = "Konstantin Klementiev, Roman Chernikov"
__date__ = "08 Mar 2016"
#import matplotlib as mpl
#mpl.use('agg')
import os, sys; sys.path.append(os.path.join('..', '..', '..'))  # analysis:ignore
import numpy as np
import matplotlib.pyplot as plt

import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
import xrt.backends.raycing.oes as roe
import xrt.backends.raycing.run as rr
import xrt.backends.raycing.materials as rm
import xrt.backends.raycing.screens as rsc

import xrt.plotter as xrtp
import xrt.runner as xrtr

showIn3D = False

parabolaParam = 1.  # mm
zmax = 1.  # mm
E0 = 9000.  # eV
p = 1000.  # source to 1st lens
q = 5000.  # 1st lens to focus
xyLimits = -5, 5

#Lens = roe.ParaboloidFlatLens
Lens = roe.DoubleParaboloidLens
#Lens = roe.ParabolicCylinderFlatLens
if Lens == roe.DoubleParaboloidLens:
    lensName = '2-'
elif Lens == roe.ParaboloidFlatLens:
    lensName = '1-'
else:
    lensName = '3-'

mBeryllium = rm.Material('Be', rho=1.848, kind='lens')
#mDiamond = rm.Material('C', rho=3.52, kind='lens')
mAluminum = rm.Material('Al', rho=2.7, kind='lens')
#mSilicon = rm.Material('Si', rho=2.33, kind='lens')
#mNickel = rm.Material('Ni', rho=8.9, kind='lens')
#mLead = rm.Material('Pb', rho=11.35, kind='lens')


def build_beamline(nrays=1e4):
    beamLine = raycing.BeamLine(height=0)
#    rs.CollimatedMeshSource(beamLine, 'CollimatedMeshSource', dx=2, dz=2,
#      nx=21, nz=21, energies=(E0,), withCentralRay=False, autoAppendToBL=True)
    rs.GeometricSource(
        beamLine, 'CollimatedSource', nrays=nrays,
        dx=0.5, dz=0.5, distxprime=None, distzprime=None, energies=(E0,))

    beamLine.fsm1 = rsc.Screen(beamLine, 'FSM1', (0, p - 100, 0))

    beamLine.lens = Lens(
        beamLine, 'CRL', [0, p, 0], pitch=np.pi/2, t=0, 
        material=mBeryllium,
        focus=parabolaParam,
        zmax=zmax, 
        nCRL=(q, E0), 
        alarmLevel=0.1)

    beamLine.fsm2 = rsc.Screen(beamLine, 'FSM2')
    beamLine.fsm2.dqs = np.linspace(-140, 140, 71)
#    beamLine.fsm2.dqs = np.linspace(-70, 70, 15)
    return beamLine


def run_process(beamLine):
    beamSource = beamLine.sources[0].shine()
    outDict = {'beamSource': beamSource}
    beamFSM1 = beamLine.fsm1.expose(beamSource)
    outDict['beamFSM1'] = beamFSM1
    lglobal, llocal1, llocal2 = beamLine.lens.multiple_refract(beamSource)
    for i, dq in enumerate(beamLine.fsm2.dqs):
        beamLine.fsm2.center[1] = p + q + dq
        outDict['beamFSM2_{0:02d}'.format(i)] = beamLine.fsm2.expose(lglobal)
    if showIn3D:
        beamLine.prepare_flow()
    return outDict

rr.run_process = run_process


def define_plots(beamLine):
    plots = []

    xrtp.yTextPosNraysR = 0.82
    xrtp.yTextPosNrays1 = 0.52

    plot0 = xrtp.XYCPlot(
        'beamFSM1', (1,),
        xaxis=xrtp.XYCAxis(
            r'$x$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
        yaxis=xrtp.XYCAxis(
            r'$z$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
        ePos=0, title=beamLine.fsm1.name)
    plots.append(plot0)

#    plot1 = xrtp.XYCPlot(
#        'beamLensLocal1_{0:02d}'.format(0), (1,),
#        xaxis=xrtp.XYCAxis(
#            r'$x$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
#        yaxis=xrtp.XYCAxis(
#            r'$y$', 'mm', limits=[-1.2, 1.2], fwhmFormatStr=None),
#        ePos=0, title='LensFootprint1_00')
#    plots.append(plot1)

    fwhmFormatStrF = '%.2f'
    plotsFSM2 = []
    for i, dq in enumerate(beamLine.fsm2.dqs):
        plot2 = xrtp.XYCPlot(
            'beamFSM2_{0:02d}'.format(i), (1,),
            xaxis=xrtp.XYCAxis(
                r'$x$', u'µm', limits=xyLimits, bins=250, ppb=1),
            yaxis=xrtp.XYCAxis(
                r'$z$', u'µm', limits=xyLimits, bins=250, ppb=1),
            ePos=0, title=beamLine.fsm2.name+'-{0:02d}'.format(i))
        plot2.xaxis.fwhmFormatStr = fwhmFormatStrF
        plot2.yaxis.fwhmFormatStr = fwhmFormatStrF
        plot2.textPanel = plot2.fig.text(
            0.2, 0.75, '', transform=plot2.fig.transFigure, size=14, color='r',
            ha='left')
        plot2.textPanelTemplate = '{0}: d$q=${1:+.0f} mm'.format('{0}', dq)
        plots.append(plot2)
        plotsFSM2.append(plot2)

#        plot3 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
#          xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
#          yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
#          caxis=xrtp.XYCAxis('degree of polarization', '',
#          data=raycing.get_polarization_degree, limits=[0, 1]),
#          ePos=1, title=beamLine.fsm2.name+'PolDegree'+'-{0:02d}'.format(i))
#        plot3.textPanel = plot3.fig.text(
#            0.2, 0.75, '', transform=plot3.fig.transFigure,
#            size=14, color='r', ha='left')
#        plots.append(plot3)
#
#        plot4 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
#          xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
#          yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
#          caxis=xrtp.XYCAxis('circular polarization rate', '',
#          data=raycing.get_circular_polarization_rate, limits=[-1, 1]),
#          ePos=1, title=beamLine.fsm2.name+'CircPolRate'+'-{0:02d}'.format(i))
#        plot4.textPanel = plot4.fig.text(
#            0.2, 0.75, '', transform=plot4.fig.transFigure,
#            size=14, color='r', ha='left')
#        plots.append(plot4)
#
#        plot5 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
#          xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
#          yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
#          caxis=xrtp.XYCAxis('ratio of ellipse axes', '',
#          data=raycing.get_ratio_ellipse_axes, limits=[-1, 1]),
#          ePos=1,
#          title=beamLine.fsm2.name+'PolAxesRatio'+'-{0:02d}'.format(i))
#        plot5.textPanel = plot5.fig.text(
#            0.2, 0.75, '', transform=plot5.fig.transFigure,
#            size=14, color='r', ha='left')
#        plots.append(plot5)
#
#        plot6 = xrtp.XYCPlot('beamFSM2_{0:02d}'.format(i), (1,),
#          xaxis=xrtp.XYCAxis(r'$x$', u'µm', limits=xyLimits),
#          yaxis=xrtp.XYCAxis(r'$z$', u'µm', limits=xyLimits),
#          caxis=xrtp.XYCAxis('angle of polarization ellipse', '',
#          data=raycing.get_polarization_psi, limits=[-90, 90]),
#          ePos=1, title=beamLine.fsm2.name+'PolPsi'+'-{0:02d}'.format(i))
#        plot6.ax1dHistE.set_yticks([-90,-45,0,45,90])
#        plot6.textPanel = plot6.fig.text(
#            0.2, 0.75, '', transform=plot6.fig.transFigure,
#            size=14, color='r', ha='left')
#        plots.append(plot6)
    return plots, plotsFSM2


def plot_generator(plots, plotsFSM2, beamLine):
#    materials = mBeryllium, mDiamond, mAluminum, mSilicon, mNickel, mLead
    materials = mBeryllium, mAluminum

    print('At E = {0} eV and parabola focus = {1} mm:'.format(
          E0, parabolaParam))
    nCRLs = []
    for material in materials:
        beamLine.lens.material = material
        beamLine.lens.center = [0, p, 0]
        nCRL = beamLine.lens.get_nCRL(q, E0)
        nCRLs.append(nCRL)
        print(' n({0}) = {1}'.format(material.elements[0].name, nCRL))

#    polarization = [
#        'horizontal', 'vertical', '+45', '-45', 'right', 'left', None]
    polarization = 'hor',

    figDF = plt.figure(figsize=(7, 5), dpi=72)
    ax1 = plt.subplot(111)
    ax1.set_title(r'FWHM size of beam cross-section near focal position')
    ax1.set_xlabel(r'd$q$ (mm)', fontsize=14)
    ax1.set_ylabel(u'FWHM size (µm)', fontsize=14)

    figI = plt.figure(figsize=(7, 5), dpi=72)
    ax2 = plt.subplot(111)
    ax2.set_title(r'relative flux at sample position')
    ax2.set_xlabel('material', fontsize=14)
    ax2.set_ylabel(u'flux (a.u.)', fontsize=14)

    prefix = 'CRL-block-'

    for pol in polarization:
        beamLine.sources[0].polarization = pol
        suffix = pol
        if suffix is None:
            suffix = 'none'
        xMaterials = []
        yFlux = []
        for material, nCRL in zip(materials, nCRLs):
            beamLine.lens.material = material
            elem = material.elements[0].name
            print(elem)
            for plot in plots:
                fileName = '{0}{1}{2}-{3}-{4}'.format(
                    prefix, lensName, elem, suffix, plot.title)
                plot.saveName = fileName + '.png'
#                plot.persistentName = fileName + '.pickle'
                try:
                    plot.textPanel.set_text(
                        plot.textPanelTemplate.format(elem))
                except AttributeError:
                    pass
            yield
            xCurve = []
            yCurve = []
            for dq, plot in zip(beamLine.fsm2.dqs, plotsFSM2):
                if plot.dx < (xyLimits[1] - xyLimits[0]) * 0.5:
#                    print(dq, plot.dx)
                    xCurve.append(dq)
                    yCurve.append(plot.dx)
            yFlux.append(plotsFSM2[-1].intensity)
            ax1.plot(
                xCurve, yCurve, 'o', label='{0}, n={1:.0f}'.format(
                    elem, round(nCRL)))
            xMaterials.append(elem)
    ax1.legend(loc=4)  # lower right
    figDF.savefig(prefix + lensName + 'depthOfFocus.png')
#    plt.close(figDF)

    rects = ax2.bar(np.arange(len(materials)) + 0.1,
                    np.array(yFlux)/max(yFlux), bottom=1e-3, log=True)
    for rect, material, nCRL in zip(rects, materials, nCRLs):
        height = rect.get_height()
        ax2.text(
            rect.get_x()+rect.get_width()/2., 0.9*height,
            'n=%d' % nCRL, ha='center', va='top', color='w')
    ax2.set_xticks(np.arange(len(materials)) + 0.5)
    ax2.set_xticklabels(xMaterials)
    ax2.set_ylim(1e-3, 1)
    figI.savefig(prefix + lensName + 'Flux.png')


def main():
    beamLine = build_beamline()
    if showIn3D:
        beamLine.glow(scale=1e3, centerAt='CRL_Exit')
        return
    plots, plotsFSM2 = define_plots(beamLine)
    xrtr.run_ray_tracing(
        plots, repeats=16, generator=plot_generator,
        generatorArgs=[plots, plotsFSM2, beamLine],
        updateEvery=1, beamLine=beamLine, processes='half')


#this is necessary to use multiprocessing in Windows, otherwise the new Python
#contexts cannot be initialized:
if __name__ == '__main__':
    main()