1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
# -*- coding: utf-8 -*-
r"""
.. _modes:
Coherent mode decomposition and propagation
-------------------------------------------
The most straightforward way for studying the *coherent portion* of synchrotron
light is first to propagate a large collection of filament beams
(or *macro-electrons*) onto a surface of interest (typically, the focal plane
at the sample position) and then perform the modal analysis. The propagation
itself may become expensive when optical elements are situated close to each
other or when the analysis plane is out of focus. These cases require a large
number of wave samples which would allow only a small number of filament beams
processed in a reasonable time. In such cases, an inverse approach should be
preferred: first do the modal analysis of the source radiation and then
propagate the 0th or a few main modes corresponding to the biggest eigenvalues
(flux fractions).
In xrt, we calculate a collection of undulator field realizations at the first
beamline slit (a front-end slit), transform these fields into modes and save
them for the further propagation along the beamline. A selected number of
modes, also optionally a selected number of original fields, are prepared for
the following three ways of propagation:
1) As waves. The wave samples are sequentially diffracted from the first slit
by calculating the Kirchhoff diffraction integral, see
:ref:`Sequential propagation <seq_prop>`.
2) As hybrid waves. The wave samples at the first slit are treated as rays with
the directions projected from the source center (for the modes) or from the
filament beam position (for the fields). The beams of these rays can be
propagated in ray tracing and then diffracted closer to the end of the
beamline. Note that if the beams were propagated as rays down to the image
plane, the individual fields would be seen as filament beam dots and the
individual modes would be seen as centered dots, i.e. the source would have
zero size.
3) As rays. The wave samples at the first slit are propagated backward to the
source plane, which gives the field distribution in real space. The field at
the first slit is sampled by its intensity; these samples give the ray
directions. These beams are suitable for ray traycing down to the image
plane. They are not suitable for wave propagation, as the propagation phase
of each ray is destroyed by the above resampling procedure.
.. autofunction:: make_and_save_modes
.. autofunction:: use_saved
See a usage example in
``/examples/withRaycing/11_Waves/coherentModePropagation.py``.
A model case of 5 macro-electrons
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This example was made for the following beamline scheme, where the mirror M1 is
an ideal ellipsoid providing 1:1 image of the source.
|bl_scheme|
.. |bl_scheme| imagezoom:: _images/bl-modes.*
The eigenmode decomposition at the first slit is accurate within the machine
precision, i.e. the total flux summed over all individual fields is equal to
the total flux summed over all modes, here down to ~1e-16 relative error. This
fact can be proven by comparing the last animation frames of the ‘field’ images
vs. ‘mode’ images. This comparison “all fields” vs. “all modes” was the main
objective of this “a few macro-electrons” test; in usual studies one would
typically need a few thousand macro-electrons and just a small number of modes.
.. rubric:: Individual fields
+-----+----------------------------+----------------------+
| | focus/source | FE slit |
+=====+============================+======================+
| |r| | |rfid| | |rffe| |
+-----+----------------------------+----------------------+
| |h| | |hfid| | |hffe| |
+-----+----------------------------+----------------------+
| |w| | |wfid| | |wffe| |
+-----+----------------------------+----------------------+
.. |rfid| imagezoom:: _images/decomp-rays-fields-beamScreenF
.. |rffe| imagezoom:: _images/decomp-rays-fields-beamFElocal
:loc: upper-right-corner
.. |hfid| imagezoom:: _images/decomp-hybr-fields-beamScreenF
.. |hffe| imagezoom:: _images/decomp-hybr-fields-beamFElocal
:loc: upper-right-corner
.. |wfid| imagezoom:: _images/decomp-wave-fields-beamScreenF
:loc: lower-left-corner
.. |wffe| imagezoom:: _images/decomp-wave-fields-beamFElocal
:loc: lower-right-corner
.. rubric:: Coherent modes
+-----+----------------------------+----------------------+
| | focus/source | FE slit |
+=====+============================+======================+
| |r| | |rmid| | |rmfe| |
+-----+----------------------------+----------------------+
| |h| | |hmid| | |hmfe| |
+-----+----------------------------+----------------------+
| |w| | |wmid| | |wmfe| |
+-----+----------------------------+----------------------+
.. |rmid| imagezoom:: _images/decomp-rays-modes-beamScreenF
.. |rmfe| imagezoom:: _images/decomp-rays-modes-beamFElocal
:loc: upper-right-corner
.. |hmid| imagezoom:: _images/decomp-hybr-modes-beamScreenF
.. |hmfe| imagezoom:: _images/decomp-hybr-modes-beamFElocal
:loc: upper-right-corner
.. |wmid| imagezoom:: _images/decomp-wave-modes-beamScreenF
:loc: lower-left-corner
.. |wmfe| imagezoom:: _images/decomp-wave-modes-beamFElocal
:loc: lower-right-corner
A model case of 5000 macro-electrons
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. rubric:: Coherent radiation
The coherent radiation in the 0th mode has a weight (*coherent fraction*)
≈3.66%. Here it was individually propagated in three different ways:
+-----+----------------------------+----------------------+
| | focus/source | FE slit |
+=====+============================+======================+
| |r| | |rcid| | |rcfe| |
+-----+----------------------------+----------------------+
| |h| | |hcid| | |hcfe| |
+-----+----------------------------+----------------------+
| |w| | |wcid| | |wcfe| |
+-----+----------------------------+----------------------+
.. |rcid| imagezoom:: _images/decomp-rays-modes-atFE-5000-beamScreenF.png
.. |rcfe| imagezoom:: _images/decomp-rays-modes-atFE-5000-beamFElocal.png
:loc: upper-right-corner
.. |hcid| imagezoom:: _images/decomp-hybr-modes-atFE-5000-beamScreenF.png
.. |hcfe| imagezoom:: _images/decomp-hybr-modes-atFE-5000-beamFElocal.png
:loc: upper-right-corner
.. |wcid| imagezoom:: _images/decomp-wave-modes-atFE-5000-beamScreenF.png
:loc: lower-left-corner
.. |wcfe| imagezoom:: _images/decomp-wave-modes-atFE-5000-beamFElocal.png
:loc: lower-right-corner
.. |r| replace:: rays
.. |h| replace:: hybrid
.. |w| replace:: wave
"""
__author__ = "Konstantin Klementiev, Roman Chernikov"
__date__ = "6 Dec 2021"
import numpy as np
import scipy.linalg as spl
import scipy.interpolate as spi
# import matplotlib.pyplot as plt
import pickle
import time
from . import sources as rs
from . import apertures as ra
from . import waves as rw
from .physconsts import CHBAR
def _solve_modes(fields, nModes, phaseEsEp=0, name=''):
"""Calculates eigenmodes from a list of fields."""
nElectrons = len(fields)
if nModes > nElectrons:
nModes = nElectrons
Es = np.array([f[0] for f in fields]).T
Ep = np.array([f[1] for f in fields]).T
fluxField = (Es*np.conj(Es)).real.sum(axis=0)
fluxField += (Ep*np.conj(Ep)).real.sum(axis=0)
fluxFields = fluxField.sum()
DE = Es + Ep*np.exp(1j*phaseEsEp)
start = time.time()
DTD = np.dot(DE.T.conjugate(), DE)
DTD /= np.diag(DTD).sum()
wAll = spl.eigh(DTD, eigvals_only=True)
print("Eigenvalues 0 to {0} w={1}".format(nModes-1, wAll[::-1][:nModes]))
kwargs = dict(eigvals=(nElectrons-nModes, nElectrons-1))
wE, vE = spl.eigh(DTD, **kwargs)
stop = time.time()
if name:
print("{0}:".format(name))
print("PCA problem has taken {0} s".format(stop-start))
print("Eigenvalues 0 to {0} w={1}".format(len(wE)-1, wE[::-1]))
del DTD
del DE
modes = []
fluxModes = 0.
fluxMode = []
for iMode in range(nModes):
vv = vE[:, -1-iMode]
mEs = np.dot(Es, vv)
mEp = np.dot(Ep, vv)
flux = (mEs*np.conj(mEs)).real.sum()
flux += (mEs*np.conj(mEs)).real.sum()
fluxMode.append(flux)
fluxModes += flux
modes.append((mEs, mEp))
print('total flux in {0} field{1} = {2:.7g}'.format(
nElectrons, 's' if nElectrons > 1 else '', fluxFields))
print('total flux in {0} mode{1} = {2:.7g}'.format(
nModes, 's' if nModes > 1 else '', fluxModes))
# if nElectrons > 1:
# fluxFieldStr = ', '.join('{0:.7g}'.format(f) for f in fluxField)
# print('flux in {0} field{1} = {2}'.format(
# nElectrons, 's' if nElectrons > 1 else '', fluxFieldStr))
# if nModes > 1:
# fluxModeStr = ', '.join('{0:.7g}'.format(f) for f in fluxMode)
# print('flux in {0} mode{1} = {2}'.format(
# nModes, 's' if nModes > 1 else '', fluxModeStr))
return modes, wAll, fluxFields
def _sample_real_space(wave, lim):
xx, zz = wave.x, wave.z
II = wave.Jss + wave.Jpp
mcSamples = len(II)
nrep = 0
Imax = II.max()
# interp = LinearNDInterpolator((xx, zz), II, fill_value=0) # not faster!
interp = spi.CloughTocher2DInterpolator((xx, zz), II, fill_value=0)
while True:
rnds = np.random.rand(mcSamples, 3)
rx = rnds[:, 0] * (lim[1]-lim[0]) + lim[0]
rz = rnds[:, 1] * (lim[3]-lim[2]) + lim[2]
rI = interp(rx, rz)
Ipass = np.where(Imax*rnds[:, 2] < rI)[0]
if len(Ipass) == 0:
raise ValueError('No good samples in this seed!')
if nrep == 0:
x, z = rx[Ipass], rz[Ipass]
else:
x = np.concatenate((x, rx[Ipass]))
z = np.concatenate((z, rz[Ipass]))
if len(x) > mcSamples:
x = x[:mcSamples]
z = z[:mcSamples]
print("{0} samples of {1}".format(len(x), mcSamples))
break
elif len(x) == mcSamples:
print("{0} samples of {1}. Bingo!".format(len(x), mcSamples))
break
nrep += 1
print("{0} samples of {1}".format(len(x), mcSamples))
return x, z
def _make_hybr(fieldsFar, beamFar, waveFar, nElectronsSave):
mPh = np.exp(-1e7j * waveFar.E/CHBAR * waveFar.rDiffr)
beamsOrigin = []
for iField, (Es, Ep) in enumerate(fieldsFar[:nElectronsSave]):
resBeam = rs.BeamProxy(beamFar)
resBeam.Es[:] = Es * mPh
resBeam.Ep[:] = Ep * mPh
resBeam.Jss[:] = (Es*np.conj(Es)).real
resBeam.Jpp[:] = (Ep*np.conj(Ep)).real
resBeam.Jsp[:] = (Es*np.conj(Ep))
beamsOrigin.append(resBeam)
return beamsOrigin
def _make_rays(bl, fieldsFar, waveFar, nElectronsSave, limitsOrigin, figStr):
limitsFar = bl.slits[0].opening
distanceFar = bl.slits[0].center[1] - bl.sources[0].center[1]
waveBack = rs.BeamProxy(waveFar)
waveBack.a *= -1
waveBack.b *= -1
waveBack.c *= -1
waveBack.E[:] = -abs(waveBack.E[0])
waveBack.area = (limitsFar[1]-limitsFar[0]) * (limitsFar[3]-limitsFar[2])
slitOrigin = ra.RectangularAperture(bl, 'sourceFrame', (0, 0, 0),
opening=limitsOrigin)
beamsOrigin = []
start = time.time()
for iField, (Es, Ep) in enumerate(fieldsFar[:nElectronsSave]):
pstr = '{0}beam {1} of {2}'.format(figStr+': ' if figStr else '',
iField+1, nElectronsSave)
print(pstr)
waveBack.Es[:] = -Es
waveBack.Ep[:] = -Ep
waveBack.Jss[:] = (waveBack.Es*np.conj(waveBack.Es)).real
waveBack.Jpp[:] = (waveBack.Ep*np.conj(waveBack.Ep)).real
xFar, zFar = _sample_real_space(waveBack, limitsFar)
# # plot far field
# waveBackI = waveBack.Jss + waveBack.Jpp
# ratio = int(limitsFar[1] / limitsFar[3])
# fig = plt.figure(figsize=(2*ratio, 2))
# ax = fig.add_subplot(111, aspect=1)
# ax.scatter(waveBack.x, waveBack.z, c=waveBackI, s=0.5)
# # ax.scatter(a*distFar, c*distFar, c='r', s=0.01)
# ax.set_xlim(limitsFar[:2])
# ax.set_ylim(limitsFar[2:])
# fig.savefig('waveBack-{0}-{1}.png'.format(figStr, iField))
waveOrigin = slitOrigin.prepare_wave(bl.slits[0], len(waveFar.x))
rw.diffract(waveBack, waveOrigin)
# we can diffract waveOrigin again but it would need many more samples
# # plot origin field
# waveOriginI = waveOrigin.Jss + waveOrigin.Jpp
# ratio = int(limitsOrigin[1] / limitsOrigin[3])
# fig = plt.figure(figsize=(2*ratio, 2))
# ax = fig.add_subplot(111, aspect=1)
# ax.scatter(waveOrigin.x, waveOrigin.z, c=waveOriginI, s=5)
# ax.set_xlim(limitsOrigin[:2])
# ax.set_ylim(limitsOrigin[2:])
# fig.savefig('waveOrigin-{0}-{1}.png'.format(figStr, iField))
resBeam = rs.BeamProxy(waveOrigin)
resBeam.E[:] = abs(waveBack.E[0])
resBeam.a[:] = xFar / distanceFar
resBeam.c[:] = zFar / distanceFar
resBeam.b[:] = (1 - resBeam.a**2 - resBeam.c**2)**0.5
resBeam.path[:] = 0
beamsOrigin.append(resBeam)
stop = time.time()
print("{0} beam{1[0]} ha{1[1]} been generated in {2} s"
.format(nElectronsSave, ('', 's') if nElectronsSave == 1
else ('s', 've'), stop-start))
return beamsOrigin
def make_and_save_modes(bl, nsamples, nElectrons, nElectronsSave, nModes,
fixedEnergy, phaseEsEp=0, output='all',
basename='local', limitsOrigin=[]):
"""
Produces pickled files of *nModes* wave modes and *nElectronsSave* wave
fields. The beamline object *bl* must have at least one aperture; the first
of them fill be used to generate *nElectrons* fields for the eigenmode
decomposition. The aperture will be sampled by *nsamples* wave samples.
The fields are normalized such that the intensity sum over the sumples and
over *nElectrons* gives the total flux returned as *totalFlux* in
`use_saved()`. Note that the total flux is made independent (in average) of
*nElectrons*.
*fixedEnergy* is photon energy.
*phaseEsEp* is phase difference between Es and Ep components.
*output* can be 'all' or any combination of words 'wave', 'hybr', 'rays' in
one string. The case 'rays' can take quite long time for field resampling.
*basename* is the output file name that will be prepended by the selected
'wave-', 'hybr-', 'rays-' output modes and appended by `.pickle`.
*limitsOrigin* as [xmin, xmax, zmin, zmax] must be given for generating
'rays'.
"""
waveFar = bl.slits[0].prepare_wave(bl.sources[0], nsamples)
fieldsFar = []
start = time.time()
limitsFar = bl.slits[0].opening
area = (limitsFar[1]-limitsFar[0]) * (limitsFar[3]-limitsFar[2])
dS = area / len(waveFar.x)
norm = nElectrons**0.5 # then the sum flux is independent of nElectrons
for iElectron in range(nElectrons):
beamFar = bl.sources[0].shine(wave=waveFar, fixedEnergy=fixedEnergy)
fieldsFar.append((np.copy(waveFar.Es)*dS**0.5 / norm,
np.copy(waveFar.Ep)*dS**0.5 / norm))
pstr = 'macro-electron {0} of {1}'.format(iElectron+1, nElectrons)
if iElectron % 10 == 9:
pstr += ' in {0:.1f} s'.format(time.time() - start)
print(pstr)
stop = time.time()
print("{0} wave{1[0]} ha{1[1]} been generated in {2} s".format(
nElectrons, ('', 's') if nElectrons == 1 else ('s', 've'), stop-start))
waveModes, wAll, fluxFields = _solve_modes(
fieldsFar, nModes, phaseEsEp, 'waves')
if 'wave' in output or 'all' in output:
pickleName = 'wave-{0}.pickle'.format(basename)
with open(pickleName, 'wb') as f:
pickle.dump(
(fieldsFar[:nElectronsSave], waveModes, wAll, fluxFields,
rs.BeamProxy(waveFar), fixedEnergy), f)
if 'hybr' in output or 'all' in output:
beamsOrigin = _make_hybr(fieldsFar, beamFar, waveFar, nElectronsSave)
modesOrigin = _make_hybr(waveModes, beamFar, waveFar, nElectronsSave)
pickleName = 'hybr-{0}.pickle'.format(basename)
with open(pickleName, 'wb') as f:
pickle.dump(
(beamsOrigin, modesOrigin, wAll, fluxFields,
rs.BeamProxy(beamFar), fixedEnergy), f)
if limitsOrigin:
if 'rays' in output or 'all' in output:
beamsOrigin = _make_rays(
bl, fieldsFar, waveFar, nElectronsSave, limitsOrigin, 'fields')
modesOrigin = _make_rays(
bl, waveModes, waveFar, nElectronsSave, limitsOrigin, 'modes')
pickleName = 'rays-{0}.pickle'.format(basename)
with open(pickleName, 'wb') as f:
pickle.dump(
(beamsOrigin, modesOrigin, wAll, fluxFields,
rs.BeamProxy(beamFar), fixedEnergy), f)
print("Done with make_and_save_modes()")
def use_saved(what, basename):
"""Loads the saved modes and fields produced by `make_and_save_modes()`.
*what* is a string starting with one of 'wave', 'hybr', 'rays' and ending
with one of 'modes', 'fields'.
*basename* is the same parameter used in `make_and_save_modes()`.
Returnes a tuple (savedBeams, wAll, totalFlux), where
*savedBeams* is a list of beam objects corresponding to *what*.
*wAll* is a list of all eigenvalues (flux weights) of the eigenmode
decomposition.
*totalFlux* is described in `make_and_save_modes()`.
"""
for header in ['wave', 'hybr', 'rays']:
if what.startswith(header):
break
else:
raise ValueError('Unknown type of saved object')
pickleName = '{0}-{1}.pickle'.format(header, basename)
with open(pickleName, 'rb') as f:
fields, modes, wAll, totalFlux, wave, E0 = pickle.load(f)
if what.startswith('wave'):
savedWaves = modes if what.endswith('modes') else fields
res = []
for savedWave in savedWaves:
w = rs.BeamProxy(wave)
w.Es[:], w.Ep[:] = savedWave
w.Jss[:] = (w.Es * np.conj(w.Es)).real
w.Jpp[:] = (w.Ep * np.conj(w.Ep)).real
w.Jsp[:] = (w.Es * np.conj(w.Ep))
res.append(w)
elif what.startswith('hybr') or what.startswith('rays'):
res = modes if what.endswith('modes') else fields
print('total flux = {0:.7g}'.format(totalFlux))
if len(wAll) > 1:
print('biggest {0} eigenvalues: {1}'.format(
len(modes), wAll[::-1][:len(modes)]))
return res, wAll, totalFlux
|