File: vonHamosPos.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (151 lines) | stat: -rw-r--r-- 5,289 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
# -*- coding: utf-8 -*-
"""
"""
__author__ = "Konstantin Klementiev"
__date__ = "14 October 2014"
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt

Rs = 250
thetaDegs = np.linspace(40, 80, 5)
colors = ['r', 'm', 'b', 'c', 'g']
xtalDx, xtalDy = 25, 12
detDx, detDy = 32, 8


def get_clasical_xtal_det(thetaDeg):
    theta = np.radians(thetaDeg)
    tanTheta = np.tan(theta)
    yDet = 2 * Rs / tanTheta
    return yDet


def get_xtal_det(thetaDeg):
    theta = np.radians(thetaDeg)
    sinTheta = np.sin(theta)
    cosTheta = np.cos(theta)
    sin2Theta = np.sin(2 * theta)
#    cos2Theta = np.cos(2 * theta)
    p = Rs / sinTheta
    yDet = p * 2 * cosTheta**2
    zDet = p * sin2Theta
    return p, yDet, zDet


def plot_classical_pos():
    fig = plt.figure(figsize=(6, 6), dpi=72)
    rect2d = [0.15, 0.1, 0.8, 0.8]
    ax1 = fig.add_axes(rect2d, aspect='auto')
#    ax2 = ax1.twinx()
    title = 'Crystal and detector positions for \n' +\
        'von Hamos spectrometer with parallel translations'
    fig.text(0.5, 0.91, title, transform=fig.transFigure, size=14, color='k',
             ha='center')

    ax1.set_xlabel(u'y (mm)')
    ax1.set_ylabel(u'z (mm)')
    ax1.set_xlim(-10, 650-10)
    ax1.set_ylim(-325, 650-325)

    source = plt.Circle((0, 0), xtalDy, fc='r', clip_on=True, lw=1, alpha=0.5)
    ax1.add_patch(source)

    detectors = []
    for thetaDeg, color in zip(thetaDegs, colors):
        ax1.plot([0, 650], [0, 0], lw=0.5)
        yDet = get_clasical_xtal_det(thetaDeg)

        ax1.plot([0, yDet/2, yDet], [0, -Rs, 0], ':', color=color, lw=1)

        bars = [(-xtalDx, -xtalDy), (xtalDx, -xtalDy),
                (xtalDx, 0), (-xtalDx, 0)]
#        xtal = plt.Circle((yDet/2, -Rs), xtalDy, color=color, clip_on=True)
#        ax1.add_patch(xtal)
        poly = [(yDet/2 + x, -Rs + y) for (x, y) in bars]
        xtal = mpl.patches.Polygon(poly, closed=True, fc=color,
                                   lw=0, alpha=0.5)
        ax1.add_patch(xtal)

        bars = [(-detDx, 0), (detDx, 0), (detDx, detDy), (-detDx, detDy)]
#        detector = plt.Circle((yDet, 0), xtalDy, color=color, clip_on=True)
#        ax1.add_patch(detector)
        poly = [(yDet + x, y) for (x, y) in bars]
        detector = mpl.patches.Polygon(poly, closed=True, fc=color,
                                       lw=0, alpha=0.5)
        ax1.add_patch(detector)
        detectors.append(detector)

    legBragg = ax1.legend(detectors,
                          [r'{0}$^\circ$'.format(a) for a in thetaDegs],
                          title='Bragg angle', numpoints=1, loc='upper left')
    for line in legBragg.get_lines():
        line._legmarker.set_marker([(3, 1), (-3, 1), (-3, -1), (3, -1)])
#        line._legmarker.set_marker('.')

    ax1.text(0.95, 0.95, '(a)', transform=ax1.transAxes, size=20,
             ha='right', va='top')
    fig.savefig('vonHamosPositionsClassic.png')


def plot_pos():
    fig = plt.figure(figsize=(6, 6), dpi=72)
    rect2d = [0.15, 0.1, 0.8, 0.8]
    ax1 = fig.add_axes(rect2d, aspect='auto')
#    ax2 = ax1.twinx()
    title = 'Crystal and detector positions for \n' +\
        'von Hamos spectrometer with fixed escape direction'
    fig.text(0.5, 0.91, title, transform=fig.transFigure, size=14, color='k',
             ha='center')

    ax1.set_xlabel(u'y (mm)')
    ax1.set_ylabel(u'z (mm)')
    ax1.set_xlim(-100, 650-100)
    ax1.set_ylim(-100, 650-100)

    source = plt.Circle((0, 0), xtalDy, fc='r', clip_on=True, lw=1, alpha=0.5)
    ax1.add_patch(source)

    detectors = []
    for thetaDeg, color in zip(thetaDegs, colors):
        ax1.plot([0, 650], [0, 0], lw=0.5)
        p, yDet, zDet = get_xtal_det(thetaDeg)

        ax1.plot([0, p, yDet], [0, 0, zDet], ':', color=color, lw=1)
        c = np.cos(np.radians(thetaDeg))
        s = np.sin(np.radians(thetaDeg))

        bars = [(-xtalDx, -xtalDy), (xtalDx, -xtalDy),
                (xtalDx, 0), (-xtalDx, 0)]
#        xtal = plt.Circle((p, 0), xtalDy, color=color, clip_on=True)
#        ax1.add_patch(xtal)
        poly = [(p + c*x - s*y, s*x + c*y) for (x, y) in bars]
        xtal = mpl.patches.Polygon(poly, closed=True, fc=color,
                                   lw=0, alpha=0.5)
        ax1.add_patch(xtal)

        bars = [(-detDx, 0), (detDx, 0), (detDx, detDy), (-detDx, detDy)]
#        detector = plt.Circle((yDet, zDet), xtalDy, color=color, clip_on=True)
#        ax1.add_patch(detector)
        poly = [(yDet + c*x - s*y, zDet + s*x + c*y) for (x, y) in bars]
        detector = mpl.patches.Polygon(poly, closed=True, fc=color,
                                       lw=0, alpha=0.5)
        ax1.add_patch(detector)
        detectors.append(detector)

    legBragg = ax1.legend(detectors,
                          [r'{0}$^\circ$'.format(a) for a in thetaDegs],
                          title='Bragg angle', numpoints=1, loc='upper left')
    for line in legBragg.get_lines():
        line._legmarker.set_marker([(3, 1), (-3, 1), (-3, -1), (3, -1)])
#        line._legmarker.set_marker('.')

    ax1.text(0.95, 0.95, '(b)', transform=ax1.transAxes, size=20,
             ha='right', va='top')
    fig.savefig('vonHamosPositionsFixedEscape.png')


if __name__ == '__main__':
    plot_classical_pos()
    plot_pos()
    plt.show()