1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
|
# -*- coding: utf-8 -*-
"""
Package :mod:`~xrt.backends.raycing` provides the internal backend of xrt. It
defines beam sources in the module :mod:`~xrt.backends.raycing.sources`,
rectangular and round apertures in :mod:`~xrt.backends.raycing.apertures`,
optical elements in :mod:`~xrt.backends.raycing.oes`, material properties
(essentially reflectivity, transmittivity and absorption coefficient) for
interfaces and crystals in :mod:`~xrt.backends.raycing.materials` and screens
in :mod:`~xrt.backends.raycing.screens`.
.. _scriptingRaycing:
Coordinate systems
------------------
The following coordinate systems are considered (always right-handed):
1) *The global coordinate system*. It is arbitrary (user-defined) with one
requirement driven by code simplification: Z-axis is vertical. For example,
the system origin of Alba synchrotron is in the center of the ring at the
ground level with Y-axis northward, Z upright and the units in mm.
.. note::
The positions of all optical elements, sources, screens etc. are given
in the global coordinate system. This feature simplifies the beamline
alignment when 3D CAD models are available.
2) *The local systems*.
a) *of the beamline*. The local Y direction (the direction of the source)
is determined by *azimuth* parameter of
:class:`~xrt.backends.raycing.BeamLine` -- the angle measured cw from the
global Y axis. The local beamline Z is also vertical and upward. The
local beamline X is to the right. At *azimuth* = 0 the global system and
the local beamline system are parallel to each other. In most of the
supplied examples the global system and the local beamline system
coincide.
b) *of an optical element*. The origin is on the optical surface. Z is
out-of-surface. At pitch, roll and yaw all zeros the local oe system
and the local beamline system are parallel to each other.
.. note::
Pitch, roll and yaw rotations (correspondingly: Rx, Ry and Rz) are
defined relative to the local axes of the optical element. The local
axes rotate together with the optical element!
.. note::
The rotations are done in the following default sequence: yaw, roll,
pitch. It can be changed by the user for any particular optical
element. Sometimes it is necessary to define misalignment angles in
addition to the positional angles. Because rotations do not commute,
an extra set of angles may become unavoidable, which are applied
after the positional rotations.
See :class:`~xrt.backends.raycing.oes.OE`.
The user-supplied functions for the surface height (z) and the normal as
functions of (x, y) are defined in the local oe system.
c) *of other beamline elements: sources, apertures, screens*. Z is upward
and Y is along the beam line. The origin is given by the user. Usually it
is on the original beam line.
xrt sequentially transforms beams (instances of
:class:`~xrt.backends.raycing.sources.Beam`) -- containers of arrays which hold
beam properties for each ray. Geometrical beam properties such as *x, y, z*
(ray origins) and *a, b, c* (directional cosines) as well as polarization
characteristics depend on the above coordinate systems. Therefore, beams are
usually represented by two different objects: one in the global and one in a
local system.
.. imagezoom:: _images/axes.png
Units
-----
For the internal calculations, lengths are assumed to be in mm, although for
reflection geometries and simple Bragg cases (thick crystals) this convention
is not used. Angles are unitless (radians). Energy is in eV.
For plotting, the user may select units and conversion factors. The latter are
usually automatically deduced from the units.
Beam categories
---------------
xrt discriminates rays by several categories:
a) ``good``: reflected within the working optical surface;
b) ``out``: reflected outside of the working optical surface, i.e. outside of
a metal stripe on a mirror;
c) ``over``: propagated over the surface without intersection;
d) ``dead``: arrived below the optical surface and thus absorbed by the OE.
This distinction simplifies the adjustment of entrance and exit slits. The
user supplies `physical` and `optical` limits, where the latter is used to
define the ``out`` category (for rays between `physical` and `optical` limits).
An alarm is triggered if the fraction of dead rays exceeds a specified level.
Scripting in python
-------------------
The user of :mod:`~xrt.backends.raycing` must do the following:
1) Instantiate class :class:`~xrt.backends.raycing.BeamLine` and fill it with
sources, optical elements, screens etc.
2) Create a module-level function that returns a dictionary of beams -- the
instances of :class:`~xrt.backends.raycing.sources.Beam`. Assign this
function to the module variable `xrt.backends.raycing.run.run_process`.
The beams should be obtained by the methods shine() of a source, expose() of
a screen, reflect() or multiple_reflect() of an optical element, propagate()
of an aperture.
3) Use the keys in this dictionary for creating the plots (instances of
:class:`~xrt.plotter.XYCPlot`). Note that at the time of instantiation the
plots are just empty placeholders for the future 2D and 1D histograms.
4) Run :func:`~xrt.runner.run_ray_tracing()` function for the created plots.
Additionally, the user may define a generator that will run a loop of ray
tracing for changing geometry (mimics a real scan) or for different material
properties etc. The generator should modify the beamline elements and output
file names of the plots before *yield*. After the *yield* the plots are ready
and the generator may use their fields, e.g. *intensity* or *dE* or *dy* or
others to prepare a scan plot. Typically, this sequence is within a loop; after
the loop the user may prepare the final scan plot using matplotlib
functionality. The generator is given to :func:`~xrt.runner.run_ray_tracing()`
as a parameter.
See the supplied examples."""
from __future__ import print_function
import types
import sys
import numpy as np
# from itertools import compress
from collections import OrderedDict
import re
import copy
import inspect
import colorama
colorama.init(autoreset=True)
__module__ = "raycing"
__author__ = "Konstantin Klementiev, Roman Chernikov"
__date__ = "26 Mar 2016"
_DEBUG_ = True # If False, exceptions inside the module are ignored
_VERBOSITY_ = 10 # [0-100] Regulates the level of diagnostics printout
try: # for Python 3 compatibility:
unicode = unicode
except NameError:
# 'unicode' is undefined, must be Python 3
unicode = str
basestring = (str, bytes)
else:
# 'unicode' exists, must be Python 2
unicode = unicode
basestring = basestring
from .physconsts import SIE0 # analysis:ignore
stateGood, stateOut, stateOver = 1, 2, 3
zEps = 1e-12 # mm: target accuracy in z while searching for intersection
misalignmentTolerated = 0.1 # for automatic checking of oe center position
accuracyInPosition = 0.1 # accuracy for positioning of oe
dt = 1e-5 # mm: margin around OE within which the intersection is searched
ds = 0. # mm: margin used in multiple reflections
nrays = 100000
maxIteration = 100 # max number of iterations while searching for intersection
maxHalfSizeOfOE = 1000.
maxDepthOfOE = 100.
# maxZDeviationAtOE = 100.
# colors of the rays in a 0-10 range (red-violet)
hueGood = 3.
hueOut = 8.
hueOver = 1.6
hueDead = 0.2
hueMin = 0.
hueMax = 10.
targetOpenCL = 'auto'
precisionOpenCL = 'auto'
# targetOpenCL = (0, 0)
# precisionOpenCL = 'float32'
allBeamFields = ('energy', 'x', 'xprime', 'y', 'z', 'zprime', 'xzprime',
'a', 'b', 'path', 'phase_shift', 'reflection_number', 'order',
'circular_polarization_rate', 'polarization_degree',
'polarization_psi', 'ratio_ellipse_axes', 's', 'r',
'theta', 'phi', 'incidence_angle',
'elevation_d', 'elevation_x', 'elevation_y', 'elevation_z',
'Ep_amp', 'Ep_phase', 'Es_amp', 'Es_phase')
colors = 'BLACK', 'RED', 'GREEN', 'YELLOW', 'BLUE', 'MAGENTA', 'CYAN',\
'WHITE', 'RESET'
def colorPrint(s, fcolor=None, bcolor=None):
style = getattr(colorama.Fore, fcolor) if fcolor in colors else \
colorama.Fore.RESET
style += getattr(colorama.Back, bcolor) if bcolor in colors else \
colorama.Back.RESET
print('{0}{1}'.format(style, s))
def is_sequence(arg):
"""Checks whether *arg* is a sequence."""
result = (not hasattr(arg, "strip") and hasattr(arg, "__getitem__") or
hasattr(arg, "__iter__"))
if result:
try:
arg[0]
except IndexError:
result = False
if result:
result = not isinstance(arg, (basestring, unicode))
return result
def distance_xy(p1, p2):
"""Calculates 2D distance between p1 and p2. p1 and p2 are vectors of
length >= 2."""
return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2)**0.5
def distance_xyz(p1, p2):
"""Calculates 2D distance between p1 and p2. p1 and p2 are vectors of
length >= 3."""
return ((p1[0]-p2[0])**2 + (p1[1]-p2[1])**2 + (p1[2]-p2[2])**2)**0.5
def rotate_x(y, z, cosangle, sinangle):
"""3D rotaion around *x* (pitch). *y* and *z* are values or arrays.
Positive rotation is for positive *sinangle*. Returns *yNew, zNew*."""
return cosangle*y - sinangle*z, sinangle*y + cosangle*z
def rotate_y(x, z, cosangle, sinangle):
"""3D rotaion around *y* (roll). *x* and *z* are values or arrays.
Positive rotation is for positive *sinangle*. Returns *xNew, zNew*."""
return cosangle*x + sinangle*z, -sinangle*x + cosangle*z
def rotate_z(x, y, cosangle, sinangle):
"""3D rotaion around *z*. *x* and *y* are values or arrays.
Positive rotation is for positive *sinangle*. Returns *xNew, yNew*."""
return cosangle*x - sinangle*y, sinangle*x + cosangle*y
def rotate_beam(beam, indarr=None, rotationSequence='RzRyRx',
pitch=0, roll=0, yaw=0, skip_xyz=False, skip_abc=False,
is2ndXtal=False):
"""Rotates the *beam* indexed by *indarr* by the angles *yaw, roll, pitch*
in the sequence given by *rotationSequence*. A leading '-' symbol of
*rotationSequence* reverses the sequences.
"""
angles = {'z': yaw, 'y': roll, 'x': pitch}
rotates = {'z': rotate_z, 'y': rotate_y, 'x': rotate_x}
if not skip_xyz:
coords1 = {'z': beam.x, 'y': beam.x, 'x': beam.y}
coords2 = {'z': beam.y, 'y': beam.z, 'x': beam.z}
if not skip_abc:
vcomps1 = {'z': beam.a, 'y': beam.a, 'x': beam.b}
vcomps2 = {'z': beam.b, 'y': beam.c, 'x': beam.c}
if rotationSequence[0] == '-':
seq = rotationSequence[6] + rotationSequence[4] + rotationSequence[2]
else:
seq = rotationSequence[1] + rotationSequence[3] + rotationSequence[5]
for s in seq:
angle, rotate = angles[s], rotates[s]
if not skip_xyz:
c1, c2 = coords1[s], coords2[s]
if not skip_abc:
v1, v2 = vcomps1[s], vcomps2[s]
if angle != 0:
cA = np.cos(angle)
sA = np.sin(angle)
if indarr is None:
indarr = slice(None)
if not skip_xyz:
c1[indarr], c2[indarr] = rotate(c1[indarr], c2[indarr], cA, sA)
if not skip_abc:
v1[indarr], v2[indarr] = rotate(v1[indarr], v2[indarr], cA, sA)
def rotate_xyz(x, y, z, indarr=None, rotationSequence='RzRyRx',
pitch=0, roll=0, yaw=0):
"""Rotates the arrays *x*, *y* and *z* indexed by *indarr* by the angles
*yaw, roll, pitch* in the sequence given by *rotationSequence*. A leading
'-' symbol of *rotationSequence* reverses the sequences.
"""
angles = {'z': yaw, 'y': roll, 'x': pitch}
rotates = {'z': rotate_z, 'y': rotate_y, 'x': rotate_x}
coords1 = {'z': x, 'y': x, 'x': y}
coords2 = {'z': y, 'y': z, 'x': z}
if rotationSequence[0] == '-':
seq = rotationSequence[6] + rotationSequence[4] + rotationSequence[2]
else:
seq = rotationSequence[1] + rotationSequence[3] + rotationSequence[5]
for s in seq:
angle, rotate = angles[s], rotates[s]
c1, c2 = coords1[s], coords2[s]
if angle != 0:
cA = np.cos(angle)
sA = np.sin(angle)
if indarr is None:
indarr = slice(None)
c1[indarr], c2[indarr] = rotate(c1[indarr], c2[indarr], cA, sA)
return x, y, z
def rotate_point(point, rotationSequence='RzRyRx', pitch=0, roll=0, yaw=0):
"""Rotates the *point* (3-sequence) by the angles *yaw, roll, pitch*
in the sequence given by *rotationSequence*. A leading '-' symbol of
*rotationSequence* reverses the sequences.
"""
angles = {'z': yaw, 'y': roll, 'x': pitch}
rotates = {'z': rotate_z, 'y': rotate_y, 'x': rotate_x}
ind1 = {'z': 0, 'y': 0, 'x': 1}
ind2 = {'z': 1, 'y': 2, 'x': 2}
newp = [coord for coord in point]
if rotationSequence[0] == '-':
seq = rotationSequence[6] + rotationSequence[4] + rotationSequence[2]
else:
seq = rotationSequence[1] + rotationSequence[3] + rotationSequence[5]
for s in seq:
angle, rotate = angles[s], rotates[s]
if angle != 0:
cA = np.cos(angle)
sA = np.sin(angle)
newp[ind1[s]], newp[ind2[s]] = rotate(
newp[ind1[s]], newp[ind2[s]], cA, sA)
return newp
def global_to_virgin_local(bl, beam, lo, center=None, part=None):
"""Transforms *beam* from the global to the virgin (i.e. with pitch, roll
and yaw all zeros) local system. The resulting local beam is *lo*. If
*center* is provided, the rotation Rz is about it, otherwise is about the
origin of *beam*. The beam arrays can be sliced by *part* indexing array.
*bl* is an instance of :class:`BeamLine`"""
if part is None:
part = np.ones(beam.x.shape, dtype=bool)
if center is None:
center = [0, 0, 0]
lo.x[part] = beam.x[part] - center[0]
lo.y[part] = beam.y[part] - center[1]
lo.z[part] = beam.z[part] - center[2]
if isinstance(bl, BeamLine):
a0, b0 = bl.sinAzimuth, bl.cosAzimuth
if a0 == 0:
lo.a[part] = beam.a[part]
lo.b[part] = beam.b[part]
else:
lo.x[part], lo.y[part] = rotate_z(lo.x[part], lo.y[part], b0, a0)
lo.a[part], lo.b[part] = \
rotate_z(beam.a[part], beam.b[part], b0, a0)
lo.c[part] = beam.c[part] # unchanged
elif isinstance(bl, (list, tuple)):
lx, ly, lz = bl
xyz = lo.x[part], lo.y[part], lo.z[part]
lo.x[part], lo.y[part], lo.z[part] = (
sum(c*b for c, b in zip(lx, xyz)),
sum(c*b for c, b in zip(ly, xyz)),
sum(c*b for c, b in zip(lz, xyz)))
abc = beam.a[part], beam.b[part], beam.c[part]
lo.a[part], lo.b[part], lo.c[part] = (
sum(c*b for c, b in zip(lx, abc)),
sum(c*b for c, b in zip(ly, abc)),
sum(c*b for c, b in zip(lz, abc)))
def virgin_local_to_global(bl, vlb, center=None, part=None,
skip_xyz=False, skip_abc=False, is2ndXtal=False):
"""Transforms *vlb* from the virgin (i.e. with pitch, roll and yaw all
zeros) local to the global system and overwrites the result to *vlb*. If
*center* is provided, the rotation Rz is about it, otherwise is about the
origin of *beam*. The beam arrays can be sliced by *part* indexing array.
*bl* is an instance of :class:`BeamLine`"""
if part is None:
part = np.ones(vlb.x.shape, dtype=bool)
a0, b0 = bl.sinAzimuth, bl.cosAzimuth
if a0 != 0:
if not skip_abc:
vlb.a[part], vlb.b[part] = rotate_z(
vlb.a[part], vlb.b[part], b0, -a0)
if not skip_xyz:
vlb.x[part], vlb.y[part] = rotate_z(
vlb.x[part], vlb.y[part], b0, -a0)
if (center is not None) and (not skip_xyz):
vlb.x[part] += center[0]
vlb.y[part] += center[1]
vlb.z[part] += center[2]
def xyz_from_xz(obj, x=None, z=None):
if isinstance(x, basestring) and isinstance(z, basestring):
return 'auto'
bl = obj.bl
if isinstance(x, (list, tuple, np.ndarray)):
norm = sum([xc**2 for xc in x])**0.5
retx = [xc/norm for xc in x]
else:
retx = bl.cosAzimuth, -bl.sinAzimuth, 0.
if isinstance(z, (list, tuple, np.ndarray)):
norm = sum([zc**2 for zc in z])**0.5
retz = [zc/norm for zc in z]
else:
retz = 0., 0., 1.
xdotz = np.dot(retx, retz)
if abs(xdotz) > 1e-8:
colorPrint('x and z must be orthogonal, got xz={0:.4e} for {1}'
.format(xdotz, obj.name), 'RED')
rety = np.cross(retz, retx)
return [retx, rety, retz]
def check_alarm(self, incoming, beam):
"""Appends an alarm string to the list of beamline alarms if the alarm
condition is fulfilled."""
incomingSum = incoming.sum()
if incomingSum > 0:
badSum = (beam.state == self.lostNum).sum()
ratio = float(badSum)/incomingSum
if ratio > self.alarmLevel:
alarmStr = ('{0}{1} absorbes {2:.2%} of rays ' +
'at {3:.0%} alarm level!').format(
'Alarm! ', self.name, ratio, self.alarmLevel)
self.bl.alarms.append(alarmStr)
else:
self.bl.alarms.append('no incident rays to {0}!'.format(self.name))
def get_energy(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.E
def get_x(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.x
def get_y(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.y
def get_z(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.z
def get_s(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.s
def get_phi(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.phi
def get_r(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.r
def get_a(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.a
def get_b(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.b
def get_xprime(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.a / beam.b
def get_zprime(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.c / beam.b
def get_xzprime(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return (beam.a**2 + beam.c**2)**0.5 / beam.b
def get_path(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.path
def get_order(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.order if hasattr(beam, 'order') else beam.state
def get_reflection_number(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.nRefl if hasattr(beam, 'nRefl') else beam.state
def get_elevation_d(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.elevationD
# if hasattr(beam, 'elevationD') else np.zeros_like(beam.x)
def get_elevation_x(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.elevationX # if hasattr(beam, 'elevationX') else beam.x
def get_elevation_y(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.elevationY # if hasattr(beam, 'elevationY') else beam.y
def get_elevation_z(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.elevationZ # if hasattr(beam, 'elevationZ') else beam.z
def get_Es_amp(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return np.abs(beam.Es)
def get_Ep_amp(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return np.abs(beam.Ep)
def get_Es_phase(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return np.angle(beam.Es)
# return np.arctan2(beam.Es.imag, beam.Es.real)
def get_Ep_phase(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return np.angle(beam.Ep)
# return np.arctan2(beam.Ep.imag, beam.Ep.real)
def get_polarization_degree(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
II = (beam.Jss + beam.Jpp)
II[II <= 0] = 1.
pd = np.sqrt((beam.Jss-beam.Jpp)**2 + 4.*abs(beam.Jsp)**2) / II
pd[II <= 0] = 0.
return pd
def get_ratio_ellipse_axes(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
dI2 = (beam.Jss - beam.Jpp)**2
return 2. * beam.Jsp.imag /\
(np.sqrt(dI2 + 4*abs(beam.Jsp)**2) + np.sqrt(dI2 + 4*beam.Jsp.real**2))
def get_circular_polarization_rate(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
II = (beam.Jss + beam.Jpp)
II[II <= 0] = 1.
cpr = 2. * beam.Jsp.imag / II
cpr[II <= 0] = 0.
return cpr
def get_polarization_psi(beam):
"""Angle between the semimajor axis of the polarization ellipse relative to
the s polarization. Used for retrieving data for x-, y- or c-axis of a
plot."""
# return 0.5 * np.arctan2(2.*beam.Jsp.real, beam.Jss-beam.Jpp) * 180 / np.pi
return 0.5 * np.arctan2(2.*beam.Jsp.real, beam.Jss-beam.Jpp)
def get_phase_shift(beam): # in units of pi!
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return np.angle(beam.Jsp) / np.pi
def get_incidence_angle(beam):
"""Used for retrieving data for x-, y- or c-axis of a plot."""
return beam.theta if hasattr(beam, 'theta') else np.zeros_like(beam.x)
get_theta = get_incidence_angle
def get_output(plot, beamsReturnedBy_run_process):
"""Used by :mod:`multipro` for creating images of *plot* - instance of
:class:`XYCPlot`. *beamsReturnedBy_run_process* is a dictionary of
:class:`Beam` instances returned by user-defined :func:`run_process`.
:func:`get_output` creates an indexing array corresponding to the requested
properties of rays in *plot*. It also calculates the number of rays with
various properties defined in `raycing` backend.
"""
beam = beamsReturnedBy_run_process[plot.beam]
if plot.beamState is None:
beamState = beam.state
else:
beamState = beamsReturnedBy_run_process[plot.beamState].state
nrays = len(beam.x)
locAlive = (beamState > 0).sum()
part = np.zeros(nrays, dtype=bool)
locGood = 0
locOut = 0
locOver = 0
locDead = 0
for rayFlag in plot.rayFlag:
locPart = beamState == rayFlag
if rayFlag == 1:
locGood = locPart.sum()
if rayFlag == 2:
locOut = locPart.sum()
if rayFlag == 3:
locOver = locPart.sum()
if rayFlag < 0:
locDead += locPart.sum()
part = part | locPart
if hasattr(beam, 'accepted'):
locAccepted = beam.accepted
locAcceptedE = beam.acceptedE
locSeeded = beam.seeded
locSeededI = beam.seededI
else:
locAccepted = 0
locAcceptedE = 0
locSeeded = 0
locSeededI = 0
if hasattr(beam, 'displayAsAbsorbedPower'):
plot.displayAsAbsorbedPower = True
if isinstance(plot.xaxis.data, types.FunctionType):
x = plot.xaxis.data(beam) * plot.xaxis.factor
elif isinstance(plot.xaxis.data, np.ndarray):
x = plot.xaxis.data * plot.xaxis.factor
else:
raise ValueError('cannot find data for x!')
if isinstance(plot.yaxis.data, types.FunctionType):
y = plot.yaxis.data(beam) * plot.yaxis.factor
elif isinstance(plot.yaxis.data, np.ndarray):
y = plot.yaxis.data * plot.yaxis.factor
else:
raise ValueError('cannot find data for y!')
if plot.caxis.useCategory:
cData = np.zeros_like(beamState)
cData[beamState == stateGood] = hueGood
cData[beamState == stateOut] = hueOut
cData[beamState == stateOver] = hueOver
cData[beamState < 0] = hueDead
intensity = np.ones_like(x)
flux = intensity
else:
if plot.beamC is None:
beamC = beam
else:
beamC = beamsReturnedBy_run_process[plot.beamC]
if isinstance(plot.caxis.data, types.FunctionType):
cData = plot.caxis.data(beamC) * plot.caxis.factor
elif isinstance(plot.caxis.data, np.ndarray):
cData = plot.caxis.data * plot.caxis.factor
else:
raise ValueError('cannot find data for cData!')
if plot.fluxKind.startswith('power'):
intensity = ((beam.Jss + beam.Jpp) *
beam.E * beam.accepted / beam.seeded * SIE0)
elif plot.fluxKind.startswith('s'):
intensity = beam.Jss
elif plot.fluxKind.startswith('p'):
intensity = beam.Jpp
elif plot.fluxKind.startswith('+-45'):
intensity = 2*beam.Jsp.real
elif plot.fluxKind.startswith('left-right'):
intensity = 2*beam.Jsp.imag
elif plot.fluxKind.startswith('E'):
if plot.fluxKind.startswith('Es'):
intensity = beam.Es
flux = beam.Jss
elif plot.fluxKind.startswith('Ep'):
intensity = beam.Ep
flux = beam.Jpp
else:
intensity = beam.Es + beam.Ep
flux = beam.Jss + beam.Jpp
else:
intensity = beam.Jss + beam.Jpp
if not plot.fluxKind.startswith('E'):
flux = intensity
return x[part], y[part], intensity[part], flux[part], cData[part], nrays,\
locAlive, locGood, locOut, locOver, locDead,\
locAccepted, locAcceptedE, locSeeded, locSeededI
def auto_units_angle(angle, defaultFactor=1.):
if isinstance(angle, basestring):
if len(re.findall("auto", angle)) > 0:
return angle
elif len(re.findall("mrad", angle)) > 0:
return float(angle.split("m")[0].strip())*1e-3
elif len(re.findall("urad", angle)) > 0:
return float(angle.split("u")[0].strip())*1e-6
elif len(re.findall("nrad", angle)) > 0:
return float(angle.split("n")[0].strip())*1e-9
elif len(re.findall("rad", angle)) > 0:
return float(angle.split("r")[0].strip())
elif len(re.findall("deg", angle)) > 0:
return np.radians(float(angle.split("d")[0].strip()))
else:
print("Could not identify the units")
return angle
elif angle is None or isinstance(angle, (list, tuple)):
return angle
else:
return angle * defaultFactor
def append_to_flow(meth, bOut, frame):
oe = meth.__self__
if oe.bl is None:
return
if oe.bl.flowSource != 'legacy':
return
argValues = inspect.getargvalues(frame)
fdoc = re.findall(r"Returned values:.*", meth.__doc__)
if fdoc:
fdoc = fdoc[0].replace("Returned values: ", '').split(',')
if 'needNewGlobal' in argValues.args[1:]:
if argValues.locals['needNewGlobal']:
fdoc.insert(0, 'beamGlobal')
kwArgsIn = OrderedDict()
kwArgsOut = OrderedDict()
for arg in argValues.args[1:]:
if str(arg) == 'beam':
kwArgsIn[arg] = id(argValues.locals[arg])
else:
kwArgsIn[arg] = argValues.locals[arg]
for outstr, outbm in zip(list(fdoc), bOut):
kwArgsOut[outstr.strip()] = id(outbm)
oe.bl.flow.append([oe.name, meth.__func__, kwArgsIn, kwArgsOut])
def is_auto_align_required(oe):
needAutoAlign = False
for autoParam in ["_center", "_pitch", "_bragg"]:
naParam = autoParam.strip("_")
if hasattr(oe, autoParam) and hasattr(oe, naParam):
if str(getattr(oe, autoParam)) == str(getattr(oe, naParam)):
if _VERBOSITY_ > 20:
print(autoParam, str(getattr(oe, autoParam)),
naParam, str(getattr(oe, naParam)))
needAutoAlign = True
if _VERBOSITY_ > 10:
print("{0}.{1} requires auto-calculation".format(
oe.name, naParam))
return needAutoAlign
def set_name(elementClass, name):
if name not in [None, 'None', '']:
elementClass.name = name
elif not hasattr(elementClass, 'name'):
elementClass.name = '{0}{1}'.format(
elementClass.__class__.__name__,
elementClass.ordinalNum if hasattr(elementClass, 'ordinalNum')
else '')
def vec_to_quat(vec, alpha):
""" Quaternion from vector and angle"""
return np.insert(vec*np.sin(alpha*0.5), 0, np.cos(alpha*0.5))
def multiply_quats(qf, qt):
"""Multiplication of quaternions"""
return [qf[0]*qt[0]-qf[1]*qt[1]-qf[2]*qt[2]-qf[3]*qt[3],
qf[0]*qt[1]+qf[1]*qt[0]+qf[2]*qt[3]-qf[3]*qt[2],
qf[0]*qt[2]-qf[1]*qt[3]+qf[2]*qt[0]+qf[3]*qt[1],
qf[0]*qt[3]+qf[1]*qt[2]-qf[2]*qt[1]+qf[3]*qt[0]]
def quat_vec_rotate(vec, q):
"""Rotate vector by a quaternion"""
qn = np.copy(q)
qn[1:] *= -1
return multiply_quats(multiply_quats(
q, vec_to_quat(vec, np.pi*0.25)), qn)[1:]
class BeamLine(object):
u"""
Container class for beamline components. It also defines the beam line
direction and height."""
class aBeam(object):
def __init__(self):
for prop in ['a', 'b', 'c', 'x', 'y', 'z', 'E']:
setattr(self, prop, np.zeros(2))
def __init__(self, azimuth=0., height=0., alignE='auto'):
u"""
*azimuth*: float
Is counted in cw direction from the global Y axis. At
*azimuth* = 0 the local Y coincides with the global Y.
*height*: float
Beamline height in the global system.
*alignE*: float or 'auto'
Energy for automatic alignment in [eV]. If 'auto', alignment energy
is defined as the middle of the Source energy range.
Plays a role if the *pitch* or *bragg* parameters of the energy
dispersive optical elements were set to 'auto'.
"""
self.azimuth = azimuth
# self.sinAzimuth = np.sin(azimuth) # a0
# self.cosAzimuth = np.cos(azimuth) # b0
self.height = height
self.alignE = alignE
self.sources = []
self.oes = []
self.slits = []
self.screens = []
self.alarms = []
self.name = ''
self.oesDict = OrderedDict()
self.flow = []
self.materialsDict = OrderedDict()
self.beamsDict = OrderedDict()
self.flowSource = 'legacy'
self.forceAlign = False
self.beamsRevDict = OrderedDict()
self.beamsRevDictUsed = {}
self.blViewer = None
self.statusSignal = None
@property
def azimuth(self):
return self._azimuth
@azimuth.setter
def azimuth(self, value):
self._azimuth = value
self.sinAzimuth = np.sin(value)
self.cosAzimuth = np.cos(value)
def orient_along_global_Y(self, center='auto'):
if center == 'auto':
center0 = self.sources[0].center
a0, b0 = self.sinAzimuth, self.cosAzimuth
for oe in self.sources + self.oes + self.slits + self.screens:
newC = [c-c0 for c, c0 in zip(oe.center, center0)]
newC[0], newC[1] = rotate_z(newC[0], newC[1], b0, a0)
oe.center = newC
if hasattr(oe, 'jack1'):
oe.jack1 = [c-c0 for c, c0 in zip(oe.jack1, center0)]
oe.jack1[0], oe.jack1[1] = \
rotate_z(oe.jack1[0], oe.jack1[1], b0, a0)
if hasattr(oe, 'jack2'):
oe.jack2 = [c-c0 for c, c0 in zip(oe.jack2, center0)]
oe.jack2[0], oe.jack2[1] = \
rotate_z(oe.jack2[0], oe.jack2[1], b0, a0)
if hasattr(oe, 'jack3'):
oe.jack3 = [c-c0 for c, c0 in zip(oe.jack3, center0)]
oe.jack3[0], oe.jack3[1] = \
rotate_z(oe.jack3[0], oe.jack3[1], b0, a0)
self.azimuth = 0
def prepare_flow(self):
def _warning(v1=None, v2=None):
if v1 is None or v2 is None:
addw = ""
else:
addw = "\nThis beam has been used for {0} and is attempted"\
" for {1}.".format(v1, v2)
print("Warning: the flow seems corrupt. Make sure each propagation"
" method assigns returned beams to local variables." + addw)
if self.flowSource != 'legacy':
return
frame = inspect.currentframe()
localsDict = frame.f_back.f_locals
globalsDict = frame.f_back.f_globals
for objectName, memObject in globalsDict.items():
if len(re.findall('raycing.materials', str(type(memObject)))) > 0:
self.materialsDict[objectName] = memObject
for objectName, memObject in localsDict.items():
if len(re.findall('sources_beams.Beam', str(type(memObject)))) > 0:
self.beamsDict[objectName] = memObject
self.beamsRevDict[id(memObject)] = objectName
if objectName == 'outDict':
for odObjectName, odMemObject in memObject.items():
self.beamsDict[odObjectName] = odMemObject
self.beamsRevDict[id(odMemObject)] = odObjectName
if self.flow is not None and len(self.beamsRevDict) > 0:
for segment in self.flow:
for iseg in [2, 3]:
for argName, argVal in segment[iseg].items():
if len(re.findall('beam', str(argName))) > 0:
if iseg == 3:
if argVal in self.beamsRevDictUsed:
_warning(self.beamsRevDictUsed[argVal],
segment[0])
self.beamsRevDictUsed[argVal] = segment[0]
try:
segment[iseg][argName] =\
self.beamsRevDict[argVal]
except KeyError:
segment[iseg][argName] = 'beamTmp'
_warning()
self.flowSource = 'prepared_to_run'
def auto_align(self, oe, beam):
if self.flowSource == 'Qook':
self.forceAlign = True
if not (self.forceAlign or is_auto_align_required(oe)):
return
autoCenter = [False] * 3
autoPitch = autoBragg = False
alignE = self._alignE if hasattr(self, '_alignE') else self.alignE
if hasattr(oe, '_center'):
autoCenter = [x == 'auto' for x in oe._center]
if hasattr(oe, '_pitch'):
try:
if isinstance(oe._pitch, (list, tuple)):
alignE = float(oe._pitch[-1])
autoPitch = True
except Exception:
print("Automatic Bragg angle calculation failed.")
raise
if hasattr(oe, '_bragg'):
try:
if isinstance(oe._bragg, (list, tuple)):
alignE = float(oe._bragg[-1])
autoBragg = True
except Exception:
print("Automatic Bragg angle calculation failed.")
raise
if any(autoCenter) or autoPitch or autoBragg:
good = (beam.state == 1) | (beam.state == 2)
if self.flowSource == 'Qook':
beam.state[0] = 1
# beam.E[0] = alignE
intensity = beam.Jss[good] + beam.Jpp[good]
totalI = np.sum(intensity)
inBeam = self.aBeam()
for fieldName in ['x', 'y', 'z', 'a', 'b', 'c']:
field = getattr(beam, fieldName)
if totalI == 0:
fNorm = 1.
else:
fNorm = np.sum(field[good] * intensity) / totalI
try:
setattr(inBeam, fieldName,
np.ones(2) * fNorm)
if self.flowSource == 'Qook':
field[0] = fNorm
setattr(inBeam, fieldName, field)
except Exception:
print("Cannot find direction for automatic alignment.")
raise
dirNorm = np.sqrt(inBeam.a[0]**2 + inBeam.b[0]**2 + inBeam.c[0]**2)
inBeam.a[0] /= dirNorm
inBeam.b[0] /= dirNorm
inBeam.c[0] /= dirNorm
if self.flowSource == 'Qook':
beam.a[0] /= dirNorm
beam.b[0] /= dirNorm
beam.c[0] /= dirNorm
if any(autoCenter):
centerList = copy.copy(oe.center)
bStartC = np.array([inBeam.x[0], inBeam.y[0], inBeam.z[0]])
bStartDir = np.array([inBeam.a[0], inBeam.b[0], inBeam.c[0]])
fixedCoord = np.where(np.invert(np.array(autoCenter)))[0]
autoCoord = np.where(autoCenter)[0]
for dim in fixedCoord:
if np.abs(bStartDir[dim]) > 1e-3:
plNorm = np.squeeze(np.identity(3)[dim, :])
newCenter = bStartC - (np.dot(
bStartC, plNorm) - oe.center[dim]) /\
np.dot(bStartDir, plNorm) * bStartDir
if np.linalg.norm(newCenter - bStartC) > 0:
break
for dim in autoCoord:
centerList[dim] = newCenter[dim]
oe.center = centerList
if _VERBOSITY_ > 0:
print(oe.name, "center:", oe.center)
if autoBragg or autoPitch:
if self.flowSource == 'Qook':
inBeam.E[0] = alignE
try:
if is_sequence(oe.material):
mat = oe.material[oe.curSurface]
else:
mat = oe.material
braggT = mat.get_Bragg_angle(alignE)
alphaT = 0.
lauePitch = 0.
if mat.kind == 'multilayer':
braggT += -mat.get_dtheta(alignE)
else:
alphaT = 0 if oe.alpha is None else oe.alpha
if mat.geom.startswith('Laue'):
lauePitch = 0.5 * np.pi
else:
braggT += -mat.get_dtheta(alignE, alphaT)
loBeam = copy.deepcopy(inBeam) # Beam(copyFrom=inBeam)
global_to_virgin_local(self, inBeam, loBeam, center=oe.center)
rotate_beam(loBeam, roll=-(oe.positionRoll + oe.roll),
yaw=-oe.yaw, pitch=0)
theta0 = np.arctan2(-loBeam.c[0], loBeam.b[0])
th2pitch = np.sqrt(1. - loBeam.a[0]**2)
targetPitch = np.arcsin(np.sin(braggT) / th2pitch) - theta0
targetPitch += alphaT + lauePitch
if autoBragg:
if autoPitch:
oe.pitch = 0
oe.bragg = targetPitch - oe.pitch
if _VERBOSITY_ > 0:
print("{0}: Bragg={1} at E={2}".format(
oe.name, oe.bragg, alignE))
else: # autoPitch
oe.pitch = targetPitch
if _VERBOSITY_ > 0:
print(oe.name, "pitch:", oe.pitch)
except Exception as e:
if _DEBUG_:
raise e
else:
pass
def propagate_flow(self, startFrom=0, signal=None):
if self.oesDict is None or self.flow is None:
return
totalStages = len(self.flow[startFrom:])
for iseg, segment in enumerate(self.flow[startFrom:]):
segOE = self.oesDict[segment[0]][0]
fArgs = OrderedDict()
for inArg in segment[2].items():
if inArg[0].startswith('beam'):
if inArg[1] is None:
inBeam = None
break
fArgs[inArg[0]] = self.beamsDict[inArg[1]]
inBeam = fArgs['beam']
else:
fArgs[inArg[0]] = inArg[1]
try:
if inBeam is None:
continue
except NameError:
pass
try: # protection againt incorrect propagation parameters
if signal is not None:
signalStr = "Propagation: {0} {1}(), %p% done.".format(
str(segment[0]),
str(segment[1]).split(".")[-1].strip(">").split(
" ")[0])
signal.emit((float(iseg+1)/float(totalStages), signalStr))
self.statusSignal =\
[signal, iseg+1, totalStages, signalStr]
except Exception:
pass
try:
outBeams = segment[1](segOE, **fArgs)
except Exception:
if _DEBUG_:
raise
else:
continue
if isinstance(outBeams, tuple):
for outBeam, beamName in zip(list(outBeams),
list(segment[3].values())):
self.beamsDict[beamName] = outBeam
else:
self.beamsDict[str(list(segment[3].values())[0])] = outBeams
def glow(self, scale=[], centerAt='', startFrom=0, colorAxis=None,
colorAxisLimits=None, generator=None, generatorArgs=[]):
if generator is not None:
gen = generator(*generatorArgs)
try:
if sys.version_info < (3, 1):
gen.next()
else:
next(gen)
except StopIteration:
return
try:
from ...gui import xrtGlow as xrtglow
except ImportError:
print("Cannot import xrtGlow. "
"If you run your script from an IDE, don't.")
return
from .run import run_process
run_process(self)
if self.blViewer is None:
app = xrtglow.qt.QApplication(sys.argv)
rayPath = self.export_to_glow()
self.blViewer = xrtglow.xrtGlow(rayPath)
self.blViewer.generator = generator
self.blViewer.generatorArgs = generatorArgs
self.blViewer.customGlWidget.generator = generator
self.blViewer.setWindowTitle("xrtGlow")
self.blViewer.startFrom = startFrom
self.blViewer.bl = self
if scale:
try:
self.blViewer.updateScaleFromGL(scale)
except Exception:
pass
if centerAt:
try:
self.blViewer.centerEl(centerAt)
except Exception:
pass
if colorAxis:
try:
colorCB = self.blViewer.colorControls[0]
colorCB.setCurrentIndex(colorCB.findText(colorAxis))
except Exception:
pass
if colorAxisLimits:
try:
self.blViewer.customGlWidget.colorMin,\
self.blViewer.customGlWidget.colorMax = colorAxisLimits
self.blViewer.changeColorAxis(None, newLimits=True)
except Exception:
pass
self.blViewer.show()
sys.exit(app.exec_())
else:
self.blViewer.show()
def export_to_glow(self, signal=None):
def calc_weighted_center(beam):
good = (beam.state == 1) | (beam.state == 2)
intensity = beam.Jss[good] + beam.Jpp[good]
totalI = np.sum(intensity)
if totalI == 0:
beam.wCenter = np.array([0., 0., 0.])
else:
beam.wCenter = np.array(
[np.sum(beam.x[good] * intensity),
np.sum(beam.y[good] * intensity),
np.sum(beam.z[good] * intensity)]) /\
totalI
if self.flow is not None:
beamDict = OrderedDict()
rayPath = []
outputBeamMatch = OrderedDict()
oesDict = OrderedDict()
totalStages = len(self.flow)
for iseg, segment in enumerate(self.flow):
try:
if signal is not None:
signalStr = "Processing {0} beams, %p% done.".format(
str(segment[0]))
signal.emit((float(iseg+1) / float(totalStages),
signalStr))
except Exception:
if _DEBUG_:
raise
else:
pass
try:
methStr = str(segment[1])
oeStr = segment[0]
segOE = self.oesDict[oeStr][0]
if segOE is None: # Protection from non-initialized OEs
continue
oesDict[oeStr] = self.oesDict[oeStr]
if 'beam' in segment[2].keys():
if str(segment[2]['beam']) == 'None':
continue
tmpBeamName = segment[2]['beam']
beamDict[tmpBeamName] = copy.deepcopy(
self.beamsDict[tmpBeamName])
if 'beamGlobal' in segment[3].keys():
outputBeamMatch[segment[3]['beamGlobal']] = oeStr
if len(re.findall('raycing.sou',
str(type(segOE)).lower())):
gBeamName = segment[3]['beamGlobal']
beamDict[gBeamName] = self.beamsDict[gBeamName]
rayPath.append([oeStr, gBeamName, None, None])
elif len(re.findall(('expose'), methStr)) > 0 and\
len(re.findall(('expose_global'), methStr)) == 0:
gBeam = self.oesDict[oeStr][0].expose_global(
self.beamsDict[tmpBeamName])
gBeamName = '{}toGlobal'.format(
segment[3]['beamLocal'])
beamDict[gBeamName] = gBeam
if tmpBeamName in outputBeamMatch:
# if no good rays, the condition is False
rayPath.append([outputBeamMatch[tmpBeamName],
tmpBeamName, oeStr, gBeamName])
elif len(re.findall(('double'), methStr)) +\
len(re.findall(('multiple'), methStr)) > 0:
lBeam1Name = segment[3]['beamLocal1']
gBeam = copy.deepcopy(self.beamsDict[lBeam1Name])
segOE.local_to_global(gBeam)
g1BeamName = '{}toGlobal'.format(lBeam1Name)
beamDict[g1BeamName] = gBeam
rayPath.append([outputBeamMatch[tmpBeamName],
tmpBeamName, oeStr, g1BeamName])
gBeamName = segment[3]['beamGlobal']
beamDict[gBeamName] = self.beamsDict[gBeamName]
rayPath.append([oeStr, g1BeamName,
oeStr, gBeamName])
elif len(re.findall(('propagate'), methStr)) > 0:
if 'beamGlobal' in segment[3].keys():
lBeam1Name = segment[3]['beamGlobal']
gBeamName = lBeam1Name
else:
lBeam1Name = segment[3]['beamLocal']
gBeamName = '{}toGlobal'.format(lBeam1Name)
gBeam = copy.deepcopy(self.beamsDict[lBeam1Name])
segOE.local_to_global(gBeam)
beamDict[gBeamName] = gBeam
rayPath.append([outputBeamMatch[tmpBeamName],
tmpBeamName, oeStr, gBeamName])
else:
gBeamName = segment[3]['beamGlobal']
beamDict[gBeamName] = self.beamsDict[gBeamName]
rayPath.append([outputBeamMatch[tmpBeamName],
tmpBeamName, oeStr, gBeamName])
except Exception as e:
if _DEBUG_:
raise e
else:
continue
totalBeams = len(beamDict)
for itBeam, tBeam in enumerate(beamDict.values()):
if signal is not None:
try:
signalStr = "Calculating trajectory, %p% done."
signal.emit((float(itBeam+1)/float(totalBeams), signalStr))
except Exception:
if _DEBUG_:
raise
else:
pass
if tBeam is not None:
calc_weighted_center(tBeam)
return [rayPath, beamDict, oesDict]
|