1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
# -*- coding: utf-8 -*-
r"""
The module :mod:`~xrt.backends.raycing.coherence` has functions for 1D and 2D
analysis of coherence and functions for 1D plotting of degree of coherence and
and 2D plotting of eigen modes.
The input for the analysis functions is a 3D stack of field images. It can be
obtained directly from the undulator class, or from a plot object after several
repeats of wave propagation of a filament beam through a beamline. Examples can
be found in ``...\tests\raycing\test_coherent_fraction_stack.py`` and in
:ref:`SoftiMAX`.
.. autofunction:: calc_1D_coherent_fraction
.. autofunction:: plot_1D_degree_of_coherence
.. autofunction:: calc_degree_of_transverse_coherence_4D
.. autofunction:: calc_degree_of_transverse_coherence_PCA
.. autofunction:: calc_eigen_modes_4D
.. autofunction:: calc_eigen_modes_PCA
.. autofunction:: plot_eigen_modes
"""
__author__ = "Konstantin Klementiev, Roman Chernikov"
__date__ = "21 Jan 2018"
import numpy as np
import scipy.linalg as spl
from scipy.signal import argrelextrema
import matplotlib as mpl
import matplotlib.pyplot as plt
import matplotlib.patches as mpatches
def calc_1D_coherent_fraction(U, axisName, axis, p=0):
"""
Calculates 1D degree of coherence (DoC). From its width in respect to the
width of intensity distribution also infers the coherent fraction. Both
widths are rms. The one of intensity is calculated over the whole axis, the
one of DoC is calculated between the first local minima around the center
provided that these minima are lower than 0.5.
*U*: complex valued ndarray, shape(repeats, nx, ny)
3D stack of field images. For a 1D cut along *axis*, the middle of the
other dimension is sliced out.
*axis*: str, one of 'x' or ('y' or 'z')
Specifies the 1D axis of interest.
*p*: float, distance to screen
If non-zero, the calculated mutual intensity will be divided by *p*\ ².
This is useful to get proper physical units of the returned intensity
if the function is applied directly to the field stacks given by
Undulator.multi_electron_stack() that is calculated in angular units.
Returns a tuple of mutual intensity, 1D intensity, 1D DoC, rms width of
intensity, rms width of DoC (between the local minima, see above), the
position of the minima (only the positive side) and the coherent fraction.
This tuple can be fed to the plotting function
:func:`plot_1D_degree_of_coherence`.
"""
repeats, binsx, binsz = U.shape
if axisName == 'x':
Uc = U[:, :, binsz//2]
elif axisName in ['y', 'z']:
Uc = U[:, binsx//2, :]
else:
raise ValueError("unknown axis")
J = np.dot(Uc.T.conjugate(), Uc) / repeats
if p > 0: # p is distance
J /= p**2
II = np.abs(np.diag(J)) # intensity as the main diagonal
# II = (np.abs(Uc)**2).sum(axis=0) / repeats # intensity by definition
J /= II**0.5 * II[:, np.newaxis]**0.5
Jd = np.abs(np.diag(np.fliplr(J))) # DoC as the cross-diagonal
varI = (II * axis**2).sum() / II.sum()
axisEx = 2 * axis
lm = argrelextrema(Jd, np.less)[0] # local min
# for variance up to the 1st local minimum which is < 0.5:
lm = lm[(axisEx[lm] > 0) & (Jd[lm] < 0.5)]
if len(lm) > 0:
cond = np.abs(axisEx) <= axisEx[lm[0]]
limJd = axisEx[lm[0]]
else:
cond = slice(None) # for unconstrained variance calculation
limJd = None
varJd = (Jd * axisEx**2)[cond].sum() / Jd[cond].sum()
cohFr = (4*varI/varJd + 1)**(-0.5)
return J, II, Jd, varI, varJd, limJd, cohFr
def plot_1D_degree_of_coherence(data1D, axisName, axis, unit="mm", fig2=None,
isIntensityNormalized=False, locLegend='auto'):
"""
Provides two plots: a 2D plot of mutual intensity and a 1D plot of
intensity and DoC. The latter plot can be shared between the two 1D axes if
this function is invoked two times.
*data1D*: tuple returned by :func:`calc_1D_coherent_fraction`.
*axisName*: str, used in labels.
*axis*: 1D array of abscissa.
*unit*: str, used in labels.
*fig2*: matplotlib figure object, if needed for shared plotting of two 1D
axes.
*isIntensityNormalized*: bool, controls the intensity axis label.
*locLegend*: str, legend location in matplotlib style.
Returns the two figure objects for the user to add suptitles and to export
to image files.
Plot examples for one and two 1D curves:
.. imagezoom:: _images/_DOC-1D-1.*
.. imagezoom:: _images/_DOC-1D-2.*
"""
Jx, Ix, Jdx, varIx, varJdx, limJd, cohFrx = data1D
fig1 = plt.figure()
ax = fig1.add_subplot(111, aspect=1)
am = axis.max()
unitStr = "({0})".format(unit) if unit else ""
ax.set_xlabel("{0}$_1$ {1}".format(axisName, unitStr))
ax.set_ylabel("{0}$_2$ {1}".format(axisName, unitStr))
ax.imshow(np.abs(Jx), origin='upper', extent=[-am, am, am, -am],
interpolation='none')
if fig2 is None:
fig2 = plt.figure()
ax2 = fig2.add_subplot(111)
if isIntensityNormalized:
ax2.set_ylabel("normalized intensity (a.u.)", color="C0")
else:
ax2.set_ylabel("intensity (ph/s/{0}²/0.1%BW)".format(unit),
color="C0")
ax2.tick_params(axis='y', colors="C0")
ax2.myLabel = "{0} or {0}$_1-${0}$_2$".format(axisName)
ax2.myUnit = " ({0})".format(unit)
ax3 = ax2.twinx()
ax3.set_ylabel("degree of coherence", color="C1")
ax3.tick_params(axis='y', colors="C1")
ax3.spines['left'].set_color("C0")
ax3.spines['right'].set_color("C1")
lstyle = '-'
loc = "center left" if locLegend == 'auto' else locLegend
rHeight = 1.02
else:
ax2, ax3 = fig2.axes
ax2.myLabel += " or {0} or {0}$_1-${0}$_2$".format(axisName)
lstyle = '--'
loc = "center right" if locLegend == 'auto' else locLegend
rHeight = 1.0
ax2.set_xlabel(ax2.myLabel + ax2.myUnit)
l1, = ax2.plot(axis, Ix, "C0"+lstyle)
ax2.set_ylim([0, 1.02 if isIntensityNormalized else None])
l3, = ax3.plot(axis*2, Jdx, "C1"+lstyle)
if limJd is not None:
rect = mpatches.Rectangle(
(-limJd, 0), width=2*limJd, height=rHeight, color='C1', alpha=0.1)
ax3.add_patch(rect)
ax3.set_ylim([0, 1.02])
pp = mpatches.Patch(color='none') # a fake element to add text to legends
legendX = ax3.legend(
(l1, l3, pp),
("I({0}),\nσ$_{0}$ = {1:.2f} {2}".format(axisName, varIx**0.5, unit),
"DoC({0}$_1-${0}$_2$),\nξ$_{0}$ = {1:.2f} {2}".format(
axisName, varJdx**0.5, unit),
"\nζ$_{0}$ = {1:.1f} %".format(axisName, cohFrx*100)),
loc=loc)
ax3.add_artist(legendX)
return fig1, fig2
def calc_degree_of_transverse_coherence_4D(J):
"""
Calculates DoTC from the mutual intensity *J* as Tr(*J²*)/Tr²(*J*). This
function should only be used for demonstration purpose. There is a faster
alternative: :func:`calc_degree_of_transverse_coherence_PCA`.
"""
res = np.diag(np.dot(J, J)).sum() / np.diag(J).sum()**2
return res.real
def calc_degree_of_transverse_coherence_PCA(U):
"""
Calculates DoTC from the field stack *U*. The field images of *U* are
flattened to form the matrix D shaped as (repeats, nx×ny).
DoTC = Tr(*D*\ :sup:`+`\ *DD*\ :sup:`+`\ *D*)/Tr²(*D*\ :sup:`+`\ *D*),
which is equal to the original DoTC for the mutual intensity *J*:
DoTC = Tr(*J²*)/Tr²(*J*).
"""
repeats, binsx, binsz = U.shape
k = binsx * binsz
D = np.array(U).reshape((repeats, k), order='F').T
DTD = np.dot(D.T.conjugate(), D)
res = np.diag(np.dot(DTD, DTD)).sum() / np.diag(DTD).sum()**2
return res.real
def calc_eigen_modes_4D(J, eigenN=4):
"""
Solves the eigenvalue problem for the mutual intensity *J*. This function
should only be used for demonstration purpose. There is a much faster
alternative: :func:`calc_eigen_modes_PCA`.
"""
k = J.shape[0]
J /= np.diag(J).sum()
kwargs = dict(eigvals=(k-eigenN, k-1)) if eigenN else {}
w, v = spl.eigh(J, **kwargs)
if eigenN is None:
rE = np.dot(np.dot(v, np.diag(w)), np.conj(v.T))
print("diff J--decomposed(J) = {0}".format(np.abs(J-rE).sum()))
return w, v
def calc_eigen_modes_PCA(U, eigenN=4, maxRepeats=None, normalize=False):
"""
Solves the PCA problem for the field stack *U* shaped as (repeats, nx, ny).
The field images are flattened to form the matrix D shaped as
(repeats, nx×ny). The eigenvalue problem is solved for the matrix
*D*\ :sup:`+`\*D*.
Returns a tuple of two arrays: eigenvalues in a 1D array and eigenvectors
as columns of a 2D array. This is a much faster and exact replacement of
the full eigen mode decomposition by :func:`calc_eigen_modes_4D`.
*eigenN* sets the number of returned eigen modes. If None, the number of
modes is inferred from the shape of the field stack *U* and is equal to the
number of macroelectrons (repeats). If given as a 2-tuple, *eigenN* refers
to the number of eigenvalues and eigenvectors separately.
if *maxRepeats* are given, the stack is sliced up to that number. This
option is introduced in order not to make the eigenvalue problem too big.
If *normalize* is True, the eigenvectors are normalized, otherwise
they are the PCs of the field stack in the original field units.
"""
locU = U if maxRepeats is None else U[:maxRepeats, :, :]
repeats, binsx, binsz = locU.shape
if eigenN is None:
eigenNw, eigenNv = repeats, repeats
elif isinstance(eigenN, (tuple, list)):
eigenNw, eigenNv = eigenN[:2]
if eigenNw is None:
eigenNw = repeats
if eigenNv is None:
eigenNv = repeats
else:
eigenNw, eigenNv = eigenN, eigenN
minEigenNw = min(eigenNw, eigenNv)
maxEigenNw = max(eigenNw, eigenNv)
if repeats < minEigenNw:
raise ValueError('"repeats" must be >= {0}'.format(minEigenNw))
k = binsx * binsz
D = np.array(locU).reshape((repeats, k), order='F').T
DTD = np.dot(D.T.conjugate(), D)
DTD /= np.diag(DTD).sum()
kwargs = dict(eigvals=(repeats-maxEigenNw, repeats-1))
wPCA, vPCA = spl.eigh(DTD, **kwargs)
outPCA = np.zeros((k, eigenNv), dtype=np.complex128)
for i in range(eigenNv):
mPCA = np.outer(vPCA[:, -1-i], vPCA[:, -1-i].T.conjugate())
vv = np.dot(D, mPCA)[:, 0]
if normalize:
outPCA[:, -1-i] = vv / np.dot(vv, vv.conj())**0.5
else:
outPCA[:, -1-i] = vv
if eigenNv == repeats and normalize:
rE = np.dot(np.dot(vPCA, np.diag(wPCA)), np.conj(vPCA.T))
print("diff DTD--decomposed(DTD) = {0}".format(np.abs(DTD-rE).sum()))
return wPCA, outPCA
calc_eigen_modes = calc_eigen_modes_PCA
def plot_eigen_modes(x, y, w, v, xlabel='', ylabel=''):
"""
Provides 2D plots of the first 4 eigen modes in the given *x* and *y*
coordinates. The eigen modes are specified by eigenvalues and eigenvectors
*w* and *v* returned by :func:`calc_eigen_modes_PCA` or
:func:`calc_eigen_modes_4D`.
Plot example:
.. imagezoom:: _images/_Modes-2D.*
"""
limx, limz = [x.min(), x.max()], [y.min(), y.max()]
isSliceX, isSliceZ = False, False
if limx[0] == limx[1]:
limx = [l*0.1 for l in limz]
isSliceX = True
if limz[0] == limz[1]:
limz = [l*0.1 for l in limx]
isSliceZ = True
dlimx, dlimz = limx[1] - limx[0], limz[1] - limz[0]
fxz = float(dlimz)/dlimx
xMargin = 80
yMargin = xMargin - 30
space = 4
dX = 256
dY = dX * fxz
dpi = 100
cmap = mpl.colormaps['cubehelix']
# cmap = None # default to rc image.cmap value
extent = limx + limz
if w is None:
return
# norm = (abs(v[:, -4:])**2).sum(axis=0)
# v[:, -4:] /= norm**0.5
xFigSize = float(2*xMargin + space + 2*dX)
# yFigSize = float(2*yMargin + space + 2*dY + 20/fxz)
yFigSize = float(2*yMargin + space + 2*dY)
figMs = plt.figure(figsize=(xFigSize/dpi, yFigSize/dpi), dpi=dpi)
rect2d = [xMargin/xFigSize, (yMargin+dY+space)/yFigSize,
dX/xFigSize, dY/yFigSize]
ax0 = figMs.add_axes(rect2d, aspect=1)
rect2d = [(xMargin+dX+space)/xFigSize, (yMargin+dY+space)/yFigSize,
dX/xFigSize, dY/yFigSize]
ax1 = figMs.add_axes(rect2d, aspect=1)
rect2d = [xMargin/xFigSize, yMargin/yFigSize,
dX/xFigSize, dY/yFigSize]
ax2 = figMs.add_axes(rect2d, aspect=1)
rect2d = [(xMargin+dX+space)/xFigSize, yMargin/yFigSize,
dX/xFigSize, dY/yFigSize]
ax3 = figMs.add_axes(rect2d, aspect=1)
for ax in [ax0, ax1, ax2, ax3]:
ax.set_xlim(extent[0], extent[1])
ax.set_ylim(extent[2], extent[3])
ax.tick_params(axis='x', colors='grey')
ax.tick_params(axis='y', colors='grey')
if isSliceX:
ax.set_xticks([0])
if isSliceZ:
ax.set_yticks([0])
for ax in [ax0, ax1]:
ax.xaxis.tick_top()
for ax in [ax1, ax3]:
ax.yaxis.tick_right()
modeName = 'mode'
labels = ['0th (coherent) {0}: w={1:.3f}', '1st residual {0}: w={1:.3f}',
'2nd residual {0}: w={1:.3f}', '3rd residual {0}: w={1:.3f}']
for iax, (ax, lab) in enumerate(zip([ax0, ax1, ax2, ax3], labels)):
assert v[:, -iax-1].shape[0] == len(y)*len(x)
im = (v[:, -iax-1]).reshape(len(y), len(x))
imA = (im.real**2 + im.imag**2).astype(float)
ax.imshow(imA, extent=extent, cmap=cmap, interpolation='none')
plt.text(
0.5, 0.95, lab.format(modeName, w[-iax-1]),
transform=ax.transAxes, ha='center', va='top', color='w', size=10)
if xlabel:
figMs.text((xMargin+dX+space/2.)/xFigSize, yMargin*0.3/yFigSize,
xlabel, ha='center', va='center')
if ylabel:
figMs.text(xMargin*0.3/xFigSize, (yMargin+dY+space/2.)/yFigSize,
ylabel, ha='center', va='center', rotation='vertical')
return figMs
|