1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
# -*- coding: utf-8 -*-
"""
The module provides visualization routines for displaying spatial and
energy distributions of synchrotron sources in 2D and 3D."""
__author__ = "Konstantin Klementiev"
__date__ = "12 Mar 2014"
#import cmath
import time
import copy
import numpy as np
#import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
import os, sys; sys.path.append(os.path.join('..', '..')) # analysis:ignore
#import xrt.backends.raycing as raycing
import xrt.backends.raycing.sources as rs
vmin = 2.5e-3
dpi = 82
xOrigin2d = 84 # all sizes are in pixels
yOrigin2d = 48
space2dto1d = 8
height1d = 100
xSpaceExtra = 20
ySpaceExtra = 28
def visualize(source, data, title, saveName=None, sign=1):
def one_fig(what, ts, tChar, otherChar):
sh = what.shape
xFigSize = float(xOrigin2d + sh[0] + space2dto1d +
height1d + xSpaceExtra)
yFigSize = float(yOrigin2d + sh[1] + space2dto1d +
height1d + ySpaceExtra)
fig = plt.figure(figsize=(xFigSize/dpi, yFigSize/dpi), dpi=dpi)
rect_2D = [xOrigin2d / xFigSize, yOrigin2d / yFigSize,
(sh[0]-1) / xFigSize, (sh[1]-1) / yFigSize]
rect_1DE = copy.deepcopy(rect_2D)
rect_1DE[1] = rect_2D[1] + rect_2D[3] + space2dto1d/yFigSize
rect_1DE[3] = height1d / yFigSize
rect_1Dx = copy.deepcopy(rect_2D)
rect_1Dx[0] = rect_2D[0] + rect_2D[2] + space2dto1d/xFigSize
rect_1Dx[2] = height1d / xFigSize
extent = [source.eMin, source.eMax, ts[0], ts[-1]]
ax2D = plt.axes(rect_2D)
dataMax = what.max()
ax2D.imshow(
what.T, aspect='auto', cmap='hot', extent=extent,
# interpolation='nearest', origin='lower', figure=fig,
interpolation=None, origin='lower', figure=fig,
norm=LogNorm(vmin=dataMax*vmin, vmax=dataMax))
ax2D.set_xlabel('energy (eV)')
ax2D.set_ylabel(r"${0}'$ (mrad)".format(tChar))
ax1DE = plt.axes(rect_1DE, sharex=ax2D)
ax1Dt = plt.axes(rect_1Dx, sharey=ax2D)
plt.setp(ax1DE.get_xticklabels() + ax1Dt.get_yticklabels(),
visible=False)
dE = energies[1] - energies[0]
dt = ts[1] - ts[0]
ax1DE.plot(energies, np.sum(what, axis=1)*dt, 'r')
# ax1DE.set_yscale('log')
ax1Dt.plot(np.sum(what/energies[:, None]*dE, axis=0), ts, 'r')
# ax1Dt.set_xscale('log')
ax1DE.set_ylim(bottom=0)
ax1DE.set_yticks(np.array([0, 2, 4, 6, 8])*1e16)
ax2D.set_xlim(extent[0], extent[1])
ax2D.set_ylim(extent[2], extent[3])
ax1DE.text(
0.65, 1.0, r"Angular flux density {0} at ".format(title) +
r"${0}'=0$".format(otherChar) +
r" (ph/s/mrad$^2$/0.1%bw)", transform=ax1DE.transAxes,
size=12, color='r', ha='center', va='bottom')
ax1DE.text(
0.7, 0.95, "integrated\nover " + r"$d{0}'$".format(tChar),
transform=ax1DE.transAxes, size=12, color='k', ha='center',
va='top')
ax1Dt.text(
0.25, 0.5, "integrated\nover " + r"$d$ln(energy)", rotation=-90,
transform=ax1Dt.transAxes, size=12, color='k', ha='center',
va='center')
return fig, ax2D, ax1DE, ax1Dt
if hasattr(source, 'xs'):
xs = source.xs * 1e3 # from rad to mrad
zs = source.zs * 1e3 # from rad to mrad
energies = source.energies
else:
xs = np.mgrid[source.Theta_min:source.Theta_max + 0.5*source.dTheta:
source.dTheta] * 1e3
zs = np.mgrid[source.Psi_min:source.Psi_max + 0.5*source.dPsi:
source.dPsi] * 1e3
energies = np.mgrid[source.E_min:source.E_max + 0.5*source.dE:
source.dE]
xSlice = 0
zSlice = 0
if 'xrt' in source.prefix_save_name() or\
'srw' in source.prefix_save_name():
pass
else:
data = np.concatenate((data[:, :0:-1, :], data), axis=1)
data = np.concatenate((data[:, :, :0:-1], sign*data), axis=2)
xs = np.concatenate((-xs[:0:-1], xs), axis=1)
zs = np.concatenate((-zs[:0:-1], zs), axis=1)
xSlice = (data.shape[1]-1) // 2
zSlice = (data.shape[2]-1) // 2
figX, ax2EX, ax1EX, ax1XX = one_fig(data[:, :, zSlice], xs, 'x', 'z')
figZ, ax2EZ, ax1EZ, ax1ZZ = one_fig(data[:, xSlice, :], zs, 'z', 'x')
dE = energies[1] - energies[0]
integralEvsX = np.sum(data[:, :, zSlice]/energies[:, None], axis=0)*dE
integralEvsZ = np.sum(data[:, xSlice, :]/energies[:, None], axis=0)*dE
maxIntegral = max(np.max(integralEvsX), np.max(integralEvsZ))
ax1XX.set_xlim(maxIntegral*(sign-1)*0.5, maxIntegral)
ax1ZZ.set_xlim(maxIntegral*(sign-1)*0.5, maxIntegral)
if saveName is not None:
fName = "{0}_{1}'E-" + source.prefix_save_name() + ".png"
figX.savefig(fName.format(saveName, 'x'))
figZ.savefig(fName.format(saveName, 'z'))
def visualize3D(source, data, isZplane=True, saveName=None):
# Enthought library imports
from mayavi.scripts import mayavi2
from mayavi.sources.array_source import ArraySource
# from mayavi.modules.outline import Outline
# from mayavi.modules.volume import Volume
from mayavi.modules.text3d import Text3D
from mayavi.modules.image_plane_widget import ImagePlaneWidget
from mayavi.tools.camera import view
from mayavi.tools.animator import animate
@mayavi2.standalone
def view_data(data):
"""Example showing how to view a 3D numpy array in mayavi2.
"""
def set_labelE(ind):
if hasattr(source, 'energies'):
energies = source.energies
else:
energies = np.mgrid[source.E_min:source.E_max + 0.5*source.dE:
source.dE]
return '{0:.0f} eV'.format(energies[ind])
def move_view(obj, evt):
labelE.text = set_labelE(ipwX.ipw.slice_index)
pos = labelE.position
labelE.position = ipwX.ipw.slice_index * src.spacing[0] + 1,\
pos[1], pos[2]
labelE.vector_text.update()
def set_lut(ipw):
lutM = ipw.module_manager.scalar_lut_manager
# lutM.show_scalar_bar = True
# lutM.number_of_labels = 9
lutM.lut.scale = 'log10'
lutM.lut.range = [dataMax*vmin, dataMax]
lutM.lut_mode = 'hot'
@animate()
def anim(data, ipwX):
scene.scene.off_screen_rendering = True
scene.scene.anti_aliasing_frames = 0
for i in range(0, data.shape[0], 1):
ipwX.ipw.slice_index = i
move_view(None, None)
if saveName is not None:
scene.scene.save('{0}{1:04d}.png'.format(saveName, i))
yield
# 'mayavi' is always defined on the interpreter.
scene = mayavi.new_scene() # analysis:ignore
scene.scene.background = (0, 0, 0)
print(source.prefix_save_name())
src = ArraySource(transpose_input_array=True)
sh = data.shape
# print(sh)
if 'xrt' in source.prefix_save_name() or\
'srw' in source.prefix_save_name():
src.scalar_data = data[:, :sh[1]//2+1, :sh[2]//2+1].copy()
else:
src.scalar_data = data[:, ::-1, ::-1].copy()
# src.spacing = np.array([-0.05, 1, 1])
# src.spacing = np.array([-0.25, 1, 1])
src.spacing = np.array([-0.25, 0.25, 0.25])
mayavi.add_source(src) # analysis:ignore
# Visualize the data.
# o = Outline()
# mayavi.add_module(o)
ipwY = ImagePlaneWidget()
mayavi.add_module(ipwY) # analysis:ignore
ipwY.ipw.plane_orientation = 'y_axes' # our x-axis
ipwY.ipw.slice_index = int(data.shape[1] - 1)
# if 'xrt' in source.prefix_save_name():
# ipwY.ipw.slice_index /= int(2)
ipwY.ipw.left_button_action = 0
set_lut(ipwY)
if isZplane:
ipwZ = ImagePlaneWidget()
mayavi.add_module(ipwZ) # analysis:ignore
ipwZ.ipw.plane_orientation = 'z_axes' # our z-axis
ipwZ.ipw.slice_index = int(data.shape[2] - 1)
# if 'xrt' in source.prefix_save_name():
# ipwZ.ipw.slice_index /= int(2)
ipwZ.ipw.left_button_action = 0
if 'xrt' in source.prefix_save_name() or\
'srw' in source.prefix_save_name():
pass
else:
data = np.concatenate((data[:, :0:-1, :], data), axis=1)
data = np.concatenate((data[:, :, :0:-1], data), axis=2)
sh = data.shape
print(sh)
src = ArraySource(transpose_input_array=True)
src.scalar_data = data.copy()
# src.spacing = np.array([-0.05, 1, 1])
# src.spacing = np.array([-0.25, 1, 1])
src.spacing = np.array([-0.25, 0.25, 0.25])
mayavi.add_source(src) # analysis:ignore
ipwX = ImagePlaneWidget()
mayavi.add_module(ipwX) # analysis:ignore
ipwX.ipw.plane_orientation = 'x_axes' # energy
set_lut(ipwX)
ipwX.ipw.add_observer('WindowLevelEvent', move_view)
ipwX.ipw.add_observer('StartInteractionEvent', move_view)
ipwX.ipw.add_observer('EndInteractionEvent', move_view)
labelE = Text3D()
mayavi.add_module(labelE) # analysis:ignore
labelE.position = (1, data.shape[1]*0.73*src.spacing[1],
data.shape[2]*0.85*src.spacing[2])
labelE.orientation = 90, 0, 90
labelE.text = 'Energy'
labelE.scale = 3, 3, 1
labelE.actor.property.color = 0, 1, 1
labelE.orient_to_camera = False
labelE.text = set_labelE(0)
view(45, 70, 200)
wantToAnimate = True
if wantToAnimate:
anim(data, ipwX)
else:
ipwX.ipw.slice_index = data.shape[0]-1
move_view(None, None)
data[data < 1e-7] = 1e-7
dataMax = np.max(data)
view_data(data)
def test_synchrotron_source(SourceClass, **kwargs):
tstart = time.time()
source = SourceClass(**kwargs)
# if source.prefix_save_name().startswith('srw'):
# import pickle
# pickleName = 'srw-und-non0em.pickle'
# with open(pickleName, 'rb') as f:
# I0, l1, l2, l3 = pickle.load(f)[0:4]
print('started')
I0, l1, l2, l3 = source.intensities_on_mesh()
I0 *= 1e-6 # from /sr to /mrad²
print('finished')
tstop = time.time()
print('calculations took {0:.1f} s'.format(tstop - tstart))
##for long calculations like srw:
# if source.prefix_save_name().startswith('srw'):
# import pickle
# pickleName = source.prefix_save_name()+'.pickle'
# with open(pickleName, 'wb') as f:
# pickle.dump((I0, l1, l2, l3, tstop-tstart), f, protocol=2)
##visualize in 2D:
visualize(source, I0, r'$I_0$', 'I0')
# visualize(source, I0*(1+l1)/2., r'$I_{\sigma\sigma}$', 'Is')
# visualize(source, I0*(1-l1)/2., r'$I_{\pi\pi}$', 'Ip')
# visualize(source, I0*l2/2., r'$\Re{I_{\sigma\pi}}$', 'IspRe')
# sign = -1
# if hasattr(source, 'Kx'):
# if source.Kx > 0:
# sign = 1
# visualize(source, I0*l3/2., r'$\Im{I_{\sigma\pi}}$', 'IspIm', sign=sign)
##select only one visualize3D at a time:
# visualize3D(source, I0, isZplane=False, saveName='Itot')
# visualize3D(source, I0*(1+l1)/2., isZplane=False, saveName='IsPol')
# visualize3D(source, I0*(1-l1)/2., isZplane=False, saveName='IpPol')
# visualize3D(source, I0*l2/2., saveName='IspRe')
# visualize3D(source, I0*l3/2., saveName='IspIm')
#
if __name__ == '__main__':
"""Uncomment the block you want to test."""
##*********** Bending Magnet ***************
# kwargs = dict(B0=1.7, eE=3., xPrimeMax=2.5, zPrimeMax=0.3,
# eMin=1500, eMax=31500, eN=3000, nx=1, nz=10)
###by WS:
## Source = rs.BendingMagnetWS
##by xrt:
# kwargs['distE'] = 'BW'
# Source = rs.BendingMagnet
##*********** Wiggler ***************
# kwargs = dict(period=80., K=13., n=12, eE=3., xPrimeMax=2.5,
# zPrimeMax=0.3, eMin=1500, eMax=31500, eN=3000, nx=20, nz=20)
##by WS:
# Source = rs.WigglerWS
##by xrt:
# kwargs['distE'] = 'BW'
# Source = rs.Wiggler
#*********** undulator ***************
# kwargs = dict(
# period=31.4, K=2.7, n=63, eE=6.08,
# xPrimeMax=0.3, zPrimeMax=0.3,
# eMin=500, eMax=31500, eN=1000, nx=20, nz=20)
# Kmax = 1.92
# thetaMax, psiMax = 100e-6, 50e-6
# kwargs = dict(name='IVU18.5', eE=3.0, eI=0.5,
# eEpsilonX=0.263, eEpsilonZ=0.008, betaX=9., betaZ=2.,
# period=18.5, n=108, K=Kmax,
# eMin=1500, eMax=31500, eN=1000, nx=40, nz=4,
# xPrimeMax=thetaMax*1e3, zPrimeMax=psiMax*1e3, distE='BW')
kwargs = dict(
period=31.4, K=2.7, n=63, eE=6.08, eI=0.5, xPrimeMax=0.3, zPrimeMax=0.15,
eSigmaX=134.2, eSigmaZ=6.325, eEpsilonX=1., eEpsilonZ=0.01,
eMin=1500, eMax=5000, eN=350, nx=40*4, nz=20*4)
##by Urgent:
# kwargs['icalc'] = 3 # 0 emittance
# Source = rs.UndulatorUrgent
###by SRW:
# import srw.xrtSRW as xrtSRW
# kwargs['R0'] = 50000
## 974 s - single electron
## 65501 s - zero spread
## 66180 s -nonzero spread
# kwargs['eSigmaX'] = 0
# kwargs['eSigmaZ'] = 0
# kwargs['eEpsilonX'] = 0
# kwargs['eEpsilonZ'] = 0
## kwargs['eEspread'] = 1e-3
# kwargs['harmonicStart'] = 1
# kwargs['harmonicFin'] = 4
# Source = xrtSRW.UndulatorSRW
#by xrt:
kwargs['R0'] = 50000
# kwargs['eSigmaX'] = 0
# kwargs['eSigmaZ'] = 0
# kwargs['eEpsilonX'] = 0
# kwargs['eEpsilonZ'] = 0
kwargs['eEspread'] = 1e-3*0
kwargs['distE'] = 'BW'
kwargs['xPrimeMaxAutoReduce'] = False
kwargs['zPrimeMaxAutoReduce'] = False
# kwargs['targetOpenCL'] = "CPU"
kwargs['filamentBeam'] = True
Source = rs.Undulator
##*** helical undulator **************
# kwargs = dict(
# period=31.4, Ky=2.7, Kx=2.7, n=63, eE=6.08,
# xPrimeMax=0.3, zPrimeMax=0.3,
# eMin=500, eMax=10500, eN=1000, nx=20, nz=20)
###by Urgent:
## Source = rs.UndulatorUrgent
##by xrt:
# kwargs['phaseDeg'] = 90
# kwargs['distE'] = 'BW'
# kwargs['xPrimeMaxAutoReduce'] = False
# kwargs['zPrimeMaxAutoReduce'] = False
# Source = rs.Undulator
test_synchrotron_source(Source, **kwargs)
plt.show()
|