1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
|
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev", "Roman Chernikov"
__date__ = "08 Mar 2016"
import os, sys; sys.path.append(os.path.join('..', '..', '..')) # analysis:ignore
import numpy as np
import matplotlib as mpl
import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
#import xrt.backends.raycing.apertures as ra
import xrt.backends.raycing.oes as roe
import xrt.backends.raycing.run as rr
#import xrt.backends.raycing.materials as rm
import xrt.plotter as xrtp
import xrt.runner as xrtr
import xrt.backends.raycing.screens as rsc
mGold = None # rm.Material('Au', rho=19.3)
class Cylinder(roe.OE):
def __init__(self, *args, **kwargs):
self.Rm = kwargs.pop('Rm', 10000.) # R meridional
roe.OE.__init__(self, *args, **kwargs)
def local_z(self, x, y):
return self.Rm - np.sqrt(self.Rm**2 - y**2)
def local_n(self, x, y):
a = np.zeros_like(x) # -dz/dx
b = -y * (self.Rm**2 - y**2)**(-0.5) # -dz/dy
c = 1.
norm = (b**2 + 1)**0.5
b /= norm
c /= norm
return [a, b, c]
class CylinderP(Cylinder):
def local_r(self, s, phi):
return self.Rm
def local_n(self, s, phi):
a = np.zeros_like(phi) # -dz/dx
b = -np.sin(phi) # -dz/dy
c = np.cos(phi)
return [a, b, c]
def xyz_to_param(self, x, y, z): # for flat mirror as example
return x, np.arctan(y / (Rm - z)), np.sqrt(y**2 + (Rm - z)**2)
def param_to_xyz(self, s, phi, r): # for flat mirror as example
return s, r * np.sin(phi), Rm - r * np.cos(phi) # x, y, z
E0 = 2000.
L = 190.
Rm = 5000.
isFlat = False
isParametric = True
def build_beamline(nrays=raycing.nrays):
beamLine = raycing.BeamLine(height=0)
rs.GeometricSource(
beamLine, 'GeometricSource', (0, 0, 0),
nrays=nrays, dx=0., dz=0., dxprime=5e-4, dzprime=1e-5,
distE='lines', energies=(E0,), polarization='horizontal')
beamLine.fsm1 = rsc.Screen(beamLine, 'DiamondFSM1', (0, 100, 0))
if isFlat:
fName = 'Flat'
beamLine.cylinder = roe.OE(
beamLine, 'FlatP', [0, 1000, -0.01],
pitch=3e-3, material=mGold, isParametric=isParametric)
else:
fName = 'Cylinder'
limPhysX = [-5, 5]
limPhysY = [0, L]
if isParametric:
CylinderClass = CylinderP
else:
CylinderClass = Cylinder
beamLine.cylinder = CylinderClass(
beamLine, fName, [0, 1000, -0.05],
pitch=3e-3, material=mGold, limPhysX=limPhysX, limPhysY=limPhysY,
Rm=Rm, isParametric=isParametric)
beamLine.fsm2 = rsc.Screen(beamLine, 'DiamondFSM2', (0, 2000, 0))
return beamLine, fName
def run_process(beamLine, shineOnly1stSource=False):
beamSource = beamLine.sources[0].shine()
beamFSM1 = beamLine.fsm1.expose(beamSource)
beamCylinderGlobal, beamCylinderLocalN = \
beamLine.cylinder.multiple_reflect(beamSource, maxReflections=100)
# beamLine.cylinder.reflect(beamSource)
beamFSM2 = beamLine.fsm2.expose(beamCylinderGlobal)
outDict = {'beamSource': beamSource, 'beamFSM1': beamFSM1,
'beamCylinderGlobal': beamCylinderGlobal,
'beamCylinderLocalN': beamCylinderLocalN,
'beamFSM2': beamFSM2}
return outDict
rr.run_process = run_process
def define_plots(beamLine, fName):
# fwhmFormatStrE = '%.2f'
plots = []
pAdd = 'P' if isParametric else ''
plot = xrtp.XYCPlot(
'beamFSM1', (1,), xaxis=xrtp.XYCAxis(r'$x$', '$\mu$m'),
yaxis=xrtp.XYCAxis(r'$z$', '$\mu$m'), title='FSM1_E')
plot.caxis.fwhmFormatStr = None
# plot.caxis.limits = [70, 140]
plots.append(plot)
plot = xrtp.XYCPlotWithNumerOfReflections(
'beamCylinderLocalN', (1,),
xaxis=xrtp.XYCAxis(r'$x$', 'mm'),
yaxis=xrtp.XYCAxis(r'$y$', 'mm'), aspect='auto',
caxis=xrtp.XYCAxis('number of reflections', '', bins=32, ppb=8,
data=raycing.get_reflection_number), title='local')
plot.caxis.fwhmFormatStr = None
plot.xaxis.limits = [-2, 2]
plot.saveName = ['{0}Local{1}.png'.format(fName, pAdd), ]
plots.append(plot)
if isParametric:
plot = xrtp.XYCPlotWithNumerOfReflections(
'beamCylinderLocalN', (1,),
xaxis=xrtp.XYCAxis(r'$s$', 'mm'), aspect='auto',
yaxis=xrtp.XYCAxis(r'$\phi$', 'mrad'),
caxis=xrtp.XYCAxis('number of reflections', '', bins=32, ppb=8,
data=raycing.get_reflection_number),
title='local (s, phi)')
# plot.yaxis.fwhmFormatStr = '%.2f' + r'$ \pi$'
plot.caxis.fwhmFormatStr = None
formatter = mpl.ticker.FormatStrFormatter('%g' + r'$ \pi$')
plot.ax2dHist.xaxis.set_major_formatter(formatter)
plot.saveName = ['{0}LocalPP.png'.format(fName), ]
plots.append(plot)
plot = xrtp.XYCPlotWithNumerOfReflections(
'beamFSM2', (1, 2),
xaxis=xrtp.XYCAxis(r'$x$', 'mm'),
yaxis=xrtp.XYCAxis(r'$z$', 'mm'),
caxis=xrtp.XYCAxis('number of reflections', '', bins=32, ppb=8,
data=raycing.get_reflection_number),
title='FSM2_Es')
plot.xaxis.limits = [-4, 4]
plot.caxis.fwhmFormatStr = None
plot.fluxFormatStr = '%.2e'
plot.saveName = ['{0}Out{1}.png'.format(fName, pAdd), ]
plots.append(plot)
return plots
def main():
beamLine, fName = build_beamline()
plots = define_plots(beamLine, fName)
xrtr.run_ray_tracing(plots, repeats=40, updateEvery=1, beamLine=beamLine,
processes='half')
#this is necessary to use multiprocessing in Windows, otherwise the new Python
#contexts cannot be initialized:
if __name__ == '__main__':
main()
|