File: test_undulator_size.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (238 lines) | stat: -rw-r--r-- 9,715 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev"
__date__ = "1 Nov 2019"

import os, sys; sys.path.append(os.path.join('..', '..'))  # analysis:ignore
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.legend_handler import HandlerBase

import xrt.backends.raycing.sources as rs
from xrt.backends.raycing.physconsts import CH

withXrtSampling = True
withCoisson = True

thetaMax, psiMax = 60e-6, 30e-6  # rad

if withCoisson:
    coissonD = np.linspace(-0.4, 1.2, 17)
    coissonA = np.array([0.45, 0.47, 0.50, 0.54, 0.58, 0.63, 0.69, 0.75, 0.82,
                         0.90, 0.98, 1.06, 1.14, 1.22, 1.30, 1.37, 1.44])
    coissonS = np.array([4.51, 3.82, 3.31, 2.96, 2.67, 2.46, 2.29, 2.15, 2.04,
                         1.95, 1.88, 1.84, 1.82, 1.82, 1.87, 1.97, 2.16])

    def coisson(Ec, L, N, n):
        E = Ec * (1 - coissonD/N/n)  # in eV
        lambdaC = CH / Ec * 1e-7  # in mm
        div2 = coissonA**2
        div2 *= (lambdaC / L)
        lin2 = coissonS**2
        lin2 *= (lambdaC * L) / (4*np.pi)**2
        return E, div2, lin2


class TwoLineObjectsHandler(HandlerBase):
    def create_artists(self, legend, orig_handle,
                       x0, y0, width, height, fontsize, trans):
        l1 = plt.Line2D([x0, x0+width], [0.7*height, 0.7*height],
                        linestyle=orig_handle[0].get_linestyle(),
                        color=orig_handle[0].get_color())
        l2 = plt.Line2D([x0, x0+width], [0.3*height, 0.3*height],
                        linestyle=orig_handle[1].get_linestyle(),
                        color=orig_handle[1].get_color())
        return [l1, l2]


class TwoScatterObjectsHandler(HandlerBase):
    def create_artists(self, legend, orig_handle,
                       x0, y0, width, height, fontsize, trans):
        l1 = plt.Line2D([x0+0.2*width], [0.5*height],
                        marker=orig_handle[0].get_paths()[0],
                        color=orig_handle[0].get_edgecolors()[0],
                        markerfacecolor='none')
        l2 = plt.Line2D([x0+0.8*width], [0.5*height],
                        marker=orig_handle[1].get_paths()[0],
                        color=orig_handle[1].get_edgecolors()[0],
                        markerfacecolor='none')
        return [l1, l2]


def main():
    und = rs.Undulator(
        name='MAX IV U19', eE=3.0, eI=0.5,
        eEpsilonX=0.263, eEpsilonZ=0.008,
        betaX=9., betaZ=2.,

#        """Compare with
#        Harry Westfahl Jr et al. J. Synchrotron Rad. (2017). 24, 566–575.
#        But notice their non-equidistant (in energy) harmonics."""
#        name='Sirius U19', eE=3.0, eI=0.35,
#        eEpsilonX=0.245, eEpsilonZ=0.0024,
#        betaX=1.5, betaZ=1.5,

        period=19, n=105,
        targetE=(10000, 7),
        xPrimeMax=thetaMax*1e3, zPrimeMax=psiMax*1e3,
        xPrimeMaxAutoReduce=False, zPrimeMaxAutoReduce=False,
        eEspread=1e-3,
        targetOpenCL='CPU',
        precisionOpenCL='float32')

    print(u"Electron beam linear sizes = {0:.3f} µm × {1:.3f} µm".format(
        und.dx*1e3, und.dz*1e3))
    print(u"Electron beam angular sizes = {0:.3f} µrad × {1:.3f} µrad".format(
        und.dxprime*1e6, und.dzprime*1e6))

    E = np.linspace(1400., 16000., 1460+1)
    sx0, sz0 = und.get_SIGMA(E, with0eSpread=True)
    sPx0, sPz0 = und.get_SIGMAP(E, with0eSpread=True)
    sx, sz = und.get_SIGMA(E)
    sPx, sPz = und.get_SIGMAP(E)

    fig1 = plt.figure(1)
    ax1 = fig1.add_subplot(111)
    ax1.set_title("{0} undulator: linear source size".format(und.name))
    ax1.set_xlabel(u'energy (keV)')
    ax1.set_ylabel(u'rms linear source size (µm)')
    l1, = ax1.plot(E*1e-3, sx0*1e3, '--C0')
    l2, = ax1.plot(E*1e-3, sz0*1e3, '--C1')
    l3, = ax1.plot(E*1e-3, sx*1e3, '-C0')
    l4, = ax1.plot(E*1e-3, sz*1e3, '-C1')
    ax1.set_ylim(0, None)
    leg1 = ax1.legend([(l1, l3), (l2, l4)], [r"$\sigma_x$", r"$\sigma_y$"],
                      handler_map={tuple: TwoLineObjectsHandler()},
                      loc=(0.86, 0.73))
    leg2 = ax1.legend([(l1, l2), (l3, l4)],
                      [r'$\sigma_E$ = 0', r'$\sigma_E$ = 0.1%'],
                      handler_map={tuple: TwoLineObjectsHandler()},
                      title='at energy spread', loc=(0.73, 0.5))
    ax1.add_artist(leg1)
    ax1.add_artist(leg2)

    fig2 = plt.figure(2)
    ax2 = fig2.add_subplot(111)
    ax2.set_title("{0} undulator: angular source size".format(und.name))
    ax2.set_xlabel(u'energy (keV)')
    ax2.set_ylabel(u'rms angular source size (µrad)')
    ax2.plot(E*1e-3, sPx0*1e6, '--C0')
    ax2.plot(E*1e-3, sPz0*1e6, '--C1')
    ax2.plot(E*1e-3, sPx*1e6, '-C0')
    ax2.plot(E*1e-3, sPz*1e6, '-C1')
    ax2.set_ylim(0, None)
    leg1 = ax2.legend([(l1, l3), (l2, l4)], [r"$\sigma'_x$", r"$\sigma'_y$"],
                      handler_map={tuple: TwoLineObjectsHandler()},
                      loc=(0.56, 0.83))
    leg2 = ax2.legend([(l1, l2), (l3, l4)],
                      [r'$\sigma_E$ = 0', r'$\sigma_E$ = 0.1%'],
                      handler_map={tuple: TwoLineObjectsHandler()},
                      title='at energy spread', loc='upper right')
    ax2.add_artist(leg1)
    ax2.add_artist(leg2)

    if withXrtSampling:
        theta = np.linspace(-1, 1, 401) * thetaMax * 2
        psi = np.linspace(-1, 1, 201) * psiMax * 2
        Eh = (np.arange(1, 12, 2) * und.E1 +
              np.linspace(-14, 10, 13)[:, np.newaxis])
        sh = Eh.shape

        Efine = np.linspace(10000-14., 10000+10., 1400+1)
        sx0fine, sz0fine = und.get_SIGMA(Efine, with0eSpread=True)
        sxfine, szfine = und.get_SIGMA(Efine)
        sPxfine, sPzfine = und.get_SIGMAP(Efine)

        und.eEspread = 0.
        print('please wait...')
        flux, sigma2theta, sigma2psi, dx2, dz2 = und.real_photon_source_sizes(
            Eh.ravel(), theta, psi, method=0.39)
        sigma2theta += und.dxprime**2
        sigma2psi += und.dzprime**2
        dx2 += und.dx**2
        dz2 += und.dz**2

        fluxsh = flux.reshape(sh)
        fluxMax = fluxsh.max(axis=0)

        l5 = ax2.scatter(Eh*1e-3, sigma2theta**0.5*1e6,
                         s=fluxsh/fluxMax[np.newaxis, :]*50,
                         facecolors='none', edgecolors='C0')
        l6 = ax2.scatter(Eh*1e-3, sigma2psi**0.5*1e6, s=fluxsh/fluxMax*50,
                         facecolors='none', edgecolors='C1')

        l7 = ax1.scatter(Eh*1e-3, dx2**0.5*1e3,
                         s=fluxsh/fluxMax[np.newaxis, :]*50,
                         facecolors='none', edgecolors='C0')
        l8 = ax1.scatter(Eh*1e-3, dz2**0.5*1e3, s=fluxsh/fluxMax*50,
                         facecolors='none', edgecolors='C1')
        if withCoisson:
            cE, cA2, cS2 = coisson(und.E1*7, und.L0*und.Np, und.Np, 7)
            cXP = (und.dxprime**2 + cA2)**0.5
            cZP = (und.dzprime**2 + cA2)**0.5
            cX = (und.dx**2 + cS2)**0.5
            cZ = (und.dz**2 + cS2)**0.5

        # inset2
        axS2 = fig2.add_axes([0.17, 0.17, 0.22, 0.3])
        axS2.plot(Efine, sPxfine*1e6, '-C0')
        axS2.plot(Efine, sPzfine*1e6, '-C1')
        if withCoisson:
            l9 = axS2.scatter(cE, cXP*1e6, marker='+', s=40,
                              facecolors='C0', edgecolors='C0')
            l10 = axS2.scatter(cE, cZP*1e6, marker='+', s=40,
                               facecolors='C1', edgecolors='C1')
        axS2.scatter(Eh, sigma2theta**0.5*1e6,
                     s=fluxsh/fluxMax[np.newaxis, :]*50,
                     facecolors='none', edgecolors='C0')
        axS2.scatter(Eh, sigma2psi**0.5*1e6, s=fluxsh/fluxMax*50,
                     facecolors='none', edgecolors='C1')
        axS2.set_xlim(10000-14, 10000+10)
        axS2.set_xticklabels(
            ['', '-10 eV', r'$E_{\rm harm}$', '+10 eV'], minor=False)
        axS2.set_ylim(6, 14)
        ax2.arrow(6.3, 6.5, 3.0, 2.8, head_width=0.3, head_length=0.75)

        # inset1
        axS1 = fig1.add_axes([0.35, 0.36, 0.22, 0.3])
        axS1.plot(Efine, sz0fine*1e3, '--C1')
        axS1.plot(Efine, szfine*1e3, '-C1')
        if withCoisson:
            l11 = axS1.scatter(cE, cX*1e3, marker='+', s=40,
                               facecolors='C0', edgecolors='C0')
            l12 = axS1.scatter(cE, cZ*1e3, marker='+', s=40,
                               facecolors='C1', edgecolors='C1')
        axS1.scatter(Eh, dx2**0.5*1e3,
                     s=fluxsh/fluxMax[np.newaxis, :]*50,
                     facecolors='none', edgecolors='C0')
        axS1.scatter(Eh, dz2**0.5*1e3, s=fluxsh/fluxMax*50,
                     facecolors='none', edgecolors='C1')
        axS1.set_xlim(10000-14, 10000+10)
        axS1.set_xticklabels(
            ['', '-10 eV', r'$E_{\rm harm}$', '+10 eV'], minor=False)
        axS1.set_ylim(4.5, 6)
        ax1.arrow(8.5, 16., 1.1, -7.5, head_width=0.3, head_length=2.)

        lCur, lLab = [(l5, l6)], [r'xrt']
        if withCoisson:
            lCur.append((l9, l10))
            lLab.append('Coïsson, SPIE 88')
        leg3 = ax2.legend(lCur, lLab, title=r'sampled at $\sigma_E$ = 0 by:',
                          handler_map={tuple: TwoScatterObjectsHandler()},
                          loc=(0.37, 0.03))

        lCur, lLab = [(l7, l8)], [r'xrt']
        if withCoisson:
            lCur.append((l11, l12))
            lLab.append('Coïsson, SPIE 88')
        leg4 = ax1.legend(lCur, lLab, title=r'sampled at $\sigma_E$ = 0 by:',
                          handler_map={tuple: TwoScatterObjectsHandler()},
                          loc=(0.66, 0.25))

    fig1.savefig("undulatorLinearSize.png")
    fig2.savefig("undulatorAngularSize.png")


if __name__ == '__main__':
    main()
    plt.show()
    print("Done")