1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
|
# -*- coding: utf-8 -*-
r"""
.. _YoungDiffraction:
Young's experiment with undulator source
----------------------------------------
This example shows double slit diffraction of an undulator beam. The single
slit width is 10 µm, the slit separation is variable (displayed is edge-to-edge
distance), the slit position is 90 m from the source and the screen is at 110
m.
.. animation:: _images/YoungRays
.. animation:: _images/YoungWave
"""
__author__ = "Roman Chernikov", "Konstantin Klementiev"
__date__ = "08 Mar 2016"
import os, sys; sys.path.append(os.path.join('..', '..', '..')) # analysis:ignore
# import time
#import matplotlib as mpl
#mpl.use('Agg')
import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
import xrt.backends.raycing.screens as rsc
import xrt.backends.raycing.apertures as ra
import xrt.backends.raycing.run as rr
import xrt.plotter as xrtp
import xrt.runner as xrtr
import xrt.backends.raycing.waves as rw
import numpy as np
R0 = 90000
mynrays = 2e6
divsZ = -8
divsX = -8
#zero divergence
slitDx = 0.5
slitDz = 0.05
dR = 16000.
SCRx = 0.7
SCRz = 10
dE = 1e-5
nrep = 512
#finite divergence
E0 = 12000
kwargs = dict(
betaX=1.20, betaZ=3.95,
period=29., n=172,
eE=6.08, eI=0.1, # eEspread=0.001,
eEpsilonX=0., eEpsilonZ=0.0,
#eEpsilonX=1., eEpsilonZ=0.01,
filamentBeam=True,
uniformRayDensity=True,
xPrimeMax=np.arctan(1.5/R0)*1.e3, zPrimeMax=np.arctan(1.5/R0)*1e3,
#xPrimeMaxAutoReduce=False, zPrimeMaxAutoReduce=False,
targetE=[E0, 3])
#E0 = 1355
eMinRays = E0 - 0.5
eMaxRays = E0 + 0.5
kwargs['eMin'] = eMinRays
kwargs['eMax'] = eMaxRays
prefix = 'far{0:02.0f}m-E0{1:4.0f}-'.format(R0*1e-3, E0)
suffix = "_realdiv"
if False: # zero source size:
kwargs['eSigmaX'] = 1e-3
kwargs['eSigmaZ'] = 1e-3
kwargs['eEpsilonX'] = 0
kwargs['eEpsilonZ'] = 0
xBins = 32
zBins = 512
eBins = 16
xppb = 4
zppb = 1
eppb = 16
xfactor = 1e3
zfactor = 1e3
isScreenHemispheric = False
if isScreenHemispheric:
screenName = '-hemis'
xlimits = [-4*slitDx/R0*1e6, 4*slitDx/R0*1e6]
zlimits = [-4*slitDz/R0*1e6, 4*slitDz/R0*1e6]
xName = '$\\theta$'
zName = '$\\phi$'
unit = u'µrad'
else:
screenName = '-plane'
xlimits = [-SCRx*slitDx*1e3, SCRx*slitDx*1e3]
zlimits = [-SCRz*slitDz*1e3, SCRz*slitDz*1e3]
xName = '$x$'
zName = '$z$'
unit = u'µm'
dunit = '$\mu$rad'
dx = (xlimits[1] - xlimits[0]) / xBins
xmesh = np.linspace((xlimits[0] + dx/2) / xfactor,
(xlimits[1] - dx/2) / xfactor, xBins)
dz = (zlimits[1] - zlimits[0]) / zBins
zmesh = np.linspace((zlimits[0] + dz/2) / zfactor,
(zlimits[1] - dz/2) / zfactor, zBins)
def build_beamline(nrays=mynrays):
beamLine = raycing.BeamLine()
rs.Undulator(beamLine, nrays=nrays, **kwargs)
beamLine.fsm0 = rsc.Screen(beamLine, 'FSM0', (0, R0-1, 0))
beamLine.slit = ra.DoubleSlit(
beamLine, 'squareSlit', [0, R0, 0], ('left', 'right', 'bottom', 'top'),
[-slitDx/2, slitDx/2, -slitDz/2, slitDz/2], shadeFraction=0.1)
beamLine.fsm1 = rsc.Screen(beamLine, 'FSM1', [0, R0+dR, 0])
return beamLine
def run_process(beamLine):
beamFSM1wave = beamLine.fsm1.prepare_wave(beamLine.slit, xmesh, zmesh)
beamSource = None
wrepeats = 1
for repeat in range(wrepeats):
beamSource = beamLine.sources[0].shine(accuBeam=beamSource)
beamFSM0 = beamLine.fsm0.expose(beamSource)
waveOnSlit = beamLine.slit.propagate(beamSource)
beamFSM1 = beamLine.fsm1.expose(beamSource)
waveOnSlit.area = beamLine.slit.area
rw.diffract(waveOnSlit, beamFSM1wave)
if wrepeats > 1:
print('wave repeats: {0} of {1} done'.format(repeat+1, wrepeats))
outDict = {'beamSource': beamSource,
'beamFSM0': beamFSM0,
'beamFSM1': beamFSM1,
'beamFSM1wave': beamFSM1wave
}
return outDict
rr.run_process = run_process
def define_plots(beamLine):
plots = []
plot = xrtp.XYCPlot(
'beamFSM0', aspect='auto',
xaxis=xrtp.XYCAxis(xName, unit, bins=xBins, ppb=xppb),
yaxis=xrtp.XYCAxis(zName, unit, bins=zBins, ppb=zppb),
caxis=xrtp.XYCAxis('energy', 'eV', bins=eBins, ppb=eppb),
title='1 - Source')
plots.append(plot)
plot = xrtp.XYCPlot(
'beamFSM1', aspect='auto',
xaxis=xrtp.XYCAxis(xName, unit, bins=xBins, ppb=xppb),
yaxis=xrtp.XYCAxis(zName, unit, bins=zBins, ppb=zppb),
caxis=xrtp.XYCAxis('energy', 'eV', bins=eBins, ppb=eppb),
title='2 - DS Propagation Rays')
plots.append(plot)
plot = xrtp.XYCPlot(
'beamFSM1wave', aspect='auto',
xaxis=xrtp.XYCAxis(xName, unit, bins=xBins, ppb=xppb),
yaxis=xrtp.XYCAxis(zName, unit, bins=zBins, ppb=zppb),
caxis=xrtp.XYCAxis('energy', 'eV', bins=eBins, ppb=eppb),
#fluxKind='wave',
title='3 - DS Propagation Wave')
plots.append(plot)
plot = xrtp.XYCPlot(
'beamFSM1wave', aspect='auto',
xaxis=xrtp.XYCAxis(xName, unit, bins=xBins, ppb=xppb),
yaxis=xrtp.XYCAxis(zName, unit, bins=zBins, ppb=zppb),
caxis=xrtp.XYCAxis('Es phase', '',
data=raycing.get_Es_phase, limits=[-np.pi, np.pi],
bins=eBins, ppb=eppb),
fluxKind='s',
title='4 - DS Propagation Es phase')
plots.append(plot)
for plot in plots:
plot.textPanel = plot.fig.text(
0.82, 0.6, '', transform=plot.fig.transFigure, size=14, color='r',
ha='center')
return plots
def plot_generator(plots, beamLine):
for slitZ in np.linspace(0.025, 0.2, 8):
# for slitZ in [0.05]:
#slitZ=0.06
slitwidth = 0.01
slit_pos = 0
R0s = 90.
SP = (slitZ - 2*slitwidth) / slitZ
beamLine.slit.center[2] = slit_pos
beamLine.slit.opening[2] = -slitZ/2.
beamLine.slit.opening[3] = slitZ/2.
beamLine.slit.shadeFraction = SP
beamLine.slit.area = slitDx * 2 * slitwidth
# print("area")
# print(beamLine.slit.area, slitDx, slitDz, (1-SP))
dX = 20.
beamLine.slit.center[1] = R0s*1000.
beamLine.fsm1.center[1] = (R0s+dX)*1000.
str1 = '{0} - slit at {1:.0f}m, deltaSlit {2:03.0f}mum'
str2 = ', slitWidth {3:.0f}mum, screen at {4:.0f}m.png'
tt = u'$\Delta$ slit = {0:.0f} µm'.format((slitZ-slitwidth)*1e3)
for plot in plots:
plot.ax2dHist.locator_params(axis='x', nbins=4)
plot.xaxis.limits = xlimits
plot.yaxis.limits = zlimits
plot.xaxis.fwhmFormatStr = None
plot.yaxis.fwhmFormatStr = '%.2f'
if plot.caxis.label == 'energy':
plot.caxis.limits = [eMinRays, eMaxRays]
plot.caxis.offset = (eMinRays + eMaxRays) / 2
plot.fluxFormatStr = '%.2p'
if hasattr(plot, 'textPanel'):
plot.textPanel.set_text(tt)
plot.baseName = plot.title
plot.saveName = (str1 + str2).format(
plot.baseName, R0s, (slitZ-slitwidth)*1e3,
slitwidth*1e3, R0s+dX)
# plot.persistentName = plot.saveName + '.pickle'
yield
def main():
beamLine = build_beamline()
plots = define_plots(beamLine)
xrtr.run_ray_tracing(plots, repeats=nrep, beamLine=beamLine,
generator=plot_generator)
if __name__ == '__main__':
main()
|