1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
|
import numpy as np
import os, sys; sys.path.append(os.path.join('..', '..')) # analysis:ignore
import xrt.backends.raycing.materials as rm
import xrt.backends.raycing as raycing
from xrt.backends.raycing.pyTTE_x import TTcrystal, TTscan, Quantity
from xrt.backends.raycing.pyTTE_x.pyTTE_rkpy import TakagiTaupin
from matplotlib import pyplot as plt
thickness=0.3
#geometry = 'Laue reflected' # for xrt. pytte will return transmitted as well
geometry = 'Bragg reflected' # for xrt. pytte will return transmitted as well
#crystal = rm.CrystalSi(hkl=[1,1,1], geom=geometry)
crystal = rm.CrystalSi(hkl=[10,10,0], geom=geometry)
Rcurv = 2e4
alpha=np.radians(0.0)
E=[19728]
dtheta=np.linspace(-50, 10, 300)*1e-6
geotag = 0 if geometry.startswith('B') else np.pi*0.5
ttx = TTcrystal(crystal = 'Si', hkl=crystal.hkl, thickness = Quantity(thickness*1e3,'um'),
debye_waller = 1, xrt_crystal=crystal, Rx=Quantity(Rcurv, 'mm'),
asymmetry = Quantity(alpha+geotag, 'rad'))
tts = TTscan(constant=Quantity(E[0],'eV'),
scan=Quantity(dtheta, 'rad'),
polarization='sigma')
# ttp = TTscan(constant=Quantity(E[0],'eV'),
# scan=Quantity(theta-thetaCenter, 'rad'),
# polarization='pi')
scan_tt_s=TakagiTaupin(ttx, tts)
# scan_tt_p=TakagiTaupin(ttx, ttp)
if __name__ == '__main__':
scan_vector, R, T, curSD = scan_tt_s.run()
# print(curSD.shape)
# dtheta = np.linspace(-5, 10, 501)
theta = crystal.get_Bragg_angle(E[0]) + dtheta
curS, curP = crystal.get_amplitude(E[0], np.sin(theta))
plt.figure("reflectivity")
plt.plot(np.degrees(dtheta)*3600, R, label='Reflectivity pytte')
plt.plot(np.degrees(dtheta)*3600, abs(curS)**2, label='Reflectivity xrt plain')
plt.legend()
plt.figure("transmittivity")
plt.plot(np.degrees(dtheta)*3600, T)
plt.show()
|