1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
# -*- coding: utf-8 -*-
"""
.. !!! select one of the two functions to run at the very bottom !!!
.. _fzpDiffraction:
Diffraction from FZP
--------------------
This examples demonstrates diffraction from a Fresnel Zone Plate with variously
thick outer zone and at variable energy. The radial intensity distribution is
shown in the figure below for a 70-nm-outer-zone FZP. Notice that the 2nd order
was also calculated and together with other even orders indeed results in
vanishing intensity.
.. imagezoom:: _images/1-LE-FZP_70nm-orders-r_E.*
The energy dependence of efficiency for 3 different FZPs is shown below. The
horizontal bars mark the expected :math:`1/m^2\pi^2` levels for odd orders and
25% transmission for the 0th order. Watch how a zone plate becomes a band pass
filter as the outer zone size approaches the wavelength, here ~10 nm.
+----------+----------+----------+
| |FZP_70| | |FZP_50| | |FZP_30| |
+----------+----------+----------+
.. |FZP_70| imagezoom:: _images/1-LE-FZP_70nm-eff_E.*
.. |FZP_50| imagezoom:: _images/1-LE-FZP_50nm-eff_E.*
.. |FZP_30| imagezoom:: _images/1-LE-FZP_30nm-eff_E.*
:loc: upper-right-corner
"""
#Set proper setting for the FZP and comment/uncomment one of the two main
#invoked functions (at the very bottom).
__author__ = "Konstantin Klementiev", "Roman Chernikov"
__date__ = "08 Mar 2016"
import os, sys; sys.path.append(os.path.join('..', '..', '..')) # analysis:ignore
import numpy as np
import pickle
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.cm as cm
#import xrt.plotter as xrtp
import xrt.runner as xrtr
import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
import xrt.backends.raycing.oes as roe
import xrt.backends.raycing.run as rr
import xrt.backends.raycing.materials as rm
import xrt.backends.raycing.waves as rw
cwd = os.getcwd()
E_FZP = 120
mGold = rm.Material('Au', rho=19.3, kind='FZP')
p = 1. # is not important
f = 2.
thinnestZone = 30e-6 # in mm
maxOrder = 3
maxDisplayOrder = 3
visualizeCrossSection = True
cmap = mpl.colormaps['jet']
prefix = '1-LE-FZP_{0:.0f}nm'.format(thinnestZone*1e6)
energies = np.linspace(50, 250, 101)
angles = np.linspace(0, 2e-3, 41)
#whatToScan = 'angle'
whatToScan = 'energy'
if whatToScan == 'energy':
suffix = '_E'
else:
suffix = '_pitch'
Nr = 101
nrays = 2e5
def build_beamline(): # for test=True
beamLine = raycing.BeamLine()
gsource = rs.GeometricSource(
beamLine, 'GeometricSource', (0, 0, 0), nrays=nrays,
distx='annulus', distxprime=None, distzprime=None,
distE='lines', energies=[E_FZP], polarization='h')
beamLine.fzp = roe.NormalFZP(
beamLine, 'FZP', [0, p, 0], pitch=np.pi/2, material=mGold, f=f,
E=E_FZP, thinnestZone=thinnestZone, isCentralZoneBlack=True)
gsource.dx = (0, beamLine.fzp.rn[-1])
beamLine.fzp.area = np.pi * beamLine.fzp.rn[-1]**2 / 2
print('FZP radius=', beamLine.fzp.rn[-1])
r0max = beamLine.fzp.rn[-1] * 5
rNmax = thinnestZone * 5
beamLine.yglo = np.repeat(
[10000 if i == 0 else f/i for i in range(maxOrder+1)], Nr)
beamLine.dr = np.array([r0max/(Nr-1) if i == 0 else rNmax/(Nr-1)
for i in range(maxOrder+1)])
beamLine.zglo = (np.arange(Nr) * beamLine.dr[:, np.newaxis]).flatten()
beamLine.xglo = np.zeros_like(beamLine.yglo)
return beamLine
def run_process(beamLine):
ygloS = beamLine.yglo * (beamLine.E/E_FZP) + p
wavelen = len(ygloS)
wave3Dpoints = rs.Beam(nrays=wavelen, forceState=1, withAmplitudes=True)
rw.prepare_wave(
beamLine.fzp, wave3Dpoints, beamLine.xglo, ygloS, beamLine.zglo)
wave3Dpoints.dS = 1
wrepeats = 1
for repeat in range(wrepeats):
beamSource = beamLine.sources[0].shine(withAmplitudes=True)
outDict = {'beamSource': beamSource}
beamLine.fluxIn = (beamSource.Jss + beamSource.Jpp).sum()
oeGlobal, oeLocal = beamLine.fzp.reflect(beamSource)
oeLocal.area = beamLine.fzp.area
rw.diffract(oeLocal, wave3Dpoints)
if wrepeats > 1:
print('wave repeats: {0} of {1} done'.format(repeat+1, wrepeats))
beamLine.intensityDiffr = wave3Dpoints.Jss + wave3Dpoints.Jpp
return outDict
rr.run_process = run_process
def plot_generator(plots, beamLine):
ilen = Nr * (maxOrder+1)
pickleName = os.path.join(cwd, prefix + suffix + '.pickle')
if whatToScan.startswith('angle'):
scanAxis = angles
lenAngles = len(angles)
eff = np.zeros((lenAngles, maxOrder+1))
if visualizeCrossSection:
extIntensityDiff = np.zeros((lenAngles, ilen))
elif whatToScan.startswith('energy'):
scanAxis = energies
lenEnergies = len(energies)
eff = np.zeros((lenEnergies, maxOrder+1))
if visualizeCrossSection:
extIntensityDiff = np.zeros((lenEnergies, ilen))
for isa, sa in enumerate(scanAxis):
if whatToScan.startswith('angle'):
print('angle scan: {0}, {1} of {2}'.format(
sa, isa+1, lenAngles))
beamLine.E = E_FZP
beamLine.fzp.pitch = np.pi/2 + sa
elif whatToScan.startswith('energy'):
E0 = sa
print('energy scan: {0}eV, {1} of {2}'.format(
E0, isa+1, lenEnergies))
beamLine.E = E0
beamLine.sources[0].energies = [E0]
# beamLine.sources[0].energies = E0-dE/2, E0+dE/2
yield
flux = (beamLine.intensityDiffr * beamLine.zglo).reshape(
maxOrder+1, Nr)
intgl = flux.sum(axis=1) * beamLine.dr * 2*np.pi
eff[isa, :] = intgl / beamLine.fluxIn
print('efficiencies = {0}'.format(eff[isa, :]))
if visualizeCrossSection:
extIntensityDiff[isa, :] = beamLine.intensityDiffr
dump = [0, maxOrder, scanAxis, eff, Nr, beamLine.zglo,
visualizeCrossSection]
if visualizeCrossSection:
dump.append(extIntensityDiff)
with open(pickleName, 'wb') as f:
pickle.dump(dump, f, protocol=2)
def afterScript():
print('Now run "visualize_efficiency()"')
def get_efficiency():
beamLine = build_beamline()
xrtr.run_ray_tracing([], repeats=1, beamLine=beamLine, processes=1,
generator=plot_generator, afterScript=afterScript)
def read_curves(fname):
pickleName = os.path.join(cwd, fname)
with open(pickleName, 'rb') as f:
res = pickle.load(f)
return res
def create_fig(rect2d, scanAxis, axisLabel, scanAxisFactor, maxOrder):
fig1 = plt.figure(figsize=(12, 6), dpi=72)
rect2dX = rect2d[2] / (maxOrder+1)
ax = []
sharey = None
for o in range(maxOrder+1):
dx = o*rect2dX + 0.03 if o > 0 else 0
recti = [rect2d[0] + dx, rect2d[1], rect2dX - 0.002, rect2d[3]]
axi = fig1.add_axes(recti, aspect='auto', sharey=sharey)
sharey = axi if o > 0 else None
axi.locator_params(axis='x', nbins=3)
orderText = r'{0}$^{{\rm {1}}}$ order'.format(
o, 'st' if o == 1 else 'nd' if o == 2 else 'rd' if o == 3
else 'th')
axi.text(0.98, 0.5, orderText, rotation='vertical',
transform=axi.transAxes, ha='right', va='center', fontsize=14)
if o > 0:
axi.set_xlabel(u'$r$ (µm)', fontsize=14)
ax.append(axi)
for axi in ax[1:-1]:
xticks = axi.xaxis.get_major_ticks()
xticks[-1].label1.set_visible(False)
for axi in ax[2:]:
plt.setp(axi.get_yticklabels(), visible=False)
ax[0].set_xlabel(u'$r$ (mm)', fontsize=14)
ax[0].ticklabel_format(style='sci', axis='y', scilimits=(0, 0))
ax[0].set_ylabel(r'normalized intensity (a.u.)', fontsize=14)
rect2d = [0.95, 0.1, 0.02, 0.8]
ax1c = fig1.add_axes(rect2d, aspect='auto')
ax1c.set_ylabel(axisLabel, fontsize=14)
plt.setp(ax1c, xticks=())
yLim = scanAxis[0] * scanAxisFactor, scanAxis[-1] * scanAxisFactor
ax1c.set_ylim(yLim[0], yLim[1])
a = np.outer(np.arange(0, 1, 0.01), np.ones(10))
ax1c.imshow(a, aspect='auto', cmap=cmap, origin="lower",
extent=[0, 1, yLim[0], yLim[1]])
return fig1, ax
def visualize_efficiency():
if whatToScan == 'energy':
axisLabel = 'energy (eV)'
scanAxisFactor = 1
else:
axisLabel = 'pitch (mrad)'
scanAxisFactor = 1e3
res = read_curves(prefix + suffix + '.pickle')
minOrder, maxOrder, scanAxis, eff, Nr, zglo, pickleCrossSection = res[0:7]
maxPlotOrder = min(maxDisplayOrder, maxOrder)
figEff = plt.figure(figsize=(6, 6), dpi=72)
rect2d = [0.15, 0.1, 0.8, 0.8]
axEff = figEff.add_axes(rect2d, aspect='auto', xlabel=axisLabel,
ylabel='absolute efficiency')
if whatToScan == 'energy':
axEff.plot([120, 120], [0, 0.5], '--', color='gray', lw=0.5,
label=None)
axEff.plot([110, 130], [0.25, 0.25], 'k', lw=1, label='ideal 0')
ideal1 = np.pi**-2
axEff.plot([110, 130], [ideal1, ideal1], 'r', lw=1, label='ideal 1')
ideal3 = np.pi**-2 / 3**2
axEff.plot([110, 130], [ideal3, ideal3], 'g', lw=1, label='ideal 3')
startLegend = 1
# locLegend = 0.7, 0.2
locLegend = 'upper right'
else:
startLegend = 0
locLegend = 'upper left'
axEff.set_title(
u'FZP with\n$f$ = 2 mm (at 120 eV) and {0:.0f} nm outer zone'.format(
thinnestZone*1e6))
axEff.plot(scanAxis*scanAxisFactor, eff[:, 0], '.k', lw=2, label='xrt 0')
axEff.plot(scanAxis*scanAxisFactor, eff[:, 1], '.r', lw=2, label='xrt 1')
axEff.plot(scanAxis*scanAxisFactor, eff[:, 3], '.g', lw=2, label='xrt 3')
lines = axEff.lines
labels = [l.get_label() for l in lines]
axEff.legend(lines[startLegend:], labels[startLegend:], title='orders',
loc=locLegend)
axEff.set_ylim(0, 0.5)
figEff.savefig(prefix + '-eff{0}.png'.format(suffix))
if pickleCrossSection:
extIntensityDiff = res[7]
elen = extIntensityDiff.shape[0]
orders = maxOrder + 1 - minOrder
extIntensityDiff = extIntensityDiff.reshape(elen, orders, Nr)
z = zglo.reshape(orders, Nr)
zFactor = 1e3 * np.ones(orders)
zFactor[0] = 1
rect2d = [0.05, 0.1, 0.8, 0.8]
figr, axr = create_fig(rect2d, scanAxis, axisLabel, scanAxisFactor,
maxPlotOrder)
for iE in range(elen):
for o, iaxr in zip(range(maxPlotOrder+1), axr):
f = zFactor[o]
iaxr.plot(z[o, :]*f, extIntensityDiff[iE, o, :],
'-', lw=0.5, color=cmap(float(iE)/(elen-1)))
iaxr.set_xlim(z[o, 0]*f, z[o, -1]*f)
# figr.savefig(prefix + '-orders-r{0}.png'.format(suffix))
plt.show()
if __name__ == '__main__':
get_efficiency()
# visualize_efficiency()
|