File: waveFZP.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (306 lines) | stat: -rw-r--r-- 10,934 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
# -*- coding: utf-8 -*-
"""
.. !!! select one of the two functions to run at the very bottom !!!

.. _fzpDiffraction:

Diffraction from FZP
--------------------

This examples demonstrates diffraction from a Fresnel Zone Plate with variously
thick outer zone and at variable energy. The radial intensity distribution is
shown in the figure below for a 70-nm-outer-zone FZP. Notice that the 2nd order
was also calculated and together with other even orders indeed results in
vanishing intensity.

.. imagezoom:: _images/1-LE-FZP_70nm-orders-r_E.*

The energy dependence of efficiency for 3 different FZPs is shown below. The
horizontal bars mark the expected :math:`1/m^2\pi^2` levels for odd orders and
25% transmission for the 0th order. Watch how a zone plate becomes a band pass
filter as the outer zone size approaches the wavelength, here ~10 nm.

+----------+----------+----------+
| |FZP_70| | |FZP_50| | |FZP_30| |
+----------+----------+----------+

.. |FZP_70| imagezoom:: _images/1-LE-FZP_70nm-eff_E.*
.. |FZP_50| imagezoom:: _images/1-LE-FZP_50nm-eff_E.*
.. |FZP_30| imagezoom:: _images/1-LE-FZP_30nm-eff_E.*
   :loc: upper-right-corner

"""
#Set proper setting for the FZP and comment/uncomment one of the two main
#invoked functions (at the very bottom).
__author__ = "Konstantin Klementiev", "Roman Chernikov"
__date__ = "08 Mar 2016"
import os, sys; sys.path.append(os.path.join('..', '..', '..'))  # analysis:ignore
import numpy as np
import pickle
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cm as cm

#import xrt.plotter as xrtp
import xrt.runner as xrtr
import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
import xrt.backends.raycing.oes as roe
import xrt.backends.raycing.run as rr
import xrt.backends.raycing.materials as rm
import xrt.backends.raycing.waves as rw

cwd = os.getcwd()

E_FZP = 120
mGold = rm.Material('Au', rho=19.3, kind='FZP')

p = 1.  # is not important
f = 2.
thinnestZone = 30e-6  # in mm
maxOrder = 3
maxDisplayOrder = 3
visualizeCrossSection = True
cmap = mpl.colormaps['jet']

prefix = '1-LE-FZP_{0:.0f}nm'.format(thinnestZone*1e6)
energies = np.linspace(50, 250, 101)
angles = np.linspace(0, 2e-3, 41)
#whatToScan = 'angle'
whatToScan = 'energy'
if whatToScan == 'energy':
    suffix = '_E'
else:
    suffix = '_pitch'

Nr = 101
nrays = 2e5


def build_beamline():  # for test=True
    beamLine = raycing.BeamLine()
    gsource = rs.GeometricSource(
        beamLine, 'GeometricSource', (0, 0, 0), nrays=nrays,
        distx='annulus', distxprime=None, distzprime=None,
        distE='lines', energies=[E_FZP], polarization='h')

    beamLine.fzp = roe.NormalFZP(
        beamLine, 'FZP', [0, p, 0], pitch=np.pi/2, material=mGold, f=f,
        E=E_FZP, thinnestZone=thinnestZone, isCentralZoneBlack=True)
    gsource.dx = (0, beamLine.fzp.rn[-1])
    beamLine.fzp.area = np.pi * beamLine.fzp.rn[-1]**2 / 2
    print('FZP radius=', beamLine.fzp.rn[-1])

    r0max = beamLine.fzp.rn[-1] * 5
    rNmax = thinnestZone * 5
    beamLine.yglo = np.repeat(
        [10000 if i == 0 else f/i for i in range(maxOrder+1)], Nr)
    beamLine.dr = np.array([r0max/(Nr-1) if i == 0 else rNmax/(Nr-1)
                           for i in range(maxOrder+1)])
    beamLine.zglo = (np.arange(Nr) * beamLine.dr[:, np.newaxis]).flatten()
    beamLine.xglo = np.zeros_like(beamLine.yglo)

    return beamLine


def run_process(beamLine):
    ygloS = beamLine.yglo * (beamLine.E/E_FZP) + p
    wavelen = len(ygloS)
    wave3Dpoints = rs.Beam(nrays=wavelen, forceState=1, withAmplitudes=True)
    rw.prepare_wave(
        beamLine.fzp, wave3Dpoints, beamLine.xglo, ygloS, beamLine.zglo)
    wave3Dpoints.dS = 1

    wrepeats = 1
    for repeat in range(wrepeats):
        beamSource = beamLine.sources[0].shine(withAmplitudes=True)
        outDict = {'beamSource': beamSource}

        beamLine.fluxIn = (beamSource.Jss + beamSource.Jpp).sum()
        oeGlobal, oeLocal = beamLine.fzp.reflect(beamSource)
        oeLocal.area = beamLine.fzp.area
        rw.diffract(oeLocal, wave3Dpoints)
        if wrepeats > 1:
            print('wave repeats: {0} of {1} done'.format(repeat+1, wrepeats))

    beamLine.intensityDiffr = wave3Dpoints.Jss + wave3Dpoints.Jpp
    return outDict
rr.run_process = run_process


def plot_generator(plots, beamLine):
    ilen = Nr * (maxOrder+1)
    pickleName = os.path.join(cwd, prefix + suffix + '.pickle')
    if whatToScan.startswith('angle'):
        scanAxis = angles
        lenAngles = len(angles)
        eff = np.zeros((lenAngles, maxOrder+1))
        if visualizeCrossSection:
            extIntensityDiff = np.zeros((lenAngles, ilen))
    elif whatToScan.startswith('energy'):
        scanAxis = energies
        lenEnergies = len(energies)
        eff = np.zeros((lenEnergies, maxOrder+1))
        if visualizeCrossSection:
            extIntensityDiff = np.zeros((lenEnergies, ilen))

    for isa, sa in enumerate(scanAxis):
        if whatToScan.startswith('angle'):
            print('angle scan: {0}, {1} of {2}'.format(
                sa, isa+1, lenAngles))
            beamLine.E = E_FZP
            beamLine.fzp.pitch = np.pi/2 + sa
        elif whatToScan.startswith('energy'):
            E0 = sa
            print('energy scan: {0}eV, {1} of {2}'.format(
                E0, isa+1, lenEnergies))
            beamLine.E = E0
            beamLine.sources[0].energies = [E0]
#            beamLine.sources[0].energies = E0-dE/2, E0+dE/2
        yield
        flux = (beamLine.intensityDiffr * beamLine.zglo).reshape(
            maxOrder+1, Nr)
        intgl = flux.sum(axis=1) * beamLine.dr * 2*np.pi
        eff[isa, :] = intgl / beamLine.fluxIn
        print('efficiencies = {0}'.format(eff[isa, :]))
        if visualizeCrossSection:
            extIntensityDiff[isa, :] = beamLine.intensityDiffr
    dump = [0, maxOrder, scanAxis, eff, Nr, beamLine.zglo,
            visualizeCrossSection]
    if visualizeCrossSection:
        dump.append(extIntensityDiff)
    with open(pickleName, 'wb') as f:
        pickle.dump(dump, f, protocol=2)


def afterScript():
    print('Now run "visualize_efficiency()"')


def get_efficiency():
    beamLine = build_beamline()
    xrtr.run_ray_tracing([], repeats=1, beamLine=beamLine, processes=1,
                         generator=plot_generator, afterScript=afterScript)


def read_curves(fname):
    pickleName = os.path.join(cwd, fname)
    with open(pickleName, 'rb') as f:
        res = pickle.load(f)
    return res


def create_fig(rect2d, scanAxis, axisLabel, scanAxisFactor, maxOrder):
    fig1 = plt.figure(figsize=(12, 6), dpi=72)
    rect2dX = rect2d[2] / (maxOrder+1)
    ax = []
    sharey = None
    for o in range(maxOrder+1):
        dx = o*rect2dX + 0.03 if o > 0 else 0
        recti = [rect2d[0] + dx, rect2d[1], rect2dX - 0.002, rect2d[3]]
        axi = fig1.add_axes(recti, aspect='auto', sharey=sharey)
        sharey = axi if o > 0 else None
        axi.locator_params(axis='x', nbins=3)
        orderText = r'{0}$^{{\rm {1}}}$ order'.format(
            o, 'st' if o == 1 else 'nd' if o == 2 else 'rd' if o == 3
            else 'th')
        axi.text(0.98, 0.5, orderText, rotation='vertical',
                 transform=axi.transAxes, ha='right', va='center', fontsize=14)
        if o > 0:
            axi.set_xlabel(u'$r$ (µm)', fontsize=14)
        ax.append(axi)
    for axi in ax[1:-1]:
        xticks = axi.xaxis.get_major_ticks()
        xticks[-1].label1.set_visible(False)
    for axi in ax[2:]:
        plt.setp(axi.get_yticklabels(), visible=False)
    ax[0].set_xlabel(u'$r$ (mm)', fontsize=14)
    ax[0].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
    ax[0].set_ylabel(r'normalized intensity (a.u.)', fontsize=14)

    rect2d = [0.95, 0.1, 0.02, 0.8]
    ax1c = fig1.add_axes(rect2d, aspect='auto')
    ax1c.set_ylabel(axisLabel, fontsize=14)
    plt.setp(ax1c, xticks=())
    yLim = scanAxis[0] * scanAxisFactor, scanAxis[-1] * scanAxisFactor
    ax1c.set_ylim(yLim[0], yLim[1])
    a = np.outer(np.arange(0, 1, 0.01), np.ones(10))
    ax1c.imshow(a, aspect='auto', cmap=cmap, origin="lower",
                extent=[0, 1, yLim[0], yLim[1]])

    return fig1, ax


def visualize_efficiency():
    if whatToScan == 'energy':
        axisLabel = 'energy (eV)'
        scanAxisFactor = 1
    else:
        axisLabel = 'pitch (mrad)'
        scanAxisFactor = 1e3

    res = read_curves(prefix + suffix + '.pickle')
    minOrder, maxOrder, scanAxis, eff, Nr, zglo, pickleCrossSection = res[0:7]
    maxPlotOrder = min(maxDisplayOrder, maxOrder)

    figEff = plt.figure(figsize=(6, 6), dpi=72)
    rect2d = [0.15, 0.1, 0.8, 0.8]
    axEff = figEff.add_axes(rect2d, aspect='auto', xlabel=axisLabel,
                            ylabel='absolute efficiency')

    if whatToScan == 'energy':
        axEff.plot([120, 120], [0, 0.5], '--', color='gray', lw=0.5,
                   label=None)
        axEff.plot([110, 130], [0.25, 0.25], 'k', lw=1, label='ideal 0')
        ideal1 = np.pi**-2
        axEff.plot([110, 130], [ideal1, ideal1], 'r', lw=1, label='ideal 1')
        ideal3 = np.pi**-2 / 3**2
        axEff.plot([110, 130], [ideal3, ideal3], 'g', lw=1, label='ideal 3')
        startLegend = 1
#        locLegend = 0.7, 0.2
        locLegend = 'upper right'
    else:
        startLegend = 0
        locLegend = 'upper left'
    axEff.set_title(
        u'FZP with\n$f$ = 2 mm (at 120 eV) and {0:.0f} nm outer zone'.format(
            thinnestZone*1e6))
    axEff.plot(scanAxis*scanAxisFactor, eff[:, 0], '.k', lw=2, label='xrt 0')
    axEff.plot(scanAxis*scanAxisFactor, eff[:, 1], '.r', lw=2, label='xrt 1')
    axEff.plot(scanAxis*scanAxisFactor, eff[:, 3], '.g', lw=2, label='xrt 3')

    lines = axEff.lines
    labels = [l.get_label() for l in lines]
    axEff.legend(lines[startLegend:], labels[startLegend:], title='orders',
                 loc=locLegend)
    axEff.set_ylim(0, 0.5)

    figEff.savefig(prefix + '-eff{0}.png'.format(suffix))

    if pickleCrossSection:
        extIntensityDiff = res[7]
        elen = extIntensityDiff.shape[0]
        orders = maxOrder + 1 - minOrder
        extIntensityDiff = extIntensityDiff.reshape(elen, orders, Nr)
        z = zglo.reshape(orders, Nr)
        zFactor = 1e3 * np.ones(orders)
        zFactor[0] = 1
        rect2d = [0.05, 0.1, 0.8, 0.8]
        figr, axr = create_fig(rect2d, scanAxis, axisLabel, scanAxisFactor,
                               maxPlotOrder)

        for iE in range(elen):
            for o, iaxr in zip(range(maxPlotOrder+1), axr):
                f = zFactor[o]
                iaxr.plot(z[o, :]*f, extIntensityDiff[iE, o, :],
                          '-', lw=0.5, color=cmap(float(iE)/(elen-1)))
                iaxr.set_xlim(z[o, 0]*f, z[o, -1]*f)

        # figr.savefig(prefix + '-orders-r{0}.png'.format(suffix))

    plt.show()


if __name__ == '__main__':
    get_efficiency()
    # visualize_efficiency()