1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
|
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev"
__date__ = "1 Nov 2019"
import os, sys; sys.path.append(os.path.join('..', '..')) # analysis:ignore
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.legend_handler import HandlerBase
import xrt.backends.raycing.sources as rs
from xrt.backends.raycing.physconsts import CH
withXrtSampling = True
withCoisson = True
thetaMax, psiMax = 60e-6, 30e-6 # rad
if withCoisson:
coissonD = np.linspace(-0.4, 1.2, 17)
coissonA = np.array([0.45, 0.47, 0.50, 0.54, 0.58, 0.63, 0.69, 0.75, 0.82,
0.90, 0.98, 1.06, 1.14, 1.22, 1.30, 1.37, 1.44])
coissonS = np.array([4.51, 3.82, 3.31, 2.96, 2.67, 2.46, 2.29, 2.15, 2.04,
1.95, 1.88, 1.84, 1.82, 1.82, 1.87, 1.97, 2.16])
def coisson(Ec, L, N, n):
E = Ec * (1 - coissonD/N/n) # in eV
lambdaC = CH / Ec * 1e-7 # in mm
div2 = coissonA**2
div2 *= (lambdaC / L)
lin2 = coissonS**2
lin2 *= (lambdaC * L) / (4*np.pi)**2
return E, div2, lin2
class TwoLineObjectsHandler(HandlerBase):
def create_artists(self, legend, orig_handle,
x0, y0, width, height, fontsize, trans):
l1 = plt.Line2D([x0, x0+width], [0.7*height, 0.7*height],
linestyle=orig_handle[0].get_linestyle(),
color=orig_handle[0].get_color())
l2 = plt.Line2D([x0, x0+width], [0.3*height, 0.3*height],
linestyle=orig_handle[1].get_linestyle(),
color=orig_handle[1].get_color())
return [l1, l2]
class TwoScatterObjectsHandler(HandlerBase):
def create_artists(self, legend, orig_handle,
x0, y0, width, height, fontsize, trans):
l1 = plt.Line2D([x0+0.2*width], [0.5*height],
marker=orig_handle[0].get_paths()[0],
color=orig_handle[0].get_edgecolors()[0],
markerfacecolor='none')
l2 = plt.Line2D([x0+0.8*width], [0.5*height],
marker=orig_handle[1].get_paths()[0],
color=orig_handle[1].get_edgecolors()[0],
markerfacecolor='none')
return [l1, l2]
def main():
und = rs.Undulator(
name='MAX IV U19', eE=3.0, eI=0.5,
eEpsilonX=0.263, eEpsilonZ=0.008,
betaX=9., betaZ=2.,
# """Compare with
# Harry Westfahl Jr et al. J. Synchrotron Rad. (2017). 24, 566–575.
# But notice their non-equidistant (in energy) harmonics."""
# name='Sirius U19', eE=3.0, eI=0.35,
# eEpsilonX=0.245, eEpsilonZ=0.0024,
# betaX=1.5, betaZ=1.5,
period=19, n=105,
targetE=(10000, 7),
xPrimeMax=thetaMax*1e3, zPrimeMax=psiMax*1e3,
xPrimeMaxAutoReduce=False, zPrimeMaxAutoReduce=False,
eEspread=1e-3,
targetOpenCL='CPU',
precisionOpenCL='float32')
print(u"Electron beam linear sizes = {0:.3f} µm × {1:.3f} µm".format(
und.dx*1e3, und.dz*1e3))
print(u"Electron beam angular sizes = {0:.3f} µrad × {1:.3f} µrad".format(
und.dxprime*1e6, und.dzprime*1e6))
E = np.linspace(1400., 16000., 1460+1)
sx0, sz0 = und.get_SIGMA(E, with0eSpread=True)
sPx0, sPz0 = und.get_SIGMAP(E, with0eSpread=True)
sx, sz = und.get_SIGMA(E)
sPx, sPz = und.get_SIGMAP(E)
fig1 = plt.figure(1)
ax1 = fig1.add_subplot(111)
ax1.set_title("{0} undulator: linear source size".format(und.name))
ax1.set_xlabel(u'energy (keV)')
ax1.set_ylabel(u'rms linear source size (µm)')
l1, = ax1.plot(E*1e-3, sx0*1e3, '--C0')
l2, = ax1.plot(E*1e-3, sz0*1e3, '--C1')
l3, = ax1.plot(E*1e-3, sx*1e3, '-C0')
l4, = ax1.plot(E*1e-3, sz*1e3, '-C1')
ax1.set_ylim(0, None)
leg1 = ax1.legend([(l1, l3), (l2, l4)], [r"$\sigma_x$", r"$\sigma_y$"],
handler_map={tuple: TwoLineObjectsHandler()},
loc=(0.86, 0.73))
leg2 = ax1.legend([(l1, l2), (l3, l4)],
[r'$\sigma_E$ = 0', r'$\sigma_E$ = 0.1%'],
handler_map={tuple: TwoLineObjectsHandler()},
title='at energy spread', loc=(0.73, 0.5))
ax1.add_artist(leg1)
ax1.add_artist(leg2)
fig2 = plt.figure(2)
ax2 = fig2.add_subplot(111)
ax2.set_title("{0} undulator: angular source size".format(und.name))
ax2.set_xlabel(u'energy (keV)')
ax2.set_ylabel(u'rms angular source size (µrad)')
ax2.plot(E*1e-3, sPx0*1e6, '--C0')
ax2.plot(E*1e-3, sPz0*1e6, '--C1')
ax2.plot(E*1e-3, sPx*1e6, '-C0')
ax2.plot(E*1e-3, sPz*1e6, '-C1')
ax2.set_ylim(0, None)
leg1 = ax2.legend([(l1, l3), (l2, l4)], [r"$\sigma'_x$", r"$\sigma'_y$"],
handler_map={tuple: TwoLineObjectsHandler()},
loc=(0.56, 0.83))
leg2 = ax2.legend([(l1, l2), (l3, l4)],
[r'$\sigma_E$ = 0', r'$\sigma_E$ = 0.1%'],
handler_map={tuple: TwoLineObjectsHandler()},
title='at energy spread', loc='upper right')
ax2.add_artist(leg1)
ax2.add_artist(leg2)
if withXrtSampling:
theta = np.linspace(-1, 1, 401) * thetaMax * 2
psi = np.linspace(-1, 1, 201) * psiMax * 2
Eh = (np.arange(1, 12, 2) * und.E1 +
np.linspace(-14, 10, 13)[:, np.newaxis])
sh = Eh.shape
Efine = np.linspace(10000-14., 10000+10., 1400+1)
sx0fine, sz0fine = und.get_SIGMA(Efine, with0eSpread=True)
sxfine, szfine = und.get_SIGMA(Efine)
sPxfine, sPzfine = und.get_SIGMAP(Efine)
und.eEspread = 0.
print('please wait...')
flux, sigma2theta, sigma2psi, dx2, dz2 = und.real_photon_source_sizes(
Eh.ravel(), theta, psi, method=0.39)
sigma2theta += und.dxprime**2
sigma2psi += und.dzprime**2
dx2 += und.dx**2
dz2 += und.dz**2
fluxsh = flux.reshape(sh)
fluxMax = fluxsh.max(axis=0)
l5 = ax2.scatter(Eh*1e-3, sigma2theta**0.5*1e6,
s=fluxsh/fluxMax[np.newaxis, :]*50,
facecolors='none', edgecolors='C0')
l6 = ax2.scatter(Eh*1e-3, sigma2psi**0.5*1e6, s=fluxsh/fluxMax*50,
facecolors='none', edgecolors='C1')
l7 = ax1.scatter(Eh*1e-3, dx2**0.5*1e3,
s=fluxsh/fluxMax[np.newaxis, :]*50,
facecolors='none', edgecolors='C0')
l8 = ax1.scatter(Eh*1e-3, dz2**0.5*1e3, s=fluxsh/fluxMax*50,
facecolors='none', edgecolors='C1')
if withCoisson:
cE, cA2, cS2 = coisson(und.E1*7, und.L0*und.Np, und.Np, 7)
cXP = (und.dxprime**2 + cA2)**0.5
cZP = (und.dzprime**2 + cA2)**0.5
cX = (und.dx**2 + cS2)**0.5
cZ = (und.dz**2 + cS2)**0.5
# inset2
axS2 = fig2.add_axes([0.17, 0.17, 0.22, 0.3])
axS2.plot(Efine, sPxfine*1e6, '-C0')
axS2.plot(Efine, sPzfine*1e6, '-C1')
if withCoisson:
l9 = axS2.scatter(cE, cXP*1e6, marker='+', s=40,
facecolors='C0', edgecolors='C0')
l10 = axS2.scatter(cE, cZP*1e6, marker='+', s=40,
facecolors='C1', edgecolors='C1')
axS2.scatter(Eh, sigma2theta**0.5*1e6,
s=fluxsh/fluxMax[np.newaxis, :]*50,
facecolors='none', edgecolors='C0')
axS2.scatter(Eh, sigma2psi**0.5*1e6, s=fluxsh/fluxMax*50,
facecolors='none', edgecolors='C1')
axS2.set_xlim(10000-14, 10000+10)
axS2.set_xticklabels(
['', '-10 eV', r'$E_{\rm harm}$', '+10 eV'], minor=False)
axS2.set_ylim(6, 14)
ax2.arrow(6.3, 6.5, 3.0, 2.8, head_width=0.3, head_length=0.75)
# inset1
axS1 = fig1.add_axes([0.35, 0.36, 0.22, 0.3])
axS1.plot(Efine, sz0fine*1e3, '--C1')
axS1.plot(Efine, szfine*1e3, '-C1')
if withCoisson:
l11 = axS1.scatter(cE, cX*1e3, marker='+', s=40,
facecolors='C0', edgecolors='C0')
l12 = axS1.scatter(cE, cZ*1e3, marker='+', s=40,
facecolors='C1', edgecolors='C1')
axS1.scatter(Eh, dx2**0.5*1e3,
s=fluxsh/fluxMax[np.newaxis, :]*50,
facecolors='none', edgecolors='C0')
axS1.scatter(Eh, dz2**0.5*1e3, s=fluxsh/fluxMax*50,
facecolors='none', edgecolors='C1')
axS1.set_xlim(10000-14, 10000+10)
axS1.set_xticklabels(
['', '-10 eV', r'$E_{\rm harm}$', '+10 eV'], minor=False)
axS1.set_ylim(4.5, 6)
ax1.arrow(8.5, 16., 1.1, -7.5, head_width=0.3, head_length=2.)
lCur, lLab = [(l5, l6)], [r'xrt']
if withCoisson:
lCur.append((l9, l10))
lLab.append('Coïsson, SPIE 88')
leg3 = ax2.legend(lCur, lLab, title=r'sampled at $\sigma_E$ = 0 by:',
handler_map={tuple: TwoScatterObjectsHandler()},
loc=(0.37, 0.03))
lCur, lLab = [(l7, l8)], [r'xrt']
if withCoisson:
lCur.append((l11, l12))
lLab.append('Coïsson, SPIE 88')
leg4 = ax1.legend(lCur, lLab, title=r'sampled at $\sigma_E$ = 0 by:',
handler_map={tuple: TwoScatterObjectsHandler()},
loc=(0.66, 0.25))
fig1.savefig("undulatorLinearSize.png")
fig2.savefig("undulatorAngularSize.png")
if __name__ == '__main__':
main()
plt.show()
print("Done")
|