File: read_NOM_maps.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (172 lines) | stat: -rw-r--r-- 6,156 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev"
__date__ = "1 Oct 2015"

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage


def plot_NOM_2D(fname):
    xL, yL, zL = np.loadtxt(fname+'.dat', unpack=True)
    nX = (yL == yL[0]).sum()
    nY = (xL == xL[0]).sum()
    x = xL[:nX]
    y = yL[::nX]
    print(nX, nY)
    z = zL.reshape((nY, nX))

    zmax = abs(z).max()
    print(z.shape)
#    print(zmax)

    fig = plt.figure(figsize=(16, 8))
    rect_2D = [0.1, 0.1, 0.72, 0.6]
    rect_1Dx = [0.1, 0.72, 0.72, 0.26]
    rect_1Dy = [0.83, 0.1, 0.13, 0.6]
    extent = [x[0], x[-1], y[0], y[-1]]
    ax2D = plt.axes(rect_2D)
    ax2D.set_xlabel('x (mm)')
    ax2D.set_ylabel('y (mm)')
    ax2D.imshow(
        z, aspect='auto', cmap='jet', extent=extent,
        # interpolation='nearest',
        interpolation='none',
        origin='lower', figure=fig)

    ax1Dx = plt.axes(rect_1Dx, sharex=ax2D)
    ax1Dy = plt.axes(rect_1Dy, sharey=ax2D)
    ax1Dx.set_ylabel('h (nm)')
    ax1Dy.set_xlabel('h (nm)')
    plt.setp(ax1Dx.get_xticklabels() + ax1Dy.get_yticklabels(),
             visible=False)
#    ax1Dx.plot(x, x*0, 'gray')
    kl, = ax1Dx.plot(x, z.sum(axis=0)/nY, 'k')
    ax1Dx.plot(x, z[0, :], 'r')
    ax1Dx.plot(x, z[nY//2, :], 'g')
    ax1Dx.plot(x, z[nY-1, :], 'b')
    ax1Dx.legend([kl], ['average over y'], loc='upper left', frameon=False)

#    ax1Dy.plot(y*0, y, 'gray')
    ax1Dy.plot(z.sum(axis=1)/nX, y, 'k')
    ax1Dy.plot(z[:, 0], y, 'y')
    ax1Dy.plot(z[:, nX//2], y, 'c')
    ax1Dy.plot(z[:, nX-1], y, 'm')

    ax2D.set_xlim(extent[0], extent[1])
    ax2D.set_ylim(extent[2], extent[3])
    ax1Dx.set_ylim(-zmax, zmax)
    ax1Dy.set_xlim(-zmax, zmax)

    ax2D.annotate('', (0, 0), (-0.03, 0), size=10,
                  xycoords="axes fraction",
                  arrowprops=dict(alpha=1, fc='r', ec='r', headwidth=10,
                                  headlength=0.4))
    ax2D.annotate('', (0, 0.5), (-0.03, 0.5), size=10,
                  xycoords="axes fraction",
                  arrowprops=dict(alpha=1, fc='g', ec='g', headwidth=10,
                                  headlength=0.4))
    ax2D.annotate('', (0, 1), (-0.03, 1), size=10,
                  xycoords="axes fraction",
                  arrowprops=dict(alpha=1, fc='b', ec='b', headwidth=10,
                                  headlength=0.4))

    ax2D.annotate('', (0, 0), (0, -0.06), size=10,
                  xycoords="axes fraction",
                  arrowprops=dict(alpha=1, fc='y', ec='y', headwidth=10,
                                  headlength=0.4))
    ax2D.annotate('', (0.5, 0), (0.5, -0.06), size=10,
                  xycoords="axes fraction",
                  arrowprops=dict(alpha=1, fc='c', ec='c', headwidth=10,
                                  headlength=0.4))
    ax2D.annotate('', (1, 0), (1, -0.06), size=10,
                  xycoords="axes fraction",
                  arrowprops=dict(alpha=1, fc='m', ec='m', headwidth=10,
                                  headlength=0.4))

    b, a = np.gradient(z)
    dx = x[1] - x[0]
    dy = y[1] - y[0]
    a /= dx
    b /= dy
    rmsA = ((a**2).sum() / (nX * nY))**0.5
    rmsB = ((b**2).sum() / (nX * nY))**0.5
    aveZ = z.sum() / (nX * nY)
    fig.text(0.91, 0.95,
             u'rms slope errors:\ndz/dx = {0:.2f} µrad\n'
             u'dz/dy = {1:.2f} µrad\n\n'
             u'mean figure error:\n<z> = {2:.2f} pm\n'
             .format(rmsA, rmsB, aveZ*1e3),
             transform=fig.transFigure, size=12, color='r', ha='center',
             va='top')

# this is the way how the surface is used in ray-tracing/wave-propagation:
# the hight and the directions are spline-interpolated (the spline coefficients
# are pre-calculated) and then the spline piece-wise polinomials are used to
# reconstruct the height and the two directions and arbitrary (x, y) points.
    splineZ = ndimage.spline_filter(z.T)
    splineA = ndimage.spline_filter(a.T)
    splineB = ndimage.spline_filter(b.T)

    nrays = 1000
    xnew = np.random.uniform(x[0], x[-1], nrays)
    ynew = np.random.uniform(y[0], y[-1], nrays)
    coords = np.array([(xnew-x[0]) / (x[-1]-x[0]) * (nX-1),
                       (ynew-y[0]) / (y[-1]-y[0]) * (nY-1)])

    znew = ndimage.map_coordinates(splineZ, coords, prefilter=True)
    anew = ndimage.map_coordinates(splineA, coords, prefilter=True)
    bnew = ndimage.map_coordinates(splineB, coords, prefilter=True)

    ax2D.scatter(xnew, ynew, c=znew, marker='o', s=50, cmap='jet')
    ax2D.quiver(xnew, ynew, -anew, -bnew, edgecolor='gray', color='gray',
                # headaxislength=5,
                scale=200, lw=0.2)

    fig.savefig(fname+'.png')
    plt.show()


def plot_NOM_3D(fname):
    from mpl_toolkits.mplot3d import Axes3D
    from matplotlib import cm
    from matplotlib.ticker import LinearLocator, FormatStrFormatter

    xL, yL, zL = np.loadtxt(fname+'.dat', unpack=True)
    nX = (yL == yL[0]).sum()
    nY = (xL == xL[0]).sum()
    x = xL.reshape((nY, nX))
    y = yL.reshape((nY, nX))
    z = zL.reshape((nY, nX))
    x1D = xL[:nX]
    y1D = yL[::nX]
#    z += z[::-1, :]
    zmax = abs(z).max()

    fig = plt.figure()
    ax = fig.add_subplot(projection='3d')
    surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.coolwarm,
                           linewidth=0, antialiased=False, alpha=0.5)
    ax.set_zlim(-zmax, zmax)
    ax.zaxis.set_major_locator(LinearLocator(10))
    ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

    fig.colorbar(surf, shrink=0.5, aspect=5)

    splineZ = ndimage.spline_filter(z.T)
    nrays = 1000
    xnew = np.random.uniform(x1D[0], x1D[-1], nrays)
    ynew = np.random.uniform(y1D[0], y1D[-1], nrays)
    coords = np.array([(xnew-x1D[0]) / (x1D[-1]-x1D[0]) * (nX-1),
                       (ynew-y1D[0]) / (y1D[-1]-y1D[0]) * (nY-1)])
    znew = ndimage.map_coordinates(splineZ, coords, prefilter=True)
    ax.scatter(xnew, ynew, znew, c=znew, marker='o', s=50, cmap=cm.coolwarm)

    fig.savefig(fname+'_3d.png')
    plt.show()


if __name__ == '__main__':
    fname = 'mock_surface'
    plot_NOM_2D(fname)
    # plot_NOM_3D(fname)