1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
|
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev"
__date__ = "1 Oct 2015"
import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
def plot_NOM_2D(fname):
xL, yL, zL = np.loadtxt(fname+'.dat', unpack=True)
nX = (yL == yL[0]).sum()
nY = (xL == xL[0]).sum()
x = xL[:nX]
y = yL[::nX]
print(nX, nY)
z = zL.reshape((nY, nX))
zmax = abs(z).max()
print(z.shape)
# print(zmax)
fig = plt.figure(figsize=(16, 8))
rect_2D = [0.1, 0.1, 0.72, 0.6]
rect_1Dx = [0.1, 0.72, 0.72, 0.26]
rect_1Dy = [0.83, 0.1, 0.13, 0.6]
extent = [x[0], x[-1], y[0], y[-1]]
ax2D = plt.axes(rect_2D)
ax2D.set_xlabel('x (mm)')
ax2D.set_ylabel('y (mm)')
ax2D.imshow(
z, aspect='auto', cmap='jet', extent=extent,
# interpolation='nearest',
interpolation='none',
origin='lower', figure=fig)
ax1Dx = plt.axes(rect_1Dx, sharex=ax2D)
ax1Dy = plt.axes(rect_1Dy, sharey=ax2D)
ax1Dx.set_ylabel('h (nm)')
ax1Dy.set_xlabel('h (nm)')
plt.setp(ax1Dx.get_xticklabels() + ax1Dy.get_yticklabels(),
visible=False)
# ax1Dx.plot(x, x*0, 'gray')
kl, = ax1Dx.plot(x, z.sum(axis=0)/nY, 'k')
ax1Dx.plot(x, z[0, :], 'r')
ax1Dx.plot(x, z[nY//2, :], 'g')
ax1Dx.plot(x, z[nY-1, :], 'b')
ax1Dx.legend([kl], ['average over y'], loc='upper left', frameon=False)
# ax1Dy.plot(y*0, y, 'gray')
ax1Dy.plot(z.sum(axis=1)/nX, y, 'k')
ax1Dy.plot(z[:, 0], y, 'y')
ax1Dy.plot(z[:, nX//2], y, 'c')
ax1Dy.plot(z[:, nX-1], y, 'm')
ax2D.set_xlim(extent[0], extent[1])
ax2D.set_ylim(extent[2], extent[3])
ax1Dx.set_ylim(-zmax, zmax)
ax1Dy.set_xlim(-zmax, zmax)
ax2D.annotate('', (0, 0), (-0.03, 0), size=10,
xycoords="axes fraction",
arrowprops=dict(alpha=1, fc='r', ec='r', headwidth=10,
headlength=0.4))
ax2D.annotate('', (0, 0.5), (-0.03, 0.5), size=10,
xycoords="axes fraction",
arrowprops=dict(alpha=1, fc='g', ec='g', headwidth=10,
headlength=0.4))
ax2D.annotate('', (0, 1), (-0.03, 1), size=10,
xycoords="axes fraction",
arrowprops=dict(alpha=1, fc='b', ec='b', headwidth=10,
headlength=0.4))
ax2D.annotate('', (0, 0), (0, -0.06), size=10,
xycoords="axes fraction",
arrowprops=dict(alpha=1, fc='y', ec='y', headwidth=10,
headlength=0.4))
ax2D.annotate('', (0.5, 0), (0.5, -0.06), size=10,
xycoords="axes fraction",
arrowprops=dict(alpha=1, fc='c', ec='c', headwidth=10,
headlength=0.4))
ax2D.annotate('', (1, 0), (1, -0.06), size=10,
xycoords="axes fraction",
arrowprops=dict(alpha=1, fc='m', ec='m', headwidth=10,
headlength=0.4))
b, a = np.gradient(z)
dx = x[1] - x[0]
dy = y[1] - y[0]
a /= dx
b /= dy
rmsA = ((a**2).sum() / (nX * nY))**0.5
rmsB = ((b**2).sum() / (nX * nY))**0.5
aveZ = z.sum() / (nX * nY)
fig.text(0.91, 0.95,
u'rms slope errors:\ndz/dx = {0:.2f} µrad\n'
u'dz/dy = {1:.2f} µrad\n\n'
u'mean figure error:\n<z> = {2:.2f} pm\n'
.format(rmsA, rmsB, aveZ*1e3),
transform=fig.transFigure, size=12, color='r', ha='center',
va='top')
# this is the way how the surface is used in ray-tracing/wave-propagation:
# the hight and the directions are spline-interpolated (the spline coefficients
# are pre-calculated) and then the spline piece-wise polinomials are used to
# reconstruct the height and the two directions and arbitrary (x, y) points.
splineZ = ndimage.spline_filter(z.T)
splineA = ndimage.spline_filter(a.T)
splineB = ndimage.spline_filter(b.T)
nrays = 1000
xnew = np.random.uniform(x[0], x[-1], nrays)
ynew = np.random.uniform(y[0], y[-1], nrays)
coords = np.array([(xnew-x[0]) / (x[-1]-x[0]) * (nX-1),
(ynew-y[0]) / (y[-1]-y[0]) * (nY-1)])
znew = ndimage.map_coordinates(splineZ, coords, prefilter=True)
anew = ndimage.map_coordinates(splineA, coords, prefilter=True)
bnew = ndimage.map_coordinates(splineB, coords, prefilter=True)
ax2D.scatter(xnew, ynew, c=znew, marker='o', s=50, cmap='jet')
ax2D.quiver(xnew, ynew, -anew, -bnew, edgecolor='gray', color='gray',
# headaxislength=5,
scale=200, lw=0.2)
fig.savefig(fname+'.png')
plt.show()
def plot_NOM_3D(fname):
from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
from matplotlib.ticker import LinearLocator, FormatStrFormatter
xL, yL, zL = np.loadtxt(fname+'.dat', unpack=True)
nX = (yL == yL[0]).sum()
nY = (xL == xL[0]).sum()
x = xL.reshape((nY, nX))
y = yL.reshape((nY, nX))
z = zL.reshape((nY, nX))
x1D = xL[:nX]
y1D = yL[::nX]
# z += z[::-1, :]
zmax = abs(z).max()
fig = plt.figure()
ax = fig.add_subplot(projection='3d')
surf = ax.plot_surface(x, y, z, rstride=1, cstride=1, cmap=cm.coolwarm,
linewidth=0, antialiased=False, alpha=0.5)
ax.set_zlim(-zmax, zmax)
ax.zaxis.set_major_locator(LinearLocator(10))
ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))
fig.colorbar(surf, shrink=0.5, aspect=5)
splineZ = ndimage.spline_filter(z.T)
nrays = 1000
xnew = np.random.uniform(x1D[0], x1D[-1], nrays)
ynew = np.random.uniform(y1D[0], y1D[-1], nrays)
coords = np.array([(xnew-x1D[0]) / (x1D[-1]-x1D[0]) * (nX-1),
(ynew-y1D[0]) / (y1D[-1]-y1D[0]) * (nY-1)])
znew = ndimage.map_coordinates(splineZ, coords, prefilter=True)
ax.scatter(xnew, ynew, znew, c=znew, marker='o', s=50, cmap=cm.coolwarm)
fig.savefig(fname+'_3d.png')
plt.show()
if __name__ == '__main__':
fname = 'mock_surface'
plot_NOM_2D(fname)
# plot_NOM_3D(fname)
|