1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
|
//__author__ = "Konstantin Klementiev, Roman Chernikov"
//__date__ = "10 Apr 2015"
#ifdef cl_khr_fp64
#if __OPENCL_VERSION__<120
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#endif
#endif
//#include "materials.cl"
//__constant float Pi = 3.141592653589793;
__constant const float twoPi = (float)6.283185307179586476;
__constant const float invTwoPi = (float)(1./6.283185307179586476);
__constant const float invFourPi = (float)0.07957747154594767;
__constant float2 cmp0 = (float2)(0, 0);
__constant float2 cmpi1 = (float2)(0, 1);
//__constant float2 cmp0_d = (float2)(0, 0);
//__constant float2 cmpi1_d = (float2)(0, 1);
__constant const float2 cfactor = (float2)(0, -0.07957747154594767);
float2 prod_c(float2 a, float2 b)
{
return (float2)(a.x*b.x - a.y*b.y, a.y*b.x + a.x*b.y);
}
float2 prod_c_d(float2 a, float2 b)
{
return (float2)(a.x*b.x - a.y*b.y, a.y*b.x + a.x*b.y);
}
float to2pi(float val)
{
return val - trunc(val*invTwoPi) * twoPi;
}
//float dot3(float3 a, float3 b)
//{
// return (float)(a.x*b.x + a.y*b.y + a.z*b.z);
//}
//float2 conj_c(float2 a)
// {
// return (float2)(a.x, -a.y);
// }
//float abs_c(float2 a)
// {
// return sqrt(a.x*a.x + a.y*a.y);
// }
//float abs_c2(float2 a)
// {
// return (a.x*a.x + a.y*a.y);
// }
//float arg_c(float2 a)
// {
// if(a.x > 0)
// {
// return atan(a.y / a.x);
// }
// else if(a.x < 0 && a.y >= 0)
// {
// return atan(a.y / a.x) + Pi;
// }
// else if(a.x < 0 && a.y < 0)
// {
// return atan(a.y / a.x) - Pi;
// }
// else if(a.x == 0 && a.y > 0)
// {
// return Pi/2;
// }
// else if(a.x == 0 && a.y < 0)
// {
// return -Pi/2;
// }
// else
// {
// return 0;
// }
// }
__kernel void integrate_kirchhoff(
//const unsigned int imageLength,
const unsigned int fullnrays,
__global float* x_glo,
__global float* y_glo,
__global float* z_glo,
__global float* cosGamma,
__global float2* Es,
__global float2* Ep,
__global float* k,
__global float3* beamOEglo,
__global float3* oe_surface_normal,
// __global float* beam_OE_loc_path,
__global float2* KirchS_gl,
__global float2* KirchP_gl,
__global float2* KirchA_gl,
__global float2* KirchB_gl,
__global float2* KirchC_gl)
{
unsigned int i;
// unsigned int imageLength = get_global_size(0);
float3 beam_coord_glo, beam_angle_glo;
float2 gi, giEs, giEp, cfactor;
float2 KirchS_loc, KirchP_loc;
float2 KirchA_loc, KirchB_loc, KirchC_loc;
float pathAfter, cosAlpha, cr, sinphase, cosphase;
unsigned int ii_screen = get_global_id(0);
float phase;
float invPathAfter, kip;
KirchS_loc = cmp0;
KirchP_loc = cmp0;
KirchA_loc = cmp0;
KirchB_loc = cmp0;
KirchC_loc = cmp0;
beam_coord_glo.x = x_glo[ii_screen];
beam_coord_glo.y = y_glo[ii_screen];
beam_coord_glo.z = z_glo[ii_screen];
for (i=0; i<fullnrays; i++)
{
beam_angle_glo = beam_coord_glo - beamOEglo[i];
pathAfter = length(beam_angle_glo);
invPathAfter = 1. / pathAfter;
// invPathAfter = rsqrt(dot(beam_angle_glo, beam_angle_glo));
cosAlpha = dot(beam_angle_glo, oe_surface_normal[i]) * invPathAfter;
phase = k[i] * pathAfter;
// phase = k[i] / invPathAfter;
kip = k[i] * invPathAfter;
cr = kip * (cosAlpha + cosGamma[i]);
sinphase = sincos(phase, &cosphase);
gi = (float2)(cr * cosphase, cr * sinphase);
giEs = prod_c(gi, Es[i]);
giEp = prod_c(gi, Ep[i]);
KirchS_loc += giEs;
KirchP_loc += giEp;
gi = k[i] * kip * (giEs+giEp);
KirchA_loc += prod_c(gi, beam_angle_glo.x);
KirchB_loc += prod_c(gi, beam_angle_glo.y);
KirchC_loc += prod_c(gi, beam_angle_glo.z);
}
mem_fence(CLK_LOCAL_MEM_FENCE);
cfactor = -cmpi1 * invFourPi;
KirchS_gl[ii_screen] = prod_c(cfactor, KirchS_loc);
KirchP_gl[ii_screen] = prod_c(cfactor, KirchP_loc);
KirchA_gl[ii_screen] = KirchA_loc * invFourPi;
KirchB_gl[ii_screen] = KirchB_loc * invFourPi;
KirchC_gl[ii_screen] = KirchC_loc * invFourPi;
mem_fence(CLK_LOCAL_MEM_FENCE);
}
//__kernel void integrate_kirchhoff_d(
// //const unsigned int imageLength,
// const unsigned int fullnrays,
// __global float* x_glo,
// __global float* y_glo,
// __global float* z_glo,
// __global float* cosGamma,
// __global float2* Es,
// __global float2* Ep,
// __global float* k,
// __global float3* beamOEglo,
// __global float3* oe_surface_normal,
//// __global float* beam_OE_loc_path,
// __global float2* KirchS_gl,
// __global float2* KirchP_gl,
// __global float2* KirchA_gl,
// __global float2* KirchB_gl,
// __global float2* KirchC_gl)
//{
// unsigned int i;
//// unsigned int imageLength = get_global_size(0);
// float3 beam_coord_glo, beam_angle_glo;
// float2 gi, giEs, giEp;
// float2 KirchS_loc, KirchP_loc;
// float2 KirchA_loc, KirchB_loc, KirchC_loc;
//// float pathAfter, cosAlpha, cr;
// float cosAlpha, cr;
// float sinphase, cosphase;
// float phase;
// float invPathAfter, kp;
// unsigned int ii_screen = get_global_id(0);
//
// KirchS_loc = cmp0_d;
// KirchP_loc = cmp0_d;
// KirchA_loc = cmp0_d;
// KirchB_loc = cmp0_d;
// KirchC_loc = cmp0_d;
//
// beam_coord_glo.x = x_glo[ii_screen];
// beam_coord_glo.y = y_glo[ii_screen];
// beam_coord_glo.z = z_glo[ii_screen];
// for (i=0; i<fullnrays; i++)
// {
// beam_angle_glo = beam_coord_glo - beamOEglo[i];
//// pathAfter = length(beam_angle_glo);
//// invPathAfter = 1. / pathAfter;
// invPathAfter = rsqrt(dot(beam_angle_glo, beam_angle_glo));
//// phase = to2pi(k[i] * pathAfter);
// phase = to2pi(k[i] / invPathAfter);
// kp = k[i] * invPathAfter;
// cosAlpha = dot(beam_angle_glo, oe_surface_normal[i]) * invPathAfter;
// cr = kp * (cosAlpha + cosGamma[i]);
// sinphase = sincos((float)phase, &cosphase);
// gi = (float2)((float)cosphase, (float)sinphase);
// giEs = prod_c_d(gi, Es[i]);
// giEp = prod_c_d(gi, Ep[i]);
// KirchS_loc += giEs * cr;
// KirchP_loc += giEp * cr;
// gi = k[i] * kp * (giEs + giEp);
// KirchA_loc += gi * beam_angle_glo.x;
// KirchB_loc += gi * beam_angle_glo.y;
// KirchC_loc += gi * beam_angle_glo.z;
// }
// mem_fence(CLK_LOCAL_MEM_FENCE);
//
// KirchS_gl[ii_screen] = prod_c_d(KirchS_loc, cfactor);
// KirchP_gl[ii_screen] = prod_c_d(KirchP_loc, cfactor);
// KirchA_gl[ii_screen] = KirchA_loc * invFourPi;
// KirchB_gl[ii_screen] = KirchB_loc * invFourPi;
// KirchC_gl[ii_screen] = KirchC_loc * invFourPi;
//
// mem_fence(CLK_LOCAL_MEM_FENCE);
//}
//__kernel void integrate_fraunhofer(
// const unsigned int imageLength,
// const unsigned int fullnrays,
// const float chbar,
// __global float* cosGamma,
// __global float* a_glo,
// __global float* b_glo,
// __global float* c_glo,
// __global float2* Es,
// __global float2* Ep,
// __global float* E_loc,
// __global float3* beamOEglo,
// __global float3* oe_surface_normal,
// __global float* beam_OE_loc_path,
// __global float2* KirchS_gl,
// __global float2* KirchP_gl)
//
//{
// unsigned int i;
//
//// float3 beam_coord_glo;
// float3 beam_angle_glo;
// float2 gi, KirchS_loc, KirchP_loc;
// float pathAfter, cosAlpha, cr;
// unsigned int ii_screen = get_global_id(0);
//// float wavelength;
// float k, phase;
//
// KirchS_loc = (float2)(0, 0);
// KirchP_loc = KirchS_loc;
//
// beam_angle_glo.x = a_glo[ii_screen];
// beam_angle_glo.y = b_glo[ii_screen];
// beam_angle_glo.z = c_glo[ii_screen];
// //if (ii_screen==128 || ii_screen==129) printf("Pix %i, beam_coord_glo %0.32v3f\n",ii_screen, beam_coord_glo);
// for (i=0; i<fullnrays; i++)
// {
// //printf("point %i\n",i);
// pathAfter = -dot(beam_angle_glo, beamOEglo[i]);
// cosAlpha = dot(beam_angle_glo, oe_surface_normal[i]);
// k = E_loc[i] / chbar * 1.e7;
//// wavelength = twoPi / k;
// phase = k * (pathAfter + beam_OE_loc_path[i]);
// cr = (cosAlpha + cosGamma[i]) / pathAfter;
// gi = (float2)(cr * cos(phase), cr * sin(phase));
// KirchS_loc += prod_c(gi, Es[i]);
// KirchP_loc += prod_c(gi, Ep[i]);
// }
// mem_fence(CLK_LOCAL_MEM_FENCE);
//
// KirchS_gl[ii_screen] = -prod_c(cmpi1*k*invFourPi, KirchS_loc);
// KirchP_gl[ii_screen] = -prod_c(cmpi1*k*invFourPi, KirchP_loc);
// mem_fence(CLK_LOCAL_MEM_FENCE);
//}
|