1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev", "Roman Chernikov"
__date__ = "08 Mar 2016"
import os, sys; sys.path.append(os.path.join('..', '..', '..')) # analysis:ignore
import numpy as np
import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
#import xrt.backends.raycing.apertures as ra
import xrt.backends.raycing.oes as roe
import xrt.backends.raycing.run as rr
import xrt.backends.raycing.materials as rm
import xrt.plotter as xrtp
import xrt.runner as xrtr
import xrt.backends.raycing.screens as rsc
showIn3D = False
mGold = rm.Material('Au', rho=19.3)
E0 = 9000.
L = 1200.
W = 10.
gap = 0.2
pitchVFM = 4e-3
pVFM = 20000.
qVFM = 400000000.
pitchHFM = 4e-3
pHFM = 20000.
qHFM = 400000000.
p = pVFM
q = 2000
#Select a case:
#case = 'parabolic'
case = 'elliptical'
def build_beamline(nrays=raycing.nrays):
beamLine = raycing.BeamLine(height=0)
rs.GeometricSource(
beamLine, 'GeometricSource', (0, 0, 0),
nrays=nrays, dx=0., dz=0., dxprime=2e-4, dzprime=1e-4,
distE='lines', energies=(E0,), polarization='horizontal')
if case == 'parabolic':
mirrorVFM = roe.BentFlatMirror
mirrorHFM = roe.BentFlatMirror
RVFM = 2 * p / np.sin(pitchVFM)
kwargsVFM = {'R': RVFM}
RHFM = 2 * p / np.sin(pitchHFM)
kwargsHFM = {'R': RHFM}
elif case == 'elliptical':
mirrorVFM = roe.EllipticalMirrorParam
mirrorHFM = roe.EllipticalMirrorParam
kwargsVFM = {'p': pVFM, 'q': qVFM, 'isCylindrical': True}
kwargsHFM = {'p': pHFM, 'q': qHFM, 'isCylindrical': True}
else:
raise
beamLine.VFM = mirrorVFM(
beamLine, 'VFM', [0, p, 0], material=mGold,
limPhysX=[gap/2, W], limPhysY=[-L/2, L/2], rotationSequence='RxRyRz',
pitch=pitchVFM, yaw=-pitchHFM, **kwargsVFM)
beamLine.HFM = mirrorHFM(
beamLine, 'HFM', [0, p, 0], material=mGold,
limPhysX=[-W, -gap/2], limPhysY=[-L/2, L/2], rotationSequence='RyRzRx',
positionRoll=np.pi/2, pitch=pitchHFM, yaw=pitchVFM, **kwargsHFM)
beamLine.fsmMontel = rsc.Screen(beamLine, 'FSM-Montel', (0, p+q, 0))
return beamLine
def run_process(beamLine):
beamSource = beamLine.sources[0].shine()
beamSource.nRefl = np.ones_like(beamSource.x)
beamFSM1 = beamLine.fsmMontel.expose(beamSource)
beamVFMGlobal1, beamVFMLocal = beamLine.VFM.reflect(beamSource)
beamVFMLocal.nRefl = (beamVFMLocal.state == 1).astype(int)
beamHFMGlobal1, beamHFMLocal = beamLine.HFM.reflect(beamVFMGlobal1)
beamHFMLocal.nRefl = (beamHFMLocal.state == 1).astype(int) * 2
beamHFMGlobal1.nRefl = np.array(beamVFMLocal.nRefl)
beamHFMGlobal1.nRefl[beamHFMLocal.nRefl > 0] = 2
beamHFMGlobal1.state[beamHFMGlobal1.nRefl > 0] = 1
beamHFMGlobal2, beamHFMLocal2 = beamLine.HFM.reflect(beamSource)
beamHFMLocal2.nRefl = (beamHFMLocal2.state == 1).astype(int)
beamVFMGlobal2, beamVFMLocal2 = beamLine.VFM.reflect(beamHFMGlobal2)
beamVFMLocal2.nRefl = (beamVFMLocal2.state == 1).astype(int) * 2
beamVFMGlobal2.nRefl = np.array(beamHFMLocal2.nRefl)
beamVFMGlobal2.nRefl[beamVFMLocal2.nRefl > 0] = 2
beamVFMGlobal2.state[beamVFMGlobal2.nRefl > 0] = 1
beamVFMLocal.replace_by_index(beamVFMLocal2.state == 1, beamVFMLocal2)
beamHFMLocal.replace_by_index(beamHFMLocal2.state == 1, beamHFMLocal2)
beamMontelGlobal = beamHFMGlobal1
beamMontelGlobal.replace_by_index(beamVFMGlobal2.nRefl > 0, beamVFMGlobal2)
beamFSM2 = beamLine.fsmMontel.expose(beamMontelGlobal)
outDict = {'beamSource': beamSource, 'beamFSM1': beamFSM1,
'beamVFMLocal': beamVFMLocal,
'beamHFMLocal': beamHFMLocal,
'beamMontelGlobal': beamMontelGlobal,
'beamFSM2': beamFSM2}
if showIn3D:
beamLine.prepare_flow()
return outDict
rr.run_process = run_process
def define_plots(beamLine):
# fwhmFormatStrE = '%.2f'
plots = []
pAdd = case[:3]
plot = xrtp.XYCPlot(
'beamFSM1', (1,),
xaxis=xrtp.XYCAxis(r'$x$', 'mm', bins=128, limits=[-10, 20]),
yaxis=xrtp.XYCAxis(r'$z$', 'mm', bins=128, limits=[-10, 20]),
title='FSM1_E')
plot.saveName = ['Montel_{0}_exit_no_mirror.png'.format(pAdd), ]
plots.append(plot)
plot = xrtp.XYCPlotWithNumerOfReflections(
'beamVFMLocal', (1,), aspect='auto',
xaxis=xrtp.XYCAxis(r'$x$', 'mm', bins=128, limits=[-2, W+2]),
yaxis=xrtp.XYCAxis(r'$y$', 'mm', bins=128, limits='sym'),
caxis=xrtp.XYCAxis('number of reflections', '', bins=32, ppb=8,
data=raycing.get_reflection_number))
plot.caxis.limits = [-0.1, 2.1]
plot.saveName = ['Montel_{0}_localVFM_n.png'.format(pAdd), ]
plots.append(plot)
plot = xrtp.XYCPlotWithNumerOfReflections(
'beamHFMLocal', (1,), aspect='auto',
xaxis=xrtp.XYCAxis(r'$x$', 'mm', bins=128, limits=[-W-2, 2]),
yaxis=xrtp.XYCAxis(r'$y$', 'mm', bins=128, limits='sym'),
caxis=xrtp.XYCAxis('number of reflections', '', bins=32, ppb=8,
data=raycing.get_reflection_number))
plot.caxis.limits = [-0.1, 2.1]
plot.saveName = ['Montel_{0}_localHFM_n.png'.format(pAdd), ]
plots.append(plot)
plot = xrtp.XYCPlotWithNumerOfReflections(
'beamFSM2', (1, 3, -1, -2),
xaxis=xrtp.XYCAxis(r'$x$', 'mm', bins=128, limits=[-10, 20]),
yaxis=xrtp.XYCAxis(r'$z$', 'mm', bins=128, limits=[-10, 20]),
caxis='category', title='FSM2_Es')
plot.saveName = ['Montel_{0}_exit_cat.png'.format(pAdd), ]
plots.append(plot)
plot = xrtp.XYCPlotWithNumerOfReflections(
'beamFSM2', (1, 3, -1),
xaxis=xrtp.XYCAxis(r'$x$', 'mm', bins=128, limits=[-10, 20]),
yaxis=xrtp.XYCAxis(r'$z$', 'mm', bins=128, limits=[-10, 20]),
caxis=xrtp.XYCAxis('number of reflections', '', bins=32, ppb=8,
data=raycing.get_reflection_number),
title='FSM2_Es')
plot.caxis.limits = [-0.1, 2.1]
plot.saveName = ['Montel_{0}_exit_n.png'.format(pAdd), ]
plots.append(plot)
for plot in plots:
plot.xaxis.fwhmFormatStr = None
plot.yaxis.fwhmFormatStr = None
plot.caxis.fwhmFormatStr = None
return plots
def main():
beamLine = build_beamline()
if showIn3D:
beamLine.glow(scale=[300, 3, 300], centerAt='VFM')
return
plots = define_plots(beamLine)
xrtr.run_ray_tracing(plots, repeats=40, beamLine=beamLine,
processes='half')
if __name__ == '__main__':
main()
|