1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev"
__date__ = "11 Nov 2017"
import os, sys; sys.path.append(os.path.join('..', '..')) # analysis:ignore
import numpy as np
import time
import matplotlib.pyplot as plt
import xrt.backends.raycing.sources as rs
import xrt.backends.raycing.coherence as rco
harmonics = 3, 7
energySpreads = 0.8e-3,
emittances = 280., # pmrad
bw = 1e-3
p = 40000.
Kmax = 1.92
betaX, betaZ = 2., 2. # m
thetaMax, psiMax = 60e-6, 30e-6 # rad
binsx, binsz = 64+1, 32+1
theta = np.linspace(-thetaMax, thetaMax, binsx)
psi = np.linspace(-psiMax, psiMax, binsz)
repeats = 10 # "macro-electrons"
kw = dict(
eE=3.0, eI=0.5, # MAX IV
name='IVU19', period=19, n=162, # MAX IV
targetE=(10000, 7),
betaX=betaX, betaZ=betaZ,
xPrimeMax=thetaMax*1e3, zPrimeMax=psiMax*1e3,
# targetOpenCL='CPU',
xPrimeMaxAutoReduce=False, zPrimeMaxAutoReduce=False)
def main():
und = rs.Undulator(**kw)
for harmonic in harmonics:
Eh = harmonic * und.E1
# Eh = Eh * (1 - 1./harmonic/und.Np) # detuned to harmonic's maximum
und.eMin = Eh * (1 - bw/2)
und.eMax = Eh * (1 + bw/2)
und.reset()
energy = np.ones(repeats) * Eh
st = 'st' if harmonic == 1 else 'nd' if harmonic == 2 else 'rd'\
if harmonic == 3 else 'th'
for energySpread in energySpreads:
und.eEspread = energySpread
for emittancex in emittances:
if energySpread > 1e-12:
ses = '{0:.1e}'.format(energySpread)
ses = ses[:-2] + ses[-1] # removes "0" from power
else:
ses = '0'
txt = '{0}{1} harmonic ({2:.0f} eV){5}{3} energy spread{5}' +\
'$\\epsilon_x$ = {4:.0f} pmrad'
cap = txt.format(harmonic, st, Eh, ses, emittancex, ', ')
baseName = 'h{0:02d}-esp{1}-em{2:04.0f}'.format(
harmonic, energySpread, emittancex)
emittancez = 10 if emittancex > 1e-12 else 0
und.dx = np.sqrt(emittancex*betaX) * 1e-3 # in mm
und.dz = np.sqrt(emittancez*betaZ) * 1e-3 # in mm
und.dxprime = \
emittancex*1e-9 / und.dx if und.dx > 0 else 0. # rad
und.dzprime = \
emittancez*1e-9 / und.dz if und.dz > 0 else 0. # rad
Es, Ep = und.multi_electron_stack(energy, theta, psi)
print("Es.shape", Es.shape)
k = binsx * binsz
D = np.array(Es).reshape((repeats, k), order='F').T
J = np.dot(D, D.T.conjugate()) # / repeats
print("solving eigenvalue problem...")
start = time.time()
dotc4 = rco.calc_degree_of_transverse_coherence_4D(J)
# print('dotc4', dotc4)
wN, vN = rco.calc_eigen_modes_4D(J, eigenN=4)
stop = time.time()
print("the eigenvalue problem has taken {0:.4} s".format(
stop-start))
print("vN.shape", vN.shape)
print("Top 4 eigen values (4D) = {0}".format(wN))
figE4 = rco.plot_eigen_modes(theta*p, psi*p, wN, vN,
xlabel='x (mm)', ylabel='z (mm)')
figE4.axes[0].xaxis.set_ticklabels([])
figE4.axes[1].xaxis.set_ticklabels([])
figE4.suptitle('Eigen modes of mutual intensity,\n'
+ cap, fontsize=11)
plt.text(0.05, 0.05, 'DoTC={0:.3f}'.format(dotc4),
transform=figE4.axes[0].transAxes,
ha='left', va='bottom', color='w', size=10)
figE4.savefig('Modes-{0}-{1}.png'.format('s', baseName))
print("solving PCA problem...")
start = time.time()
dotcP = rco.calc_degree_of_transverse_coherence_PCA(Es)
# print('dotcP', dotcP)
wPCA, vPCA = rco.calc_eigen_modes_PCA(Es, eigenN=4)
stop = time.time()
print("the PCA problem has taken {0:.4} s".format(stop-start))
print("vPCA.shape", vPCA.shape)
print("Top 4 eigen values (PCA) = {0}".format(wPCA))
figEP = rco.plot_eigen_modes(theta*p, psi*p, wPCA, vPCA,
xlabel='x (mm)', ylabel='z (mm)')
figEP.axes[0].xaxis.set_ticklabels([])
figEP.axes[1].xaxis.set_ticklabels([])
figEP.suptitle('Principal components of one-electron images,\n'
+ cap, fontsize=11)
plt.text(0.05, 0.05, 'DoTC={0:.3f}'.format(dotcP),
transform=figEP.axes[0].transAxes,
ha='left', va='bottom', color='w', size=10)
figEP.savefig('Components-{0}-{1}.png'.format('s', baseName))
xdata = rco.calc_1D_coherent_fraction(Es, 'x', theta*p, p)
ydata = rco.calc_1D_coherent_fraction(Es, 'z', psi*p, p)
fig2D1, figXZ = rco.plot_1D_degree_of_coherence(
xdata, 'x', theta*p)
fig2D2, figXZ = rco.plot_1D_degree_of_coherence(
ydata, 'z', psi*p, fig2=figXZ)
fig2D1.suptitle('Mutual intensity for horizontal cut,\n '
+ cap, size=11)
fig2D2.suptitle('Mutual intensity for vertical cut,\n '
+ cap, size=11)
figXZ.suptitle('Intensity and Degree of Coherence,\n '
+ cap, size=11)
fig2D1.savefig('MutualI-x-{0}-{1}.png'.format('s', baseName))
fig2D2.savefig('MutualI-z-{0}-{1}.png'.format('s', baseName))
figXZ.savefig('DOC-{0}-{1}.png'.format('s', baseName))
plt.show()
# plt.close('all')
if __name__ == '__main__':
main()
print("Done")
|