1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
import os
import time
import numpy as np
import inspect
import copy
from scipy.spatial.transform import Rotation as scprot
import matplotlib as mpl
from .. import raycing
from . import sources as rs
from . import myopencl as mcl
from .physconsts import PI2, CH, CHBAR, SQRT2PI
from .materials import EmptyMaterial
try:
import pyopencl as cl # analysis:ignore
isOpenCL = True
except ImportError:
isOpenCL = False
__author__ = "Konstantin Klementiev, Roman Chernikov"
__date__ = "06 Oct 2017"
__fdir__ = os.path.dirname(__file__)
allArguments = ['bl', 'name', 'center', 'bragg', 'pitch', 'roll', 'yaw',
'positionRoll', 'extraPitch', 'extraRoll', 'extraYaw',
'rotationSequence', 'extraRotationSequence',
'surface', 'material', 'material2', 'alpha',
'limPhysX', 'limOptX', 'limPhysY', 'limOptY',
'limPhysX2', 'limPhysY2', 'limOptX2', 'limOptY2',
'isParametric', 'shape', 'gratingDensity', 'order',
'shouldCheckCenter',
'dxFacet', 'dyFacet', 'dxGap', 'dyGap', 'Rm',
'crossSection', 'Rs', 'R', 'r', 'p', 'q',
'isCylindrical', 'L0', 'theta', 'r0', 'ellipseA', 'ellipseB',
'workingDistance', 'wedgeAngle',
'cryst1roll', 'cryst2roll', 'cryst2pitch', 'alarmLevel',
'cryst2finePitch', 'cryst2perpTransl', 'cryst2longTransl',
'fixedOffset', 't', 'focus', 'zmax', 'nCRL', 'f', 'E', 'N',
'isCentralZoneBlack', 'thinnestZone', 'f1', 'f2',
'phaseShift', 'vorticity', 'grazingAngle',
'blaze', 'antiblaze', 'rho', 'aspect', 'depth', 'coeffs',
'targetOpenCL', 'precisionOpenCL']
def flatten(x):
if x is None:
x = [0, 0]
if isinstance(x, (list, tuple)):
return [a for i in x for a in flatten(i)]
else:
return [x]
class OE(object):
"""The main base class for an optical element. It implements a generic flat
mirror, crystal, multilayer or grating."""
hiddenMethods = ['multiple_reflect']
cl_plist = ["center"]
cl_local_z = """
float local_z(float8 cl_plist, int i, float x, float y)
{
return 0.;
}"""
cl_local_n = """
float3 local_n(float8 cl_plist, int i, float x, float y)
{
return (float3)(0.,0.,1.);
} """
cl_local_g = """
float3 local_g(float8 cl_plist, int i, float x, float y, float rho)
{
rho = -100.;
return (float3)(0.,rho,0.);
} """
cl_xyz_param = """
float3 xyz_to_param(float8 cl_plist, float x, float y, float z)
{
return (float3)(y, atan2(x, z), sqrt(x*x + z*z));
}"""
def __init__(
self, bl=None, name='', center=[0, 0, 0],
pitch=0, roll=0, yaw=0, positionRoll=0, rotationSequence='RzRyRx',
extraPitch=0, extraRoll=0, extraYaw=0, extraRotationSequence='RzRyRx',
alarmLevel=None, surface=None, material=None,
alpha=None,
limPhysX=[-raycing.maxHalfSizeOfOE, raycing.maxHalfSizeOfOE],
limOptX=None,
limPhysY=[-raycing.maxHalfSizeOfOE, raycing.maxHalfSizeOfOE],
limOptY=None, isParametric=False, shape='rect',
gratingDensity=None, order=None, shouldCheckCenter=False,
targetOpenCL=None, precisionOpenCL='float64'):
r"""
*bl*: instance of :class:`~xrt.backends.raycing.BeamLine`
Container for beamline elements. Optical elements are added to its
`oes` list.
*name*: str
User-specified name, occasionally used for diagnostics output.
*center*: 3-sequence of floats
3D point in global system. Any two coordinates
can be 'auto' for automatic alignment.
*pitch, roll, yaw*: floats
Rotations Rx, Ry, Rz, correspondingly, defined in the local system.
If the material belongs to `Crystal`, *pitch* can be
calculated automatically if alignment energy is given as a single
element list [energy]. If 'auto',
the alignment energy will be taken from beamLine.alignE.
*positionRoll*: float
A global roll used for putting the OE upside down (=np.pi) or
at horizontal deflection (=[-]np.pi/2). This parameter does the
same rotation as *roll*. It is introduced for holding large angles,
as π or π/2 whereas *roll* is meant for smaller [mis]alignment
angles.
*rotationSequence*: str, any combination of 'Rx', 'Ry' and 'Rz'
Gives the sequence of rotations of the OE around the local axes.
The sequence is read from left to right (do not consider it as an
operator). When rotations are more than one, the final position of
the optical element depends on this parameter.
*extraPitch, extraRoll, extraYaw, extraRotationSequence*:
Similar to *pitch, roll, yaw, rotationSequence* but applied after
them. This is sometimes necessary because rotations do not commute.
The extra angles were introduced for easier misalignment after the
initial positioning of the OE.
*alarmLevel*: float or None
Allowed fraction of incident rays to be absorbed by OE. If
exceeded, an alarm output is printed in the console.
*surface*: None or sequence of str
If there are several optical surfaces, such as metalized stripes on
a mirror, these are listed here as names; then also the optical
limits *must* all be given by sequences of the same length if
not None.
*material*: None or sequence of material objects
The material(s) must have
:meth:`get_amplitude` or :meth:`get_refractive_index` method. If
not None, must correspond to *surface*. If None, the reflectivities
are equal to 1.
*alpha*: float
Asymmetry angle for a crystal OE (rad). Positive sign is for the
atomic planes' normal looking towards positive *y*.
*limPhysX* and *limPhysY*: [*min*, *max*] where *min*, *max* are
floats or sequences of floats
Physical dimension = local coordinate of the corresponding edge.
Can be given by sequences of the length of *surface*. You do not
have to provide the limits, although they may help in finding
intersection points, especially for (strongly) curved surfaces.
*limOptX* and *limOptY*: [*min*, *max*] where *min*, *max* are
floats or sequences of floats
Optical dimension = local coordinate of the corresponding edge.
Useful when the optical surface is smaller than the whole
surface, e.g. for metalized stripes on a mirror.
*isParametric*: bool
If True, the OE is defined by parametric equations rather than by
z(*x*, *y*) function. For example, parametric representation is
useful for describing closed surfaces, such as capillaries. The
user must supply the transformation functions :meth:`param_to_xyz`
and :meth:`xyz_to_param` between local (*x*, *y*, *z*) and (*s*,
*phi*, *r*) and the parametric surface *local_r* dependent on (*s*,
*phi*). The exact meaning of these three new parameters is up to
the user because this meaning is self-contained in the above
mentioned user-supplied functions. For example, these can be viewed
as cylindrical-like coordinates, where *s* is a running coordinate
on a 3D axial curve, *phi* and *r* are polar coordinates in planes
normal to the axial curve and crossing that curve at point *s*.
Class :class:`SurfaceOfRevolution` gives an example of the
transformation functions and represents a useful kind of parametric
surface.
The methods :meth:`local_n` (surface normal) and :meth:`local_g`
(grating vector, if used for this OE) return 3D vectors in local
xyz space but now the two input coordinate parameters
are *s* and *phi*.
The limits [*limPhysX*, *limOptX*] and [*limPhysY*, *limOptY*]
still define, correspondingly, the limits in local *x* and *y*.
The local beams (footprints) will additionally contain *s*, *phi*
and *r* arrays.
*shape*: str or list of [x, y] pairs
The shape of OE. Supported: 'rect', 'round' or a list of [x, y]
pairs for an arbitrary shape.
*gratingDensity*: None or list
If material *kind* = 'grating', its density can be defined as list
[axis, ρ\ :sub:`0`, *P*\ :sub:`0`, *P*\ :sub:`1`, ...],
where ρ\ :sub:`0` is the constant line density in inverse mm,
*P*\ :sub:`0` -- *P*\ :sub:`n` are polynom coefficients defining
the line density variation, so that for a given axis
.. math::
\rho_x = \rho_0\cdot(P_0 + 2 P_1 x + 3 P_2 x^2 + ...).
Example: ['y', 800, 1] for the grating with constant
spacing along the 'y' direction; ['y', 1200, 1, 1e-6, 3.1e-7] for
a VLS grating. The length of the list determines the polynomial
order.
*order*: int or sequence of ints
The order(s) of grating, FZP or Bragg-Fresnel diffraction.
*shouldCheckCenter*: bool
This is a leagcy parameter designed to work together with alignment
stages -- classes in module :mod:`~xrt.backends.raycing.stages` --
which modify the orientation of an optical element.
if True, invokes *checkCenter* method for checking whether the oe
center lies on the original beam line. *checkCenter* implies
vertical deflection and ignores any difference in height. You
should override this method for OEs of horizontal deflection.
*targetOpenCL*: None, str, 2-tuple or tuple of 2-tuples
pyopencl can accelerate the search for the intersections of rays
with the OE. If pyopencl is used, *targetOpenCL* is a tuple
(iPlatform, iDevice) of indices in the lists cl.get_platforms() and
platform.get_devices(), see the section :ref:`calculations_on_GPU`.
None, if pyopencl is not wanted. Ignored if pyopencl is not
installed.
*precisionOpenCL*: 'float32' or 'float64', only for GPU.
Single precision (float32) should be enough. So far, we do not see
any example where double precision is required. The calculations
with double precision are much slower. Double precision may be
unavailable on your system.
"""
self.bl = bl
if bl is not None:
if self not in bl.oes: # First init
bl.oes.append(self)
self.ordinalNum = len(bl.oes)
self.lostNum = -self.ordinalNum
raycing.set_name(self, name)
# if name not in [None, 'None', '']:
# self.name = name
# elif not hasattr(self, 'name'):
# self.name = '{0}{1}'.format(self.__class__.__name__,
# self.ordinalNum)
if bl is not None:
if self.bl.flowSource != 'Qook':
bl.oesDict[self.name] = [self, 1]
self.shouldCheckCenter = shouldCheckCenter
self.center = center
# if any([x == 'auto' for x in self.center]):
# self._center = copy.copy(self.center)
if (bl is not None) and self.shouldCheckCenter:
self.checkCenter()
self.pitch = pitch
self.roll = roll
self.yaw = yaw
self.rotationSequence = rotationSequence
self.positionRoll = positionRoll
self.extraPitch = extraPitch
self.extraRoll = extraRoll
self.extraYaw = extraYaw
self.extraRotationSequence = extraRotationSequence
self.alarmLevel = alarmLevel
self.surface = surface
self.material = material
self.alpha = alpha
self.curSurface = 0
self.dx = 0
self.limPhysX = limPhysX
self.limPhysY = limPhysY
self.limOptX = limOptX
self.limOptY = limOptY
self.isParametric = isParametric
self.use_rays_good_gn = False # use rays_good_gn instead of rays_good
self.shape = shape
self.gratingDensity = gratingDensity
self.order = order
self.get_surface_limits()
self.cl_ctx = None
self.ucl = None
self.footprint = []
if targetOpenCL is not None:
if not isOpenCL:
raycing.colorPrint("pyopencl is not available!", "RED")
else:
cl_template = os.path.join(__fdir__, r'materials.cl')
with open(cl_template, 'r') as f:
kernelsource = f.read()
cl_template = os.path.join(__fdir__, r'OE.cl')
with open(cl_template, 'r') as f:
kernelsource += f.read()
kernelsource = kernelsource.replace('MY_LOCAL_Z',
self.cl_local_z)
kernelsource = kernelsource.replace('MY_LOCAL_N',
self.cl_local_n)
kernelsource = kernelsource.replace('MY_LOCAL_G',
self.cl_local_g)
kernelsource = kernelsource.replace('MY_XYZPARAM',
self.cl_xyz_param)
if self.isParametric:
kernelsource = kernelsource.replace(
'ol isParametric = false', 'ol isParametric = true')
self.ucl = mcl.XRT_CL(None,
targetOpenCL,
precisionOpenCL,
kernelsource)
if self.ucl.lastTargetOpenCL is not None:
self.cl_precisionF = self.ucl.cl_precisionF
self.cl_precisionC = self.ucl.cl_precisionC
self.cl_queue = self.ucl.cl_queue
self.cl_ctx = self.ucl.cl_ctx
self.cl_program = self.ucl.cl_program
self.cl_mf = self.ucl.cl_mf
self.cl_is_blocking = self.ucl.cl_is_blocking
@property
def center(self):
return self._center if self._centerVal is None else self._centerVal
@center.setter
def center(self, center):
if any([x == 'auto' for x in center]):
self._center = copy.copy(center)
self._centerVal = None
self._centerInit = copy.copy(center) # For glow auto-recognition
else:
self._centerVal = center
# if not hasattr(self, '_center'):
# self._center = None
@property
def pitch(self):
# _pitch can only contain unprocessed input for auto-calculation
# _pitchVal is None before auto-calculation, a number after it
return self._pitch if self._pitchVal is None else self._pitchVal
@pitch.setter
def pitch(self, pitch):
pitch = raycing.auto_units_angle(pitch)
if isinstance(pitch, (raycing.basestring, list, tuple)):
self._pitch = copy.copy(pitch)
self._pitchVal = None
self._pitchInit = copy.copy(pitch) # For glow auto-recognition
else: # also after auto-calculation
self._pitchVal = pitch
self.update_orientation_quaternion()
if hasattr(self, '_reset_pq'):
self._reset_pq()
if hasattr(self, '_RPQ'):
if self._RPQ is not None:
self._R = self.get_Rmer_from_Coddington(self._RPQ[0],
self._RPQ[1])
if hasattr(self, '_rPQ'):
if self._rPQ is not None:
self._r = self.get_rsag_from_Coddington(self._rPQ[0],
self._rPQ[1])
if hasattr(self, '_RmPQ'):
if self._RmPQ is not None:
self._Rm = self.get_Rmer_from_Coddington(self._RmPQ[0],
self._RmPQ[1])
if hasattr(self, '_RsPQ'):
if self._RsPQ is not None:
self._Rs = self.get_rsag_from_Coddington(self._RsPQ[0],
self._RsPQ[1])
@property
def roll(self):
return self._roll
@roll.setter
def roll(self, roll):
self._roll = raycing.auto_units_angle(roll)
self.update_orientation_quaternion()
if hasattr(self, '_reset_pq'):
self._reset_pq()
@property
def yaw(self):
return self._yaw
@yaw.setter
def yaw(self, yaw):
self._yaw = raycing.auto_units_angle(yaw)
self.update_orientation_quaternion()
if hasattr(self, '_reset_pq'):
self._reset_pq()
@property
def extraPitch(self):
return self._extraPitch
@extraPitch.setter
def extraPitch(self, extraPitch):
self._extraPitch = raycing.auto_units_angle(extraPitch)
self.update_orientation_quaternion()
@property
def extraRoll(self):
return self._extraRoll
@extraRoll.setter
def extraRoll(self, extraRoll):
self._extraRoll = raycing.auto_units_angle(extraRoll)
self.update_orientation_quaternion()
@property
def extraYaw(self):
return self._extraYaw
@extraYaw.setter
def extraYaw(self, extraYaw):
self._extraYaw = raycing.auto_units_angle(extraYaw)
self.update_orientation_quaternion()
@property
def positionRoll(self):
return self._positionRoll
@positionRoll.setter
def positionRoll(self, positionRoll):
self._positionRoll = raycing.auto_units_angle(positionRoll)
self.update_orientation_quaternion()
if hasattr(self, '_reset_pq'):
self._reset_pq()
@property
def limPhysX(self):
return self._limPhysX
@limPhysX.setter
def limPhysX(self, limPhysX):
if limPhysX is None:
self._limPhysX = [-raycing.maxHalfSizeOfOE,
raycing.maxHalfSizeOfOE]
else:
self._limPhysX = limPhysX
@property
def limPhysY(self):
return self._limPhysY
@limPhysY.setter
def limPhysY(self, limPhysY):
if limPhysY is None:
self._limPhysY = [-raycing.maxHalfSizeOfOE,
raycing.maxHalfSizeOfOE]
else:
self._limPhysY = limPhysY
@property
def gratingDensity(self):
return self._gratingDensity
@gratingDensity.setter
def gratingDensity(self, gratingDensity):
self._gratingDensity = gratingDensity
if gratingDensity is not None and self.material is None and \
not hasattr(self, 'get_grating_area_fraction'):
self.material = EmptyMaterial()
if hasattr(self, 'reset'):
self.reset()
@property
def order(self):
return self._order
@order.setter
def order(self, order):
self._order = 1 if order is None else order
@property
def alpha(self):
return self._alpha
@alpha.setter
def alpha(self, alpha):
"""Sets the asymmetry angle *alpha* for a crystal OE. It calculates
cos(alpha) and sin(alpha) which are then used for rotating the normal
to the crystal planes."""
self._alpha = raycing.auto_units_angle(alpha)
if self.alpha is not None:
self.cosalpha = np.cos(self.alpha)
self.sinalpha = np.sin(self.alpha)
self.tanalpha = self.sinalpha / self.cosalpha
def set_alpha(self, alpha):
"""Same as alpha.setter, left for compatibility"""
self.alpha = alpha
def update_orientation_quaternion(self):
"""Will be used with xrtGlow for fast orientation tracking"""
try: # Experimental
if all([hasattr(self, angle) for angle in ['pitch', 'roll', 'yaw'
'extraPitch', 'extraRoll', 'extraYaw', 'positionRoll']]):
rotAx = {'x': self.pitch,
'y': self.roll+self.positionRoll,
'z': self.yaw}
extraRotAx = {'x': self.extraPitch,
'y': self.extraRoll,
'z': self.extraYaw}
rotSeq = self.rotationSequence(slice(1, None, 2))
extraRotSeq = self.extraRotationSequence(slice(1, None, 2))
rotation = (scprot.from_euler(
rotSeq, [rotAx[i] for i in rotSeq])).as_quat()
extraRot = (scprot.from_euler(
extraRotSeq,
[extraRotAx[i] for i in extraRotSeq])).as_quat()
self.orientationQuat = raycing.multiply_quats(rotation,
extraRot)
except Exception as e:
print(e)
def _update_bounding_box(self):
pass
def checkCenter(self, misalignmentTolerated=raycing.misalignmentTolerated):
"""Checks whether the oe center lies on the original beam line. If the
misalignment is bigger than *misalignmentTolerated*, a warning is
issued. This implementation implies vertical deflection and ignores any
difference in height. You should override this method for OEs of
horizontal deflection."""
a = self.bl.sinAzimuth
b = self.bl.cosAzimuth
d = b * (self.center[0]-self.bl.sources[0].center[0])\
- a * (self.center[1]-self.bl.sources[0].center[1])
if abs(d) > misalignmentTolerated:
raycing.colorPrint("Warning: {0} is off the beamline by {1}"
.format(self.name, d), "YELLOW")
xc = a * b * (self.center[1]-self.bl.sources[0].center[1])\
+ self.bl.sources[0].center[0] * b**2 + self.center[0] * a**2
yc = a * b * (self.center[0]-self.bl.sources[0].center[0])\
+ self.bl.sources[0].center[1] * a**2 + self.center[1] * b**2
print("suggested xc, yc: ", xc, yc)
def get_orientation(self):
"""To be overridden. Should provide pitch, roll, yaw, height etc. given
other, possibly newly added variables. Used in conjunction with the
classes in :mod:`~xrt.backends.raycing.stages`."""
pass
def get_Rmer_from_Coddington(self, p, q, pitch=None):
if pitch is None:
if hasattr(self, '_pitchVal'):
if self._pitchVal is not None:
pitch = self._pitchVal
else:
return None
else:
return None
return 2 * p * q / (p+q) / np.sin(abs(pitch))
def get_rsag_from_Coddington(self, p, q, pitch=None):
if pitch is None:
if hasattr(self, '_pitchVal'):
if self._pitchVal is not None:
pitch = self._pitchVal
else:
return None
else:
return None
return 2 * p * q / (p+q) * np.sin(abs(pitch))
def local_z(self, x, y):
"""Determines the surface of OE at (*x*, *y*) position. Typically is
overridden in the derived classes. Must return either a scalar or an
array of the length of *x* and *y*."""
return np.zeros_like(y) # just flat
def local_z_distorted(self, x, y):
return
def local_g(self, x, y, rho=-100.):
"""For a grating, gives the local reciprocal groove vector (without
2pi!) in 1/mm at (*x*, *y*) position. The vector must lie on the
surface, i.e. be orthogonal to the normal. Typically is overridden in
the derived classes or defined in Material class. Returns a 3-tuple of
floats or of arrays of the length of *x* and *y*."""
try:
rhoList = self.gratingDensity
if rhoList is not None:
coord = x if rhoList[0] == 'x' else y
poly = 0.
for ic, coeff in enumerate(rhoList[2:]):
poly += (ic+1) * coeff * coord**ic
N = rhoList[1] * poly
if rhoList[0] == 'x':
return N, np.zeros_like(N), np.zeros_like(N)
elif rhoList[0] == 'y':
return np.zeros_like(N), N, np.zeros_like(N)
except: # noqa
pass
return 0, rho, 0 # constant line spacing along y
def local_n(self, x, y): # or as (self, s, phi)
"""Determines the normal vector of OE at (*x*, *y*) position. Typically
is overridden in the derived classes. If OE is an asymmetric crystal,
*local_n* must return 2 normals as a 6-sequence: the 1st one of the
atomic planes and the 2nd one of the surface. Note the order!
If *isParametric* in the constructor is True, :meth:`local_n` still
returns 3D vector(s) in local xyz space but now the two input
coordinate parameters are *s* and *phi*.
The result is a 3-tuple or a 6-tuple. Each element is either a scalar
or an array of the length of *x* and *y*."""
# just flat:
a = 0. # -dz/dx
b = 0. # -dz/dy
c = 1.
# norm = (a**2 + b**2 + c**2)**0.5
# a, b, c = a/norm, b/norm, c/norm
if self.alpha:
bAlpha, cAlpha = \
raycing.rotate_x(b, c, self.cosalpha, -self.sinalpha)
return [a, bAlpha, cAlpha, a, b, c]
else:
return [a, b, c]
def local_n_distorted(self, x, y): # or as (self, s, phi)
"""Distortion to the local normal. If *isParametric* in the
constructor is True, the input arrays are understood as (*s*, *phi*).
Distortion can be given in two ways and is signaled by the length of
the returned tuple:
1) As d_pitch and d_roll rotation angles of the normal (i.e. rotations
Rx and Ry). A tuple of the two arrays must be returned. This option
is also suitable for parametric coordinates because the two
rotations will be around Cartesian axes and the local normal
(local_n) is also a 3D vector in local xyz space.
2) As a 3D vector that will be added to the local normal calculated at
the same coordinates. The returned vector can have any length, not
necessarily unity. As for local_n, the 3D vector is in local xyz
space even for a parametric surface. The resulted vector
`local_n + local_n_distorted` will be normalized internally before
calculating the reflected beam direction. A tuple of 3 arrays must
be returned.
"""
return
_h = 20.
def xyz_to_param(self, x, y, z): # for flat mirror as example
r = np.sqrt(x**2 + (self._h-z)**2)
return y, np.arcsin(x / r), r # s, phi, r
def param_to_xyz(self, s, phi, r): # for flat mirror as example
return r*np.sin(phi), s, self._h - r*np.cos(phi) # x, y, z
def local_r(self, s, phi): # for flat mirror as example
"""Determines the surface of OE at (*s*, *phi*) position. Used when
*isParametric* in the constructor is True. Typically is overridden in
the derived classes. Must return either a scalar or an array of the
length of *s* and *phi*."""
return self._h / np.cos(phi)
def local_r_distorted(self, s, phi):
return
def find_dz(
self, local_f, t, x0, y0, z0, a, b, c, invertNormal, derivOrder=0):
"""Returns the z or r difference (in the local system) between the ray
and the surface. Used for finding the intersection point."""
x = x0 + a*t
y = y0 + b*t
z = z0 + c*t
if derivOrder == 0:
if self.isParametric:
if local_f is None:
local_f = self.local_r
diffSign = -1
else:
if local_f is None:
local_f = self.local_z
diffSign = 1
else:
if local_f is None:
local_f = self.local_n
if self.isParametric: # s, phi, r =
x, y, z = self.xyz_to_param(x, y, z)
surf = local_f(x, y) # z or r
if self.isParametric:
z_distorted = self.local_r_distorted(x, y)
else:
z_distorted = self.local_z_distorted(x, y)
if z_distorted is not None:
surf += z_distorted
if derivOrder == 0:
if surf is None: # lost
surf = np.zeros_like(z)
ind = np.isnan(surf)
if ind.sum() > 0:
if raycing._VERBOSITY_ > 0:
raycing.colorPrint('{0} NaNs in the surface!!!'
.format(ind.sum()), 'RED')
surf[ind] = 0
dz = (z - surf) * diffSign * invertNormal
else:
if surf is None: # lost
surf = 0, 0, 1
dz = (a*surf[-3] + b*surf[-2] + c*surf[-1]) * invertNormal
return dz, x, y, z
def find_intersection(self, local_f, t1, t2, x, y, z, a, b, c,
invertNormal, derivOrder=0):
"""Finds the ray parameter *t* at the intersection point with the
surface. Requires *t1* and *t2* as input bracketing. The ray is
determined by its origin point (*x*, *y*, *z*) and its normalized
direction (*a*, *b*, *c*). *t* is then the distance between the origin
point and the intersection point. *derivOrder* tells if minimized is
the z-difference (=0) or its derivative (=1)."""
dz1, x1, y1, z1 = self.find_dz(
local_f, t1, x, y, z, a, b, c, invertNormal, derivOrder)
dz2, x2, y2, z2 = self.find_dz(
local_f, t2, x, y, z, a, b, c, invertNormal, derivOrder)
# tMin = max(t1.min(), 0)
tMin = t1.min()
tMax = t2.max()
ind1 = dz1 <= 0 # lost rays; for them the solution is t1
ind2 = dz2 >= 0 # over rays; for them the solution is t2
dz2[ind1 | ind2] = 0
t2[ind1] = t1[ind1]
x2[ind1] = x1[ind1]
y2[ind1] = y1[ind1]
z2[ind1] = z1[ind1]
ind = ~(ind1 | ind2) # good rays
if abs(dz2).max() > abs(dz1).max()*20:
t2, x2, y2, z2, numit = self._use_Brent_method(
local_f, t1, t2, x, y, z, a, b, c, invertNormal, derivOrder,
dz1, dz2, tMin, tMax, x2, y2, z2, ind)
else:
t2, x2, y2, z2, numit = self._use_my_method(
local_f, t1, t2, x, y, z, a, b, c, invertNormal, derivOrder,
dz1, dz2, tMin, tMax, x2, y2, z2, ind)
if numit == raycing.maxIteration and raycing._VERBOSITY_ > 10:
nn = ind.sum()
raycing.colorPrint('maxIteration is reached for {0} ray{1}!!!'
.format(nn, 's' if nn > 1 else ''), 'RED')
if raycing._VERBOSITY_ > 10:
print('numit=', numit)
return t2, x2, y2, z2, ind1
def find_intersection_CL(self, local_f, t1, t2, x, y, z, a, b, c,
invertNormal, derivOrder=0):
"""Finds the ray parameter *t* at the intersection point with the
surface. Requires *t1* and *t2* as input bracketing. The ray is
determined by its origin point (*x*, *y*, *z*) and its normalized
direction (*a*, *b*, *c*). *t* is then the distance between the origin
point and the intersection point. *derivOrder* tells if minimized is
the z-difference (=0) or its derivative (=1)."""
NRAYS = len(x)
cl_plist = np.squeeze([getattr(self, p) for p in self.cl_plist])
ext_param = np.zeros(8, dtype=self.cl_precisionF)
ext_param[:len(cl_plist)] = self.cl_precisionF(cl_plist)
if local_f is None:
local_zN = np.int32(0)
elif ((local_f.__name__)[-1:]).isdigit():
local_zN = np.int32((local_f.__name__)[-1:])
else:
local_zN = np.int32(0)
scalarArgs = [ext_param,
np.int32(invertNormal),
np.int32(derivOrder),
local_zN,
self.cl_precisionF(t1.min()),
self.cl_precisionF(t2.max())]
slicedROArgs = [self.cl_precisionF(t1), # t1
self.cl_precisionF(x), # x
self.cl_precisionF(y), # y
self.cl_precisionF(z), # z
self.cl_precisionF(a), # a
self.cl_precisionF(b), # b
self.cl_precisionF(c)] # c
slicedRWArgs = [self.cl_precisionF(t2), # t2
self.cl_precisionF(np.zeros_like(x)), # x2
self.cl_precisionF(np.zeros_like(x)), # y2
self.cl_precisionF(np.zeros_like(x))] # z2
t2, x2, y2, z2 = self.ucl.run_parallel(
'find_intersection', scalarArgs, slicedROArgs, None, slicedRWArgs,
None, NRAYS)
return t2, x2, y2, z2
def _use_my_method(
self, local_f, t1, t2, x, y, z, a, b, c, invertNormal, derivOrder,
dz1, dz2, tMin, tMax, x2, y2, z2, ind):
numit = 2
while (ind.sum() > 0) and (numit < raycing.maxIteration):
t = t1[ind]
dz = dz1[ind]
t1[ind] = t2[ind]
dz1[ind] = dz2[ind]
t2[ind] = t - (t1[ind]-t) * dz / (dz1[ind]-dz)
swap = t2[ind] < tMin
t2[np.where(ind)[0][swap]] = tMin
swap = t2[ind] > tMax
t2[np.where(ind)[0][swap]] = tMax
dz2[ind], x2[ind], y2[ind], z2[ind] = self.find_dz(
local_f, t2[ind], x[ind], y[ind], z[ind],
a[ind], b[ind], c[ind], invertNormal, derivOrder)
# swapping using double slicing:
# stackoverflow.com/questions/1687566/why-does-an
# -assignment-for-double-sliced-numpy-arrays-not-work
swap = np.sign(dz2[ind]) == np.sign(dz1[ind])
t1[np.where(ind)[0][swap]] = t[swap]
dz1[np.where(ind)[0][swap]] = dz[swap]
ind = ind & (abs(dz2) > raycing.zEps)
numit += 1
# t2 holds the ray parameter at the intersection point
return t2, x2, y2, z2, numit
def _use_Brent_method(self, local_f, t1, t2, x, y, z, a, b, c,
invertNormal, derivOrder, dz1, dz2, tMin, tMax,
x2, y2, z2, ind):
"""Finds the ray parameter *t* at the intersection point with the
surface. Requires *t1* and *t2* as input bracketing. The rays are
determined by the origin points (*x*, *y*, *z*) and the normalized
directions (*a*, *b*, *c*). *t* is then the distance between the origin
point and the intersection point.
Uses the classic Brent (1973) method to find a zero of the function
`dz` on the sign changing interval [*t1*, *t2*]. It is a safe version
of the secant method that uses inverse quadratic extrapolation. Brent's
method combines root bracketing, interval bisection, and inverse
quadratic interpolation.
A description of the Brent's method can be found at
http://en.wikipedia.org/wiki/Brent%27s_method.
"""
swap = abs(dz1[ind]) < abs(dz2[ind])
if swap.sum() > 0:
t1[np.where(ind)[0][swap]], t2[np.where(ind)[0][swap]] =\
t2[np.where(ind)[0][swap]], t1[np.where(ind)[0][swap]]
dz1[np.where(ind)[0][swap]], dz2[np.where(ind)[0][swap]] =\
dz2[np.where(ind)[0][swap]], dz1[np.where(ind)[0][swap]]
t3 = np.copy(t1) # c:=a
dz3 = np.copy(dz1) # f(c)
t4 = np.zeros_like(t1) # d
mflag = np.ones_like(t1, dtype='bool')
numit = 2
ind = ind & (abs(dz2) > raycing.zEps)
while (ind.sum() > 0) and (numit < raycing.maxIteration):
xa, xb, xc, xd = t1[ind], t2[ind], t3[ind], t4[ind]
fa, fb, fc = dz1[ind], dz2[ind], dz3[ind]
mf = mflag[ind]
xs = np.empty_like(xa)
inq = (fa != fc) & (fb != fc)
if inq.sum() > 0:
xai = xa[inq]
xbi = xb[inq]
xci = xc[inq]
fai = fa[inq]
fbi = fb[inq]
fci = fc[inq]
xs[inq] = \
xai * fbi * fci / (fai-fbi) / (fai-fci) + \
fai * xbi * fci / (fbi-fai) / (fbi-fci) + \
fai * fbi * xci / (fci-fai) / (fci-fbi)
inx = ~inq
if inx.sum() > 0:
xai = xa[inx]
xbi = xb[inx]
fai = fa[inx]
fbi = fb[inx]
xs[inx] = xbi - fbi * (xbi-xai) / (fbi-fai)
cond1 = ((xs < (3*xa + xb) / 4.) & (xs < xb) |
(xs > (3*xa + xb) / 4.) & (xs > xb))
cond2 = mf & (abs(xs - xb) >= (abs(xb - xc) / 2.))
cond3 = (~mf) & (abs(xs - xb) >= (abs(xc - xd) / 2.))
cond4 = mf & (abs(xb - xc) < raycing.zEps)
cond5 = (~mf) & (abs(xc - xd) < raycing.zEps)
conds = cond1 | cond2 | cond3 | cond4 | cond5
xs[conds] = (xa[conds] + xb[conds]) / 2.
mf = conds
fs, x2[ind], y2[ind], z2[ind] = self.find_dz(
local_f, xs, x[ind], y[ind], z[ind], a[ind], b[ind], c[ind],
invertNormal, derivOrder)
xd[:] = xc[:]
xc[:] = xb[:]
fc[:] = fb[:]
fafsNeg = ((fa < 0) & (fs > 0)) | ((fa > 0) & (fs < 0))
xb[fafsNeg] = xs[fafsNeg]
fb[fafsNeg] = fs[fafsNeg]
fafsPos = ~fafsNeg
xa[fafsPos] = xs[fafsPos]
fa[fafsPos] = fs[fafsPos]
swap = abs(fa) < abs(fb)
xa[swap], xb[swap] = xb[swap], xa[swap]
fa[swap], fb[swap] = fb[swap], fa[swap]
t1[ind], t2[ind], t3[ind], t4[ind] = xa, xb, xc, xd
dz1[ind], dz2[ind], dz3[ind] = fa, fb, fc
mflag[ind] = mf
ind = ind & (abs(dz2) > raycing.zEps)
numit += 1
# t2 holds the ray parameter at the intersection point
return t2, x2, y2, z2, numit
def get_surface_limits(self):
"""Returns surface_limits."""
cs = self.curSurface
self.surfPhysX = self.limPhysX
if self.limPhysX is not None:
try:
if raycing.is_sequence(self.limPhysX[0]):
self.surfPhysX = [self.limPhysX[0][cs],
self.limPhysX[1][cs]]
except IndexError:
pass
self.surfPhysY = self.limPhysY
if self.limPhysY is not None:
try:
if raycing.is_sequence(self.limPhysY[0]):
self.surfPhysY = (self.limPhysY[0][cs],
self.limPhysY[1][cs])
except IndexError:
pass
self.surfOptX = self.limOptX
if self.limOptX is not None:
try:
if raycing.is_sequence(self.limOptX[0]):
self.surfOptX = (self.limOptX[0][cs], self.limOptX[1][cs])
except IndexError:
pass
self.surfOptY = self.limOptY
if self.limOptY is not None:
try:
if raycing.is_sequence(self.limOptY[0]):
self.surfOptY = (self.limOptY[0][cs], self.limOptY[1][cs])
except IndexError:
pass
def assign_auto_material_kind(self, material):
if self.gratingDensity is not None:
material.kind = 'grating'
else:
material.kind = 'mirror'
def rays_good(self, x, y, z, is2ndXtal=False):
"""Returns *state* value for a ray with the given intersection point
(*x*, *y*) with the surface of OE:
1: good (intersected)
2: reflected outside of working area ("out"),
3: transmitted without intersection ("over"),
-NN: lost (absorbed) at OE#NN - OE numbering starts from 1 !!!
Note, *x*, *y*, *z* are local Cartesian coordinates, even for a
parametric OE.
"""
if is2ndXtal:
surfPhysX = self.surfPhysX2
surfPhysY = self.surfPhysY2
surfOptX = self.surfOptX2
surfOptY = self.surfOptY2
else:
surfPhysX = self.surfPhysX
surfPhysY = self.surfPhysY
surfOptX = self.surfOptX
surfOptY = self.surfOptY
locState = np.ones(x.size, dtype=np.int32)
if isinstance(self.shape, raycing.basestring):
if self.shape.startswith('re'):
if surfOptX is not None:
locState[((surfPhysX[0] <= x) & (x < surfOptX[0])) |
((surfOptX[1] <= x) & (x < surfPhysX[1]))] = 2
if surfOptY is not None:
locState[((surfPhysY[0] <= y) & (y < surfOptY[0])) |
((surfOptY[1] <= y) & (y < surfPhysY[1]))] = 2
if not hasattr(self, 'overEdge'):
self.overEdge = 'yMax'
ovE = self.overEdge.lower()
if ovE.startswith('x') and ovE.endswith('in'):
locState[x < surfPhysX[0]] = 3
locState[(y < surfPhysY[0]) | (y > surfPhysY[1]) |
(x > surfPhysX[1])] = self.lostNum
elif ovE.startswith('x') and ovE.endswith('ax'):
locState[x > surfPhysX[1]] = 3
locState[(y < surfPhysY[0]) | (y > surfPhysY[1]) |
(x < surfPhysX[0])] = self.lostNum
elif ovE.startswith('y') and ovE.endswith('in'):
locState[y < surfPhysY[0]] = 3
locState[(x < surfPhysX[0]) | (x > surfPhysX[1]) |
(y > surfPhysY[1])] = self.lostNum
elif ovE.startswith('y') and ovE.endswith('ax'):
locState[y > surfPhysY[1]] = 3
locState[(x < surfPhysX[0]) | (x > surfPhysX[1]) |
(y < surfPhysY[0])] = self.lostNum
elif self.shape.startswith('ro'):
centerX = (surfPhysX[0]+surfPhysX[1]) * 0.5
if np.isnan(centerX):
centerX = 0
radiusX = (surfPhysX[1]-surfPhysX[0]) * 0.5
if surfPhysY is not None:
centerY = (surfPhysY[0]+surfPhysY[1]) * 0.5
radiusY = (surfPhysY[1]-surfPhysY[0]) * 0.5
else:
centerY = 0.
radiusY = radiusX
if np.isnan(centerY):
centerY = 0
if not np.isinf(radiusX):
locState[((x-centerX)/radiusX)**2 +
((y-centerY)/radiusY)**2 > 1] =\
self.lostNum
elif isinstance(self.shape, list):
footprint = mpl.path.Path(self.shape)
locState[:] = footprint.contains_points(np.array(zip(x, y)))
locState[(locState == 0) & (y < surfPhysY[0])] = self.lostNum
locState[locState == 0] = 3
else:
raise ValueError('Unknown shape of OE {0}!'.format(self.name))
return locState
def reflect(self, beam=None, needLocal=True, noIntersectionSearch=False,
returnLocalAbsorbed=None):
r"""
Returns the reflected or transmitted beam as :math:`\vec{out}` in
global and local (if *needLocal* is true) systems.
.. rubric:: Mirror [wikiSnell]_:
.. math::
\vec{out}_{\rm reflect} &= \vec{in} + 2\cos{\theta_1}\vec{n}\\
\vec{out}_{\rm refract} &= \frac{n_1}{n_2}\vec{in} +
\left(\frac{n_1}{n_2}\cos{\theta_1} - \cos{\theta_2}\right)\vec{n},
where
.. math::
\cos{\theta_1} &= -\vec{n}\cdot\vec{in}\\
\cos{\theta_2} &= sign(\cos{\theta_1})\sqrt{1 -
\left(\frac{n_1}{n_2}\right)^2\left(1-\cos^2{\theta_1}\right)}.
.. rubric:: Grating or FZP [SpencerMurty]_:
For the reciprocal grating vector :math:`\vec{g}` and the :math:`m`\ th
diffraction order:
.. math::
\vec{out} = \vec{in} - dn\vec{n} + \vec{g}m\lambda
where
.. math::
dn = -\cos{\theta_1} \pm \sqrt{\cos^2{\theta_1} -
2(\vec{g}\cdot\vec{in})m\lambda - \vec{g}^2 m^2\lambda^2}
.. rubric:: Crystal [SanchezDelRioCerrina]_:
Crystal (generally asymmetrically cut) is considered a grating with the
reciprocal grating vector equal to
.. math::
\vec{g} = \left(\vec{n_\vec{H}} -
(\vec{n_\vec{H}}\cdot\vec{n})\vec{n})\right) / d_\vec{H}.
Note that :math:`\vec{g}` is along the line of the intersection of the
crystal surface with the plane formed by the two normals
:math:`\vec{n_\vec{H}}` and :math:`\vec{n}` and its length is
:math:`|\vec{g}|=\sin{\alpha}/d_\vec{H}`, with :math:`\alpha`
being the asymmetry angle.
.. [wikiSnell] http://en.wikipedia.org/wiki/Snell%27s_law .
.. [SpencerMurty] G. H. Spencer and M. V. R. K. Murty,
J. Opt. Soc. Am. **52** (1962) 672.
.. [SanchezDelRioCerrina] M. Sánchez del Río and F. Cerrina,
Rev. Sci. Instrum. **63** (1992) 936.
*returnLocalAbsorbed*: None or int
If not None, returns the absorbed intensity in local beam.
*noIntersectionSearch*: bool
Used in wave propagation, normally should be False.
.. .. Returned values: beamGlobal, beamLocal
"""
self.footprint = []
if self.bl is not None:
self.bl.auto_align(self, beam)
self.get_orientation()
# output beam in global coordinates
gb = rs.Beam(copyFrom=beam)
if needLocal:
# output beam in local coordinates
lb = rs.Beam(copyFrom=beam)
else:
lb = gb
good = beam.state > 0
# good = beam.state == 1
if good.sum() == 0:
return gb, lb
# coordinates in local virgin system:
pitch = self.pitch
if hasattr(self, 'bragg'):
pitch += self.bragg
raycing.global_to_virgin_local(self.bl, beam, lb, self.center, good)
self._reflect_local(good, lb, gb,
pitch, self.roll+self.positionRoll, self.yaw,
self.dx, noIntersectionSearch=noIntersectionSearch,
material=self.material)
goodAfter = (gb.state == 1) | (gb.state == 2)
# in global coordinate system:
if goodAfter.sum() > 0:
raycing.virgin_local_to_global(self.bl, gb, self.center, goodAfter)
# not intersected rays remain unchanged except their state:
notGood = ~goodAfter
if notGood.sum() > 0:
rs.copy_beam(gb, beam, notGood)
if returnLocalAbsorbed is not None:
absorbedLb = rs.Beam(copyFrom=lb)
absorbedLb.absorb_intensity(beam)
lb = absorbedLb
raycing.append_to_flow(self.reflect, [gb, lb], inspect.currentframe())
lb.parentId = self.name
return gb, lb # in global(gb) and local(lb) coordinates
def multiple_reflect(
self, beam=None, maxReflections=1000, needElevationMap=False,
returnLocalAbsorbed=None):
"""
Does the same as :meth:`reflect` but with up to *maxReflections*
reflection on the same surface.
The returned beam has additional fields: *nRefl* for the number of
reflections, *elevationD* for the maximum elevation distance between
the rays and the surface as the ray travels between the impact points,
*elevationX*, *elevationY*, *elevationZ* for the coordinates of the
maximum elevation points.
*returnLocalAbsorbed*: None or int
If not None, returns the absorbed intensity in local beam.
.. .. Returned values: beamGlobal, beamLocal
"""
self.footprint = []
if self.bl is not None:
self.bl.auto_align(self, beam)
self.get_orientation()
# output beam in global coordinates
gb = rs.Beam(copyFrom=beam)
lb = gb
good = beam.state > 0
if good.sum() == 0:
return gb, lb
# coordinates in local virgin system:
raycing.global_to_virgin_local(self.bl, beam, lb, self.center, good)
iRefl = 0
isMulti = False
while iRefl < maxReflections:
tmpX, tmpY, tmpZ =\
np.copy(lb.x[good]), np.copy(lb.y[good]), np.copy(lb.z[good])
if raycing._VERBOSITY_ > 10:
print('reflection No {0}'.format(iRefl + 1))
if iRefl == 0:
if needElevationMap:
lb.elevationD = -np.ones_like(lb.x)
lb.elevationX = -np.ones_like(lb.x)*raycing.maxHalfSizeOfOE
lb.elevationY = -np.ones_like(lb.x)*raycing.maxHalfSizeOfOE
lb.elevationZ = -np.ones_like(lb.x)*raycing.maxHalfSizeOfOE
self._reflect_local(good, lb, gb, self.pitch,
self.roll+self.positionRoll, self.yaw,
self.dx, material=self.material,
needElevationMap=needElevationMap,
isMulti=isMulti)
if iRefl == 0:
isMulti = True
lb.nRefl = np.zeros_like(lb.state)
ov = lb.state[good] == 3
lb.x[np.where(good)[0][ov]] = tmpX[ov]
lb.y[np.where(good)[0][ov]] = tmpY[ov]
lb.z[np.where(good)[0][ov]] = tmpZ[ov]
good = (lb.state == 1) | (lb.state == 2)
lb.nRefl[good] += 1
if iRefl == 0:
# all local footprints:
lbN = rs.Beam(copyFrom=lb, withNumberOfReflections=True)
else:
lbN.concatenate(lb)
iRefl += 1
if raycing._VERBOSITY_ > 10:
print('iRefl=', iRefl, 'remains=', good.sum())
# if good.sum() > 0:
# print('y min max ', lb.y[good].min(), lb.y[good].max())
if good.sum() == 0:
break
# gc.collect()
# in global coordinate system:
goodAfter = gb.nRefl > 0
gb.state[goodAfter] = 1
if goodAfter.sum() > 0:
raycing.virgin_local_to_global(self.bl, gb, self.center, goodAfter)
# not intersected rays remain unchanged except their state:
notGood = ~goodAfter
if notGood.sum() > 0:
rs.copy_beam(gb, beam, notGood)
# in global(gb) and local(lbN) coordinates. lbN holds all the reflection spots.
if returnLocalAbsorbed is not None:
absorbedLb = rs.Beam(copyFrom=lb)
absorbedLb.absorb_intensity(beam)
lbN = absorbedLb
lbN.parentId = self.name
raycing.append_to_flow(self.multiple_reflect, [gb, lbN],
inspect.currentframe())
return gb, lbN
def local_to_global(self, lb, returnBeam=False, **kwargs):
dx, dy, dz = 0, 0, 0
extraAnglesSign = 1. # only for pitch and yaw
if isinstance(self, DCM):
is2ndXtal = kwargs.get('is2ndXtal', False)
if is2ndXtal:
pitch = -self.pitch - self.bragg + self.cryst2pitch +\
self.cryst2finePitch
roll = self.roll + self.cryst2roll + self.positionRoll
yaw = -self.yaw
dx = -self.dx
dy = self.cryst2longTransl
dz = -self.cryst2perpTransl
extraAnglesSign = -1.
else:
pitch = self.pitch + self.bragg
roll = self.roll + self.positionRoll + self.cryst1roll
yaw = self.yaw
dx = self.dx
else:
pitch = self.pitch
roll = self.roll + self.positionRoll
yaw = self.yaw
if dx:
lb.x += dx
if dy:
lb.y += dy
if dz:
lb.z += dz
if self.extraPitch or self.extraRoll or self.extraYaw:
raycing.rotate_beam(
lb, rotationSequence='-'+self.extraRotationSequence,
pitch=extraAnglesSign*self.extraPitch, roll=self.extraRoll,
yaw=extraAnglesSign*self.extraYaw, **kwargs)
raycing.rotate_beam(lb, rotationSequence='-'+self.rotationSequence,
pitch=pitch, roll=roll, yaw=yaw, **kwargs)
if isinstance(self, DCM):
if is2ndXtal:
raycing.rotate_beam(lb, roll=np.pi)
if self.isParametric:
s, phi, r = self.xyz_to_param(lb.x, lb.y, lb.z)
oeNormal = list(self.local_n(s, phi))
else:
oeNormal = list(self.local_n(lb.x, lb.y))
roll = self.roll + self.positionRoll +\
np.arctan2(oeNormal[-3], oeNormal[-1])
lb.Jss[:], lb.Jpp[:], lb.Jsp[:] =\
rs.rotate_coherency_matrix(lb, slice(None), roll)
if hasattr(lb, 'Es'):
cosY, sinY = np.cos(roll), np.sin(roll)
lb.Es[:], lb.Ep[:] = raycing.rotate_y(lb.Es, lb.Ep, cosY, sinY)
if returnBeam:
retGlo = rs.Beam(copyFrom=lb)
raycing.virgin_local_to_global(self.bl, retGlo,
self.center, **kwargs)
return retGlo
else:
raycing.virgin_local_to_global(self.bl, lb, self.center, **kwargs)
def prepare_wave(self, prevOE, nrays, shape='auto', area='auto', rw=None):
"""Creates the beam arrays used in wave diffraction calculations.
*prevOE* is the diffracting element: a descendant from
:class:`~xrt.backends.raycing.oes.OE`,
:class:`~xrt.backends.raycing.apertures.RectangularAperture` or
:class:`~xrt.backends.raycing.apertures.RoundAperture`.
*nrays*: if int, specifies the number of randomly distributed samples
the surface within ``self.limPhysX`` limits; if 2-tuple of ints,
specifies (nx, ny) sizes of a uniform mesh of samples.
"""
if rw is None:
from . import waves as rw
if isinstance(nrays, (int, float)):
nsamples = int(nrays)
elif isinstance(nrays, (list, tuple)):
nsamples = nrays[0] * nrays[1]
else:
raise ValueError('wrong type of `nrays`!')
lb = rs.Beam(nrays=nsamples, forceState=1, withAmplitudes=True)
if isinstance(nrays, (int, float)):
xy = np.random.rand(nsamples, 2)
if shape == 'auto':
shape = self.shape
if shape.startswith('ro'): # round
dR = (self.limPhysX[1] - self.limPhysX[0]) / 2
r = xy[:, 0]**0.5 * dR
phi = xy[:, 1] * 2*np.pi
x = r * np.cos(phi)
y = r * np.sin(phi)
if area == 'auto':
area = np.pi * dR**2
elif shape.startswith('re'): # rect
dX = self.limPhysX[1] - self.limPhysX[0]
dY = self.limPhysY[1] - self.limPhysY[0]
x = xy[:, 0] * dX + self.limPhysX[0]
y = xy[:, 1] * dY + self.limPhysY[0]
if area == 'auto':
area = dX * dY
else:
raise ValueError("unknown shape!")
elif isinstance(nrays, (list, tuple)):
if shape.startswith('ro'): # round
raise ValueError("must be rectangular")
xx = np.linspace(*self.limPhysX, nrays[0])
yy = np.linspace(*self.limPhysY, nrays[1])
X, Y = np.meshgrid(xx, yy)
x = X.ravel()
y = Y.ravel()
if area == 'auto':
dX = self.limPhysX[1] - self.limPhysX[0]
dY = self.limPhysY[1] - self.limPhysY[0]
area = dX * dY
else:
raise ValueError('wrong type of `nrays`!')
# this works even for a parametric case because we prepare rays started at the
# center of the previous oe and directed towards this oe (self). The found
# intersection points (by reflect) are exact:
z = self.local_z(x, y)
lb.x[:] = x
lb.y[:] = y
lb.z[:] = z
self.local_to_global(lb)
lb.a[:] = lb.x - prevOE.center[0]
lb.b[:] = lb.y - prevOE.center[1]
lb.c[:] = lb.z - prevOE.center[2]
norm = (lb.a**2 + lb.b**2 + lb.c**2)**0.5
lb.a /= norm
lb.b /= norm
lb.c /= norm
lb.x[:] = prevOE.center[0]
lb.y[:] = prevOE.center[1]
lb.z[:] = prevOE.center[2]
lbn = rs.Beam(nrays=1)
lbn.b[:] = 0.
lbn.c[:] = 1.
self.local_to_global(lbn)
a = lbn.x - prevOE.center[0]
b = lbn.y - prevOE.center[1]
c = lbn.z - prevOE.center[2]
norm = (a**2 + b**2 + c**2)**0.5
areaNormalFact = \
abs(float((a*lbn.a[0] + b*lbn.b[0] + c*lbn.c[0]) / norm))
waveGlobal, waveLocal = self.reflect(lb)
good = (waveLocal.state == 1) | (waveLocal.state == 2)
waveGlobal.filter_by_index(good)
waveLocal.filter_by_index(good)
area *= good.sum() / float(len(good))
waveLocal.area = area
waveLocal.areaNormal = area * areaNormalFact
waveLocal.dS = area / float(len(good))
waveLocal.toOE = self
# waveLocal.xGlobal = waveGlobal.x
# waveLocal.yGlobal = waveGlobal.y
# waveLocal.zGlobal = waveGlobal.z
rw.prepare_wave(
prevOE, waveLocal, waveGlobal.x, waveGlobal.y, waveGlobal.z)
return waveLocal
def propagate_wave(self, wave=None, beam=None, nrays='auto'):
"""
Propagates the incoming *wave* through an optical element using the
Kirchhoff diffraction theorem. Returnes two Beam objects, one in global
and one in local coordinate systems, which can be
used correspondingly for the consequent ray and wave propagation
calculations.
*wave*: Beam object
Local beam on the surface of the previous optical element.
*beam*: Beam object
Incident global beam, only used for alignment purpose.
*nrays*: 'auto' or int
Dimension of the created wave. If 'auto' - the same as the incoming
wave.
.. Returned values: beamGlobal, beamLocal
"""
from . import waves as rw
waveSize = len(wave.x) if nrays == 'auto' else int(nrays)
# if wave is None and beam is not None:
# wave = beam
prevOE = self.bl.oesDict[wave.parentId]
print("Diffract on", self.name, " Prev OE:", prevOE.name)
if self.bl is not None:
if beam is not None:
self.bl.auto_align(self, beam)
elif 'source' in str(type(prevOE)):
self.bl.auto_align(self, wave)
else:
self.bl.auto_align(self, prevOE.local_to_global(
wave, returnBeam=True))
waveOnSelf = self.prepare_wave(prevOE, waveSize, rw=rw)
if 'source' in str(type(prevOE)):
beamToSelf = prevOE.shine(wave=waveOnSelf)
nIS = False
else:
beamToSelf = rw.diffract(wave, waveOnSelf)
nIS = True
retGlo, retLoc = self.reflect(beamToSelf, noIntersectionSearch=nIS)
retLoc.parent = self.name
return retGlo, retLoc
def _set_t(self, xyz=None, abc=None, surfPhys=None,
defSize=raycing.maxHalfSizeOfOE):
if surfPhys is None:
limMin = -defSize
limMax = defSize
else:
limMin = surfPhys[0] if surfPhys[0] > -np.inf else -defSize
limMax = surfPhys[1] if surfPhys[1] < np.inf else defSize
if abc[0] > 0:
tMin = (limMin-xyz)/abc - raycing.dt
tMax = (limMax-xyz)/abc + raycing.dt
else:
tMin = (limMax-xyz)/abc - raycing.dt
tMax = (limMin-xyz)/abc + raycing.dt
return tMin, tMax
def _bracketing(self, local_n, x, y, z, a, b, c, invertNormal,
is2ndXtal=False, isMulti=False, needElevationMap=False,
mainPart=slice(None)):
if is2ndXtal:
surfPhysX = self.surfPhysX2
surfPhysY = self.surfPhysY2
else:
surfPhysX = self.surfPhysX
surfPhysY = self.surfPhysY
try:
maxa = np.max(abs(a[mainPart]))
maxb = np.max(abs(b[mainPart]))
maxc = np.max(abs(c[mainPart]))
except ValueError:
maxa, maxb, maxc = 0, 1, 0
maxMax = max(maxa, maxb, maxc)
if maxMax == maxa:
tMin, tMax = self._set_t(x, a, surfPhysX)
elif maxMax == maxb:
tMin, tMax = self._set_t(y, b, surfPhysY)
else:
tMin, tMax = self._set_t(z, c, defSize=raycing.maxDepthOfOE)
# this line is important for cases when the previous reflection points
# (the ray heads) are close, e.g. in Montel mirror without setting
# physical surface limits:
tMin[tMin < -10*raycing.zEps] = -10*raycing.zEps
elevation = None
if isMulti:
tMin[:] = 0
tMaxTmp = np.copy(tMax)
tMax, _, _, _, _ = self.find_intersection(
local_n, tMin, tMax, x, y, z, a, b, c, invertNormal,
derivOrder=1)
if needElevationMap:
elevation = \
self.find_dz(None, tMax, x, y, z, a, b, c, invertNormal)
tMin = tMax + raycing.ds
tMax = tMaxTmp
else:
pass
# if needElevationMap:
# elevation = \
# self.find_dz(None, tMin, x, y, z, a, b, c, invertNormal)
return tMin, tMax, elevation
def _grating_deflection(
self, goodN, lb, g, oeNormal, beamInDotNormal, order=1, sig=None):
beamInDotG = lb.a[goodN]*g[0] + lb.b[goodN]*g[1] + lb.c[goodN]*g[2]
G2 = g[0]**2 + g[1]**2 + g[2]**2
locOrder = order if isinstance(order, int) else \
np.array(order)[np.random.randint(len(order), size=goodN.sum())]
lb.order = np.zeros(len(lb.a))
lb.order[goodN] = locOrder
orderLambda = locOrder * CH / lb.E[goodN] * 1e-7
u = beamInDotNormal**2 - 2*beamInDotG*orderLambda - G2*orderLambda**2
# u[u < 0] = 0
gs = np.sign(beamInDotNormal) if sig is None else sig
dn = beamInDotNormal + gs*np.sqrt(abs(u))
a_out = lb.a[goodN] - oeNormal[-3]*dn + g[0]*orderLambda
b_out = lb.b[goodN] - oeNormal[-2]*dn + g[1]*orderLambda
c_out = lb.c[goodN] - oeNormal[-1]*dn + g[2]*orderLambda
norm = (a_out**2 + b_out**2 + c_out**2)**0.5
return a_out/norm, b_out/norm, c_out/norm
def _reportNaN(self, x, strName):
nanSum = np.isnan(x).sum()
if nanSum > 0:
raycing.colorPrint(
"{0} NaN rays in array {1} in optical element {2}!".format(
nanSum, strName, self.name), "RED")
def local_n_random(self, bLength, chi):
a = np.zeros(bLength)
b = np.zeros(bLength)
c = np.ones(bLength)
cos_range = np.random.rand(bLength) # * 2**-0.5
y_angle = np.arccos(cos_range)
z_angle = (chi[1]-chi[0]) * np.random.rand(bLength) + chi[0]
a, c = raycing.rotate_y(a, c, np.cos(y_angle), np.sin(y_angle))
a, b = raycing.rotate_z(a, b, np.cos(z_angle), np.sin(z_angle))
norm = np.sqrt(a**2 + b**2 + c**2)
a /= norm
b /= norm
c /= norm
return [a, b, c]
def _reflect_crystal_cl(self, goodN, lb, matcr, oeNormal):
DW = self.cl_precisionF(matcr.factDW)
thickness = self.cl_precisionF(0 if matcr.t is None else matcr.t)
geometry = np.int32(matcr.geometry)
if matcr.tK is not None:
temperature = self.cl_precisionF(matcr.tK)
else:
temperature = self.cl_precisionF(0)
if not np.all(np.array(matcr.atoms) == 14):
temperature = self.cl_precisionF(0)
lenGood = np.int32(len(lb.E[goodN]))
bOnes = np.ones(lenGood)
iHKL = np.zeros(4, dtype=np.int32)
iHKL[0:3] = np.array(matcr.hkl, dtype=np.int32)
Nel = len(matcr.elements)
elements_in = np.zeros((Nel, 8), dtype=self.cl_precisionF)
E_in = np.zeros((Nel, 300), dtype=self.cl_precisionF)
f1_in = np.zeros((Nel, 300), dtype=self.cl_precisionF)
f2_in = np.zeros((Nel, 300), dtype=self.cl_precisionF)
f0_in = np.zeros((Nel, 11), dtype=self.cl_precisionF)
elements_in[:, 0:3] = matcr.atomsXYZ
elements_in[:, 4] = matcr.atomsFraction
for iNel in range(Nel):
f_len = len(matcr.elements[iNel].E)
elements_in[iNel, 5] = matcr.elements[iNel].Z
elements_in[iNel, 6] = matcr.elements[iNel].mass
elements_in[iNel, 7] = self.cl_precisionF(f_len-1)
E_in[iNel, 0:f_len] = matcr.elements[iNel].E
f1_in[iNel, 0:f_len] = matcr.elements[iNel].f1
f2_in[iNel, 0:f_len] = matcr.elements[iNel].f2
f0_in[iNel, :] = matcr.elements[iNel].f0coeffs
lattice_in = np.array([matcr.a, matcr.b, matcr.c, 0,
matcr.alpha, matcr.beta, matcr.gamma, 0],
dtype=self.cl_precisionF)
calctype = 0
if matcr.kind == "powder":
calctype = 5
elif matcr.kind == "monocrystal":
calctype = 10 + matcr.Nmax
elif matcr.kind == "crystal harmonics":
calctype = 100 + matcr.Nmax
scalarArgs = [np.int32(calctype), iHKL, DW, thickness, temperature,
geometry, np.int32(Nel), lattice_in]
slicedROArgs = [self.cl_precisionF(lb.a[goodN]), # a_in
self.cl_precisionF(lb.b[goodN]), # b_in
self.cl_precisionF(lb.c[goodN]), # c_in
self.cl_precisionF(lb.E[goodN]), # Energy
self.cl_precisionF(oeNormal[0]*bOnes), # planeNormalX
self.cl_precisionF(oeNormal[1]*bOnes), # planeNormalY
self.cl_precisionF(oeNormal[2]*bOnes), # planeNormalZ
self.cl_precisionF(oeNormal[-3]*bOnes), # surfNormalX
self.cl_precisionF(oeNormal[-2]*bOnes), # surfNormalY
self.cl_precisionF(oeNormal[-1]*bOnes)] # surfNormalZ
slicedROArgs.extend([self.cl_precisionF(np.random.rand(lenGood))])
nonSlicedROArgs = [elements_in.flatten(), # elements
f0_in.flatten(), # f0
E_in.flatten(), # E_in
f1_in.flatten(), # f1
f2_in.flatten()] # f2
slicedRWArgs = [np.zeros(lenGood, dtype=self.cl_precisionC), # reflS
np.zeros(lenGood, dtype=self.cl_precisionC), # reflP
np.zeros(lenGood, dtype=self.cl_precisionF), # a_out
np.zeros(lenGood, dtype=self.cl_precisionF), # b_out
np.zeros(lenGood, dtype=self.cl_precisionF)] # c_out
curveS, curveP, a_out, b_out, c_out = self.ucl.run_parallel(
'reflect_crystal', scalarArgs, slicedROArgs, nonSlicedROArgs,
slicedRWArgs, None, lenGood)
return a_out, b_out, c_out, curveS, curveP
def _mosaic_normal(self, mat, oeNormal, beamInDotNormal, lb, goodN):
E = lb.E[goodN]
theta = mat.get_Bragg_angle(E) - mat.get_dtheta(E)
sinTheta = np.sin(theta)
cosTheta = (1 - sinTheta**2)**0.5
cosAlpha = np.abs(beamInDotNormal)
sinAlpha = (1 - cosAlpha**2)**0.5
# rotate the crystallite normal to meet the Bragg condition
cn = cosTheta / sinAlpha
ck = sinTheta + cn*beamInDotNormal
n1a = cn*oeNormal[0] - ck*lb.a[goodN]
n1b = cn*oeNormal[1] - ck*lb.b[goodN]
n1c = cn*oeNormal[2] - ck*lb.c[goodN]
# this simple solution does the same job as the one in Shadow:
phi = np.random.normal(0, mat.mosaicity, len(sinTheta))
# this is the Shadow's solution:
# import scipy.stats
# ss = sinAlpha*sinTheta # sinTheta = cosThetaD
# cc = cosAlpha*cosTheta # cosTheta = sinThetaD
# sinAlphaMinusThetaD = np.abs(ss - cc).min() # sin(alpha - thetaD)
# lower = np.arcsin(sinAlphaMinusThetaD)
# sinAlphaPlusThetaD = np.abs(ss + cc).max() # sin(alpha + thetaD)
# if sinAlphaPlusThetaD > 1:
# sinAlphaPlusThetaD = 1 - 1e-20
# upper = np.arcsin(sinAlphaPlusThetaD)
# phi = scipy.stats.truncnorm.rvs(
# lower/mat.mosaicity, upper/mat.mosaicity,
# loc=0, scale=mat.mosaicity, size=len(sinTheta))
cosPhi = np.cos(phi)
# rotating around in-beam does the same job the Shadow's solution
cosBeta = cosPhi
# this is the Shadow's solution:
# ctanTheta = cosTheta / sinTheta
# tanAlpha = abs(sinAlpha / cosAlpha)
# cosBeta = (ctanTheta**2 + tanAlpha**2 - sinTheta**-2 - cosAlpha**-2 +
# 2*cosPhi/(sinTheta*cosAlpha)) / (2*ctanTheta*tanAlpha)
# cosBeta[cosBeta > 1] = 1 - 1e-20
sinBeta = (1 - cosBeta**2)**0.5
signs = np.random.randint(2, size=len(sinTheta))
signs[signs == 0] = -1
sinBeta *= signs
ocosBeta = 1 - cosBeta
# en.wikipedia.org/wiki/Rodrigues%27_rotation_formula, made with sympy
kx, ky, kz = lb.a[goodN], lb.b[goodN], lb.c[goodN]
nra = n1a*(-ky**2*ocosBeta - kz**2*ocosBeta + 1) +\
n1b*(kx*ky*ocosBeta - kz*sinBeta) +\
n1c*(kx*kz*ocosBeta + ky*sinBeta)
nrb = n1a*(kx*ky*ocosBeta + kz*sinBeta) +\
n1b*(-kx**2*ocosBeta - kz**2*ocosBeta + 1) +\
n1c*(-kx*sinBeta + ky*kz*ocosBeta)
nrc = n1a*(kx*kz*ocosBeta - ky*sinBeta) +\
n1b*(kx*sinBeta + ky*kz*ocosBeta) +\
n1c*(-kx**2*ocosBeta - ky**2*ocosBeta + 1)
beamInDotNormalN = lb.a[goodN]*nra + lb.b[goodN]*nrb + lb.c[goodN]*nrc
return [nra, nrb, nrc], beamInDotNormalN
def _mosaic_length(self, mat, beamInDotNormal, lb, goodN):
Qs, Qp, thetaB = mat.get_kappa_Q(lb.E[goodN])[2:5] # in cm^-1
norm = lb.Jss[goodN] + lb.Jpp[goodN]
norm[norm == 0] = 1.
Q = (Qs*lb.Jss[goodN] + Qp*lb.Jpp[goodN]) / norm
beamInDotNormalAbs = np.abs(beamInDotNormal)
delta = np.arcsin(beamInDotNormalAbs) - thetaB
w = np.exp(-0.5*delta**2 / mat.mosaicity**2) / (SQRT2PI*mat.mosaicity)
rate = w*Q # in cm^-1
rate[rate <= 1e-3] = 1e-3
length = np.random.exponential(10./rate, size=len(Qs)) # in mm
if mat.t:
through = length*beamInDotNormalAbs > mat.t
length[through] = mat.t / beamInDotNormalAbs[through]
else:
through = None
lb.x[goodN] += lb.olda * length
lb.y[goodN] += lb.oldb * length
lb.z[goodN] += lb.oldc * length
return length, through
def _reflect_local(
self, good, lb, vlb, pitch, roll, yaw, dx=None, dy=None, dz=None,
local_z=None, local_n=None, local_g=None, fromVacuum=True,
material=None, is2ndXtal=False, needElevationMap=False,
noIntersectionSearch=False, isMulti=False):
"""Finds the intersection points of rays in the beam *lb* indexed by
*good* array. *vlb* is the same beam in virgin local system.
*pitch, roll, yaw* determine the transformation between true local and
virgin local coordinates.
*local_n* gives the normal (two normals (h, surface) if for crystal).
*local_g* for a grating gives the local reciprocal groove vector in
1/mm. *fromVacuum* tells the beam direction for the vacuum-OE
interface. *material* is an instance of :class:`Material` or
:class:`Crystal` or its derivatives. Depending on the geometry used, it
must have either the method :meth:`get_refractive_index` or the
:meth:`get_amplitude`."""
def _get_asymmetric_reflection_grating(
_gNormal, _oeNormal, _beamInDotSurfaceNormal,
_beamInDotNormal, xd=None, yd=None):
normalDotSurfNormal = _oeNormal[0]*_oeNormal[-3] +\
_oeNormal[1]*_oeNormal[-2] + _oeNormal[2]*_oeNormal[-1]
bdn = _beamInDotNormal.sum() / len(_beamInDotNormal)
sgbdn = 1 if bdn < 0 else -1
# note:
# _oeNormal[0:3] is n_B
# _oeNormal[-3:] is n_s
# normalDotSurfNormal is dot(n_B, n_s)
# |vec(n_B) - dot(n_B, n_s)*vec(n_s)| = sin(alpha)
# wH = matSur.get_refractive_correction(
# lb.E[goodN], abs(_beamInDotSurfaceNormal))
wH = 0
if hasattr(matSur, 'get_d') and xd is not None and yd is not None:
crystd = matSur.get_d(xd, yd)
else:
crystd = matSur.d
wHd = (1 + wH) / (crystd * 1e-7)
gNormalCryst = np.asarray((
(_oeNormal[0]-normalDotSurfNormal*_oeNormal[-3]) * wHd,
(_oeNormal[1]-normalDotSurfNormal*_oeNormal[-2]) * wHd,
(_oeNormal[2]-normalDotSurfNormal*_oeNormal[-1]) * wHd),
order='F') * sgbdn
if matSur.geom.endswith('Fresnel'):
if isinstance(self.order, int):
locOrder = self.order
else:
locOrder = np.array(self.order)[np.random.randint(
len(self.order), size=goodN.sum())]
if _gNormal is None:
_gNormal = local_g(lb.x[goodN], lb.y[goodN])
_gNormal = np.asarray(_gNormal, order='F') * locOrder
_gNormal[0] += gNormalCryst[0]
_gNormal[1] += gNormalCryst[1]
_gNormal[2] += gNormalCryst[2]
else:
_gNormal = gNormalCryst
sg = 1 if matSur.geom.startswith('Laue') else -1
res = self._grating_deflection(
goodN, lb, _gNormal, _oeNormal, _beamInDotSurfaceNormal, 1, sg)
return res
# rotate the world around the mirror.
# lb is truly local coordinates whereas vlb is in virgin local coordinates:
if local_n is None:
local_n = self.local_n
extraAnglesSign = 1. # only for pitch and yaw
if is2ndXtal:
raycing.rotate_beam(lb, good, roll=-np.pi)
extraAnglesSign = -1. # only for pitch and yaw
raycing.rotate_beam(
lb, good, rotationSequence=self.rotationSequence,
pitch=-pitch, roll=-roll, yaw=-yaw)
if self.extraPitch or self.extraRoll or self.extraYaw:
raycing.rotate_beam(
lb, good, rotationSequence=self.extraRotationSequence,
pitch=-extraAnglesSign*self.extraPitch, roll=-self.extraRoll,
yaw=-extraAnglesSign*self.extraYaw)
if dx:
lb.x[good] -= dx
if dy:
lb.y[good] -= dy
if dz:
lb.z[good] -= dz
# x, y, z:
if fromVacuum:
invertNormal = 1
else:
invertNormal = -1
# mainPartForBracketing = lb.state[good] > 0
mainPartForBracketing = lb.state[good] == 1
tMin = np.zeros_like(lb.x)
tMax = np.zeros_like(lb.x)
tMin[good], tMax[good], elev = self._bracketing(
local_n, lb.x[good], lb.y[good], lb.z[good], lb.a[good],
lb.b[good], lb.c[good], invertNormal, is2ndXtal, isMulti=isMulti,
needElevationMap=needElevationMap, mainPart=mainPartForBracketing)
if needElevationMap and elev:
lb.elevationD[good] = elev[0]
if self.isParametric:
tX, tY, tZ = self.param_to_xyz(elev[1], elev[2], elev[3])
else:
tX, tY, tZ = elev[1], elev[2], elev[3]
lb.elevationX[good] = tX
lb.elevationY[good] = tY
lb.elevationZ[good] = tZ
_lost = None
if noIntersectionSearch:
# lb.x[good], lb.y[good], lb.z[good] unchanged
tMax[good] = 0.
if self.isParametric:
lb.x[good], lb.y[good], lb.z[good] = self.xyz_to_param(
lb.x[good], lb.y[good], lb.z[good])
else:
if True: # self.cl_ctx is None:
res_find = \
self.find_intersection(
local_z, tMin[good], tMax[good],
lb.x[good], lb.y[good], lb.z[good],
lb.a[good], lb.b[good], lb.c[good], invertNormal)
tMax[good], lb.x[good], lb.y[good], lb.z[good] = res_find[:4]
if len(res_find) > 4:
_lost = res_find[4]
else: # To be refactored in future versions
tMax[good], lb.x[good], lb.y[good], lb.z[good] = \
self.find_intersection_CL(
local_z, tMin[good], tMax[good],
lb.x[good], lb.y[good], lb.z[good],
lb.a[good], lb.b[good], lb.c[good], invertNormal)
# state:
# the distortion part has moved from here to find_dz
if self.isParametric:
tX, tY, tZ = self.param_to_xyz(lb.x[good], lb.y[good], lb.z[good])
else:
tX, tY, tZ = lb.x[good], lb.y[good], lb.z[good]
if self.use_rays_good_gn:
lb.state[good], gNormal = self.rays_good_gn(tX, tY, tZ)
else:
gNormal = None
lb.state[good] = self.rays_good(tX, tY, tZ, is2ndXtal)
if _lost is not None:
lb.state[np.where(good)[0][_lost]] = self.lostNum
# goodN = (lb.state == 1) | (lb.state == 2)
goodN = (lb.state == 1)
# normal at x, y, z:
goodNsum = goodN.sum()
needMosaicity = False
if goodNsum > 0:
lb.path[goodN] += tMax[goodN]
toWhere = 0 # 0: reflect, 1: refract, 2: pass straight
if material is not None:
if raycing.is_sequence(material):
matSur = material[self.curSurface]
else:
matSur = material
if matSur.kind == 'auto':
self.assign_auto_material_kind(matSur)
if matSur.kind in ('plate', 'lens'):
toWhere = 1
elif matSur.kind in ('crystal', 'multilayer'):
if matSur.kind == 'crystal':
if matSur.mosaicity:
needMosaicity = True
if matSur.geom.endswith('transmitted'):
toWhere = 2
elif matSur.kind == 'grating':
toWhere = 3
elif matSur.kind == 'FZP':
toWhere = 4
elif matSur.kind == 'powder':
toWhere = 5
elif matSur.kind == 'monocrystal':
toWhere = 6
elif matSur.kind == 'crystal harmonics':
toWhere = 7
if toWhere == 5:
oeNormal = list(
self.local_n_random(len(lb.E[goodN]), matSur.chi))
# n = matSur.get_refractive_index(lb.E[goodN])
# mu = abs(n.imag) * lb.E[goodN] / CHBAR * 2e8 # 1/cm
# att = np.exp(-mu * tMax[goodN] * 0.1)
depth = np.random.rand(len(lb.a[goodN])) * matSur.t
lb.x[goodN] += lb.a[goodN] * depth
lb.y[goodN] += lb.b[goodN] * depth
lb.z[goodN] += lb.c[goodN] * depth
else:
oeNormal = list(local_n(lb.x[goodN], lb.y[goodN]))
n_distorted = self.local_n_distorted(lb.x[goodN], lb.y[goodN])
if n_distorted is not None:
if len(n_distorted) == 2:
cosX, sinX = np.cos(n_distorted[0]), np.sin(n_distorted[0])
oeNormal[-2], oeNormal[-1] = raycing.rotate_x(
oeNormal[-2], oeNormal[-1], cosX, sinX)
cosY, sinY = np.cos(n_distorted[1]), np.sin(n_distorted[1])
oeNormal[-3], oeNormal[-1] = raycing.rotate_y(
oeNormal[-3], oeNormal[-1], cosY, sinY)
elif len(n_distorted) == 3:
oeNormal[-3] += n_distorted[0]
oeNormal[-2] += n_distorted[1]
oeNormal[-1] += n_distorted[2]
norm = (oeNormal[-3]**2 + oeNormal[-2]**2 +
oeNormal[-1]**2)**0.5
oeNormal[-3] /= norm
oeNormal[-2] /= norm
oeNormal[-1] /= norm
else:
raise ValueError(
"wrong length returned by 'local_n_distorted'")
if toWhere < 5:
isAsymmetric = len(oeNormal) == 6
oeNormal = np.asarray(oeNormal, order='F')
beamInDotNormal = lb.a[goodN]*oeNormal[0] +\
lb.b[goodN]*oeNormal[1] + lb.c[goodN]*oeNormal[2]
lb.theta = np.zeros_like(lb.x)
beamInDotNormal[beamInDotNormal < -1] = -1
beamInDotNormal[beamInDotNormal > 1] = 1
lb.theta[goodN] = np.arccos(beamInDotNormal) - np.pi/2
if isAsymmetric:
beamInDotSurfaceNormal = lb.a[goodN]*oeNormal[-3] +\
lb.b[goodN]*oeNormal[-2] + lb.c[goodN]*oeNormal[-1]
# The following code will consider finite thickness of
# the Laue crystal
if material is not None:
if matSur.kind in ['crystal'] and \
matSur.geom.startswith('Laue') and \
hasattr(matSur, 'volumetricDiffraction'):
if matSur.volumetricDiffraction:
thMax = -matSur.t / beamInDotSurfaceNormal
dpth = np.random.rand(len(lb.a[goodN])) * thMax
lb.x[goodN] += lb.a[goodN] * dpth
lb.y[goodN] += lb.b[goodN] * dpth
lb.z[goodN] += lb.c[goodN] * dpth
deepNormal = list(self.local_n_depth(
lb.x[goodN], lb.y[goodN], lb.z[goodN]))
oeNormal[0:3] = deepNormal[0:3]
beamInDotNormal =\
lb.a[goodN]*oeNormal[0] +\
lb.b[goodN]*oeNormal[1] +\
lb.c[goodN]*oeNormal[2]
lb.theta = np.zeros_like(lb.x)
beamInDotNormal[beamInDotNormal < -1] = -1
beamInDotNormal[beamInDotNormal > 1] = 1
lb.theta[goodN] = np.arccos(beamInDotNormal)\
- np.pi/2
else:
beamInDotSurfaceNormal = beamInDotNormal
if needMosaicity:
oeNormalN, beamInDotNormalN = self._mosaic_normal(
matSur, oeNormal, beamInDotNormal, lb, goodN)
if isAsymmetric:
o1 = np.ones_like(lb.a[goodN])
oeNormalN.extend([
oeNormal[-3]*o1, oeNormal[-2]*o1, oeNormal[-1]*o1])
oeNormal = np.asarray(oeNormalN, order='F')
beamInDotNormalOld = beamInDotNormal
beamInDotNormal = beamInDotNormalN
# direction:
if toWhere in [3, 4]: # grating, FZP
if gNormal is None:
if self.isParametric:
tXN, tYN = self.param_to_xyz(
lb.x[goodN], lb.y[goodN], lb.z[goodN])[0:2]
else:
tXN, tYN = lb.x[goodN], lb.y[goodN]
if local_g is None:
local_g = self.local_g
gNormal = np.asarray(local_g(tXN, tYN), order='F')
giveSign = 1 if toWhere == 4 else -1
lb.a[goodN], lb.b[goodN], lb.c[goodN] =\
self._grating_deflection(goodN, lb, gNormal, oeNormal,
beamInDotSurfaceNormal,
self.order, giveSign)
elif toWhere in [0, 2]: # reflect, straight
useAsymmetricNormal = False
if material is not None:
if matSur.kind in ('crystal', 'multilayer') and\
toWhere == 0 and (not needMosaicity):
useAsymmetricNormal = True
if useAsymmetricNormal:
a_out, b_out, c_out = _get_asymmetric_reflection_grating(
gNormal, oeNormal, beamInDotSurfaceNormal,
beamInDotNormal, lb.x[goodN], lb.y[goodN])
else:
a_out = lb.a[goodN] - oeNormal[0]*2*beamInDotNormal
b_out = lb.b[goodN] - oeNormal[1]*2*beamInDotNormal
c_out = lb.c[goodN] - oeNormal[2]*2*beamInDotNormal
# calcBorrmann = False
# if material is not None:
# if matSur.kind in ['crystal'] and \
# matSur.geom.startswith('Laue') and \
# matSur.calcBorrmann:
# calcBorrmann = True
# if calcBorrmann:
# beamOutDotSurfaceNormal = a_out * oeNormal[-3] + \
# b_out * oeNormal[-2] + c_out * oeNormal[-1]
#
# """
# if self.crossSection.startswith('para'):
#
# This block was used to estimate the influence
# of the surface curvature on focusing. I will
# enable it later to preserve the exact phase for
# the wave propagation.
#
# paraA = 0.5/(self.R - matSur.t)
# paraB = -np.divide(lb.c, lb.b)
# paraC = -paraB*lb.y - lb.z - matSur.t
# paraD = np.sqrt(paraB**2 - 4*paraA*paraC)
# yOut01 = (-paraB + paraD) / 2 / paraA
# yOut02 = (-paraB - paraD) / 2 / paraA
# print oeNormal
# print "yOut01, yOut02", yOut01, yOut02
# paraB = -np.divide(c_out, b_out)
# paraC = -paraB*lb.y - lb.z - matSur.t
# paraD = np.sqrt(paraB**2 - 4*paraA*paraC)
# yOutH1 = (-paraB + paraD) / 2 / paraA
# yOutH2 = (-paraB - paraD) / 2 / paraA
# print "yOutH1, yOutH2",yOutH1, yOutH2
# xOut0 = lb.x + (yOut02 - lb.y)*lb.a/lb.b
# xOutH = lb.x + (yOutH2 - lb.y)*a_out/b_out
# print "xOut0, xOutH", xOut0, xOutH
# zOut0 = yOut02**2/2./(self.R - matSur.t) +\
# matSur.t
# zOutH = yOut02**2/2./(self.R - matSur.t) +\
# matSur.t
# print "zOut0, zOutH", zOut0, zOutH
# """
#
## Getting the thickness projections in forward
## and diffracted directions
# t0 = -matSur.t / beamInDotSurfaceNormal
# tH = -matSur.t / beamOutDotSurfaceNormal
## Find intersection of S0 and output surface
# point0x = lb.x + lb.a * t0
# point0y = lb.y + lb.b * t0
## Find intersection of Sh and output surface
# pointHx = lb.x + a_out * tH
# pointHy = lb.y + b_out * tH
#
# pointOnFan =\
# matSur.get_Borrmann_out(
# goodN, oeNormal,
# lb, a_out, b_out, c_out,
# alphaAsym=self.alpha,
# Rcurvmm=self.R if 'R' in
# self.__dict__.keys() else None,
# ucl=self.ucl,
# useTT=matSur.useTT)
#
# pointOutX = point0x * (1. - pointOnFan) +\
# pointOnFan * pointHx
# pointOutY = point0y * (1. - pointOnFan) +\
# pointOnFan * pointHy
#
# lb.x = pointOutX
# deltaY = point0y * (1. - pointOnFan) +\
# pointOnFan * lb.y
# lb.y = pointOutY
#
# if matSur.t:
# tmpR = self.R
# self.R -= matSur.t
# lb.z = -self.local_z(lb.x, lb.y) - matSur.t
# self.R = self.R - (1 - pointOnFan) * matSur.t
# oeNormalOut = list(self.local_n(lb.x, deltaY))
# a_out, b_out, c_out = \
# _get_asymmetric_reflection_grating(
# gNormal, oeNormalOut, beamInDotSurfaceNormal)
# self.R = tmpR
if toWhere == 0: # reflect
if needMosaicity:
lb.olda = np.array(lb.a[goodN])
lb.oldb = np.array(lb.b[goodN])
lb.oldc = np.array(lb.c[goodN])
lb.oldJss = np.array(lb.Jss[goodN])
lb.oldJpp = np.array(lb.Jpp[goodN])
lb.oldJsp = np.array(lb.Jsp[goodN])
if hasattr(lb, 'Es'):
lb.oldEs = np.array(lb.Es[goodN])
lb.oldEp = np.array(lb.Ep[goodN])
lb.a[goodN] = a_out
lb.b[goodN] = b_out
lb.c[goodN] = c_out
# print('after.a', lb.a)
# print('after.b', lb.b)
# print('after.c', lb.c)
elif toWhere == 1: # refract
refractive_index = \
matSur.get_refractive_index(lb.E[goodN]).real
if fromVacuum:
n1overn2 = 1. / refractive_index
else:
n1overn2 = refractive_index
signN = np.sign(-beamInDotNormal)
n1overn2cosTheta1 = -n1overn2 * beamInDotNormal
cosTheta2 = signN * \
np.sqrt(1 - n1overn2**2 + n1overn2cosTheta1**2)
dn = (n1overn2cosTheta1 - cosTheta2)
lb.a[goodN] = lb.a[goodN] * n1overn2 + oeNormal[0]*dn
lb.b[goodN] = lb.b[goodN] * n1overn2 + oeNormal[1]*dn
lb.c[goodN] = lb.c[goodN] * n1overn2 + oeNormal[2]*dn
elif toWhere in [5, 6, 7]: # powder, 'monocrystal', 'harmonics'
trc0 = time.time()
aP, bP, cP, rasP, rapP =\
self._reflect_crystal_cl(goodN, lb, matSur, oeNormal)
print('Reflect_crystal completed in {0} s'.format(
time.time() - trc0))
# lb.concatenate(lb)
lb.a[goodN] = aP
lb.b[goodN] = bP
lb.c[goodN] = cP
goodN = (lb.state == 1) | (lb.state == 2)
# good = np.append(good, good)
else: # pass straight, do nothing
pass
# flux:
findReflectivity = False
if material is not None:
if hasattr(matSur, 'get_amplitude'):
findReflectivity = True
if toWhere in [5, 6, 7]: # powder,
findReflectivity = True
# rotate coherency matrix:
# {np.arctan2: 0./0.: =0, 1./0.: =pi/2}
rollAngle = roll + np.arctan2(oeNormal[-3], oeNormal[-1])
localJ = rs.rotate_coherency_matrix(lb, goodN, -rollAngle)
if hasattr(lb, 'Es'):
cosY, sinY = np.cos(rollAngle), np.sin(rollAngle)
lb.Es[goodN], lb.Ep[goodN] = raycing.rotate_y(
lb.Es[goodN], lb.Ep[goodN], cosY, -sinY)
if findReflectivity:
if toWhere in [5, 6, 7]: # powder,
refl = rasP, rapP
elif matSur.kind == 'crystal':
beamOutDotSurfaceNormal = a_out*oeNormal[-3] + \
b_out*oeNormal[-2] + c_out*oeNormal[-1]
if needMosaicity:
refl = matSur.get_amplitude_mosaic(
lb.E[goodN], beamInDotSurfaceNormal,
beamOutDotSurfaceNormal, beamInDotNormalOld)
elif matSur.useTT:
Ry = self.R if hasattr(self, 'R') else self.Rm \
if hasattr(self, 'Rm') else None
lcname = self.__class__.__name__.lower()
if 'johansson' in lcname or 'ground' in lcname:
Ry *= 2
Rx = self.Rs if hasattr(self, 'Rs') else None
refl = matSur.get_amplitude_pytte(
lb.E[goodN], beamInDotSurfaceNormal,
beamOutDotSurfaceNormal, beamInDotNormal,
alphaAsym=self.alpha,
Ry=Ry, Rx=Rx, ucl=self.ucl)
# if '_R' in self.__dict__.keys():
# Ry = self.R
# elif '_Rm' in self.__dict__.keys():
# Ry = self.Rm
# else:
# Ry = None
# refl = matSur.get_amplitude_pytte(
# lb.E[goodN], beamInDotSurfaceNormal,
# beamOutDotSurfaceNormal, beamInDotNormal,
# alphaAsym=self.alpha,
# Ry=Ry, Rx=self.Rs if 'Rs' in self.__dict__.keys()
# else None,
# ucl=self.ucl)
else:
refl = matSur.get_amplitude(
lb.E[goodN], beamInDotSurfaceNormal,
beamOutDotSurfaceNormal, beamInDotNormal,
lb.x[goodN], lb.y[goodN])
elif matSur.kind == 'multilayer':
refl = matSur.get_amplitude(
lb.E[goodN], beamInDotSurfaceNormal,
lb.x[goodN], lb.y[goodN],
ucl=self.ucl)
else: # 'mirror', 'thin mirror', 'plate', 'lens', 'grating'
hasEfficiency = False
if hasattr(matSur, 'efficiency'):
if (matSur.kind in ('grating', 'FZP')) and\
(matSur.efficiency is not None):
hasEfficiency = True
if hasEfficiency:
refl = matSur.get_grating_efficiency(lb, goodN)
else:
refl = matSur.get_amplitude(
lb.E[goodN], beamInDotNormal, fromVacuum)
else:
refl = 1., 1.
ras, rap = refl[0], refl[1]
nanSum = np.isnan(ras).sum()
if nanSum > 0:
ras[np.isnan(ras)] = 0.
# self._reportNaN(ras, 'ras')
nanSum = np.isnan(rap).sum()
if nanSum > 0:
rap[np.isnan(rap)] = 0.
# self._reportNaN(rap, 'rap')
lb.Jss[goodN] = (localJ[0] * ras * np.conjugate(ras)).real
lb.Jpp[goodN] = (localJ[1] * rap * np.conjugate(rap)).real
lb.Jsp[goodN] = localJ[2] * ras * np.conjugate(rap)
# self._reportNaN(lb.Jss[goodN], 'lb.Jss[goodN]')
# self._reportNaN(lb.Jpp[goodN], 'lb.Jpp[goodN]')
# self._reportNaN(lb.Jsp[goodN], 'lb.Jsp[goodN]')
if hasattr(lb, 'Es'):
lb.Es[goodN] *= ras
lb.Ep[goodN] *= rap
if (not fromVacuum) and\
not (matSur.kind in ('crystal', 'multilayer')):
# tMax in mm, refl[2]=mu0 in 1/cm
att = np.exp(-refl[2] * tMax[goodN] * 0.1)
lb.Jss[goodN] *= att
lb.Jpp[goodN] *= att
lb.Jsp[goodN] *= att
if hasattr(lb, 'Es'):
# refl[3] = n.real * k in 1/cm
mPh = att**0.5 * np.exp(0.1j * refl[3] * tMax[goodN])
lb.Es[goodN] *= mPh
lb.Ep[goodN] *= mPh
else:
if hasattr(lb, 'Es'):
mPh = np.exp(1e7j * lb.E[goodN]/CHBAR * tMax[goodN])
lb.Es[goodN] *= mPh
lb.Ep[goodN] *= mPh
if self.isParametric:
lb.s = np.copy(lb.x)
lb.phi = np.copy(lb.y)
lb.r = np.copy(lb.z)
lb.x[good], lb.y[good], lb.z[good] = self.param_to_xyz(
lb.x[good], lb.y[good], lb.z[good])
if goodNsum > 0:
if needMosaicity: # secondary extinction and attenuation
length, through = self._mosaic_length(
matSur, beamInDotSurfaceNormal, lb, goodN)
n = matSur.get_refractive_index(lb.E[goodN])
if through is not None: # if mat.t
# using double slicing, see
# stackoverflow.com/questions/1687566/why-does-an
# -assignment-for-double-sliced-numpy-arrays-not-work
lb.a[np.where(goodN)[0][through]] = lb.olda[through]
lb.b[np.where(goodN)[0][through]] = lb.oldb[through]
lb.c[np.where(goodN)[0][through]] = lb.oldc[through]
att = np.exp(-abs(n.imag) * lb.E[goodN] / CHBAR * 2e8 *
length * 0.1)
lb.Jss[np.where(goodN)[0][through]] =\
lb.oldJss[through] * att[through]
lb.Jpp[np.where(goodN)[0][through]] = \
lb.oldJpp[through] * att[through]
lb.Jsp[np.where(goodN)[0][through]] = \
lb.oldJsp[through] * att[through]
if hasattr(lb, 'Es'):
lb.Es[np.where(goodN)[0][through]] = lb.oldEs[through]
lb.Ep[np.where(goodN)[0][through]] = lb.oldEp[through]
if hasattr(lb, 'Es'):
nk = n.real * lb.E[goodN] / CHBAR * 1e8 # [1/cm]
mPh = np.exp(1j * nk * 0.2*length) # *2: in and out
if through is not None:
mPh[through] =\
(att**0.5 * np.exp(1j*nk*0.1*length))[through]
lb.Es[goodN] *= mPh
lb.Ep[goodN] *= mPh
# rotate coherency matrix back:
vlb.Jss[goodN], vlb.Jpp[goodN], vlb.Jsp[goodN] =\
rs.rotate_coherency_matrix(lb, goodN, rollAngle)
if hasattr(lb, 'Es'):
vlb.Es[goodN], vlb.Ep[goodN] = raycing.rotate_y(
lb.Es[goodN], lb.Ep[goodN], cosY, sinY)
if vlb is not lb:
# includeJspEsp=False because Jss, Jpp, Jsp, Es and Ep are in vlb
# already:
rs.copy_beam(vlb, lb, good, includeState=True, includeJspEsp=False)
# rotate the world back for the virgin local beam:
if dx:
vlb.x[good] += dx
if dy:
vlb.y[good] += dy
if dz:
vlb.z[good] += dz
if self.extraPitch or self.extraRoll or self.extraYaw:
raycing.rotate_beam(
vlb, good, rotationSequence='-'+self.extraRotationSequence,
pitch=extraAnglesSign*self.extraPitch, roll=self.extraRoll,
yaw=extraAnglesSign*self.extraYaw)
raycing.rotate_beam(vlb, good,
rotationSequence='-'+self.rotationSequence,
pitch=pitch, roll=roll, yaw=yaw)
if is2ndXtal:
raycing.rotate_beam(vlb, good, roll=np.pi)
self.footprint.extend([np.hstack((np.min(np.vstack((
lb.x[good], lb.y[good], lb.z[good])), axis=1),
np.max(np.vstack((lb.x[good], lb.y[good], lb.z[good])),
axis=1))).reshape(2, 3)])
# print len(self.footprint)
if self.alarmLevel is not None:
raycing.check_alarm(self, good, vlb)
class DCM(OE):
"""Implements a Double Crystal Monochromator with flat crystals."""
hiddenMethods = ['reflect', 'multiple_reflect', 'propagate_wave']
def __init__(self, *args, **kwargs):
u"""
*bragg*: float, str, list
Bragg angle in rad. Can be calculated automatically if alignment
energy is given as a single element list [energy]. If 'auto',
the alignment energy will be taken from beamLine.alignE.
*cryst1roll*, *cryst2roll*, *cryst2pitch*, *cryst2finePitch*: float
Misalignment angles in rad.
*cryst2perpTransl*, *cryst2longTransl*: float
perpendicular and longitudinal translations of the 2nd crystal in
respect to the 1st one.
*limPhysX2*, *limPhysY2*, *limOptX2*, *limOptY2*, *material2*:
refer to the 2nd crystal and are similar to the same parameters
of the parent class :class:`OE` without the trailing "2".
*fixedOffset*: float
Offset between the incoming and outcoming beams in mm. If not None
or zero the value of *cryst2perpTransl* is replaced by
*fixedOffset*/2/cos(*bragg*)
"""
kwargs = self.__pop_kwargs(**kwargs)
OE.__init__(self, *args, **kwargs)
self.energyMin = rs.defaultEnergy - 5.
self.energyMax = rs.defaultEnergy + 5.
def __pop_kwargs(self, **kwargs):
self.bragg = kwargs.pop('bragg', 0)
self.cryst1roll = kwargs.pop('cryst1roll', 0)
self.cryst2roll = kwargs.pop('cryst2roll', 0)
self.cryst2pitch = kwargs.pop('cryst2pitch', 0)
self.cryst2finePitch = kwargs.pop('cryst2finePitch', 0)
self.cryst2perpTransl = kwargs.pop('cryst2perpTransl', 0)
self.cryst2longTransl = kwargs.pop('cryst2longTransl', 0)
self.limPhysX2 = kwargs.pop(
'limPhysX2', [-raycing.maxHalfSizeOfOE, raycing.maxHalfSizeOfOE])
self.limPhysY2 = kwargs.pop(
'limPhysY2', [-raycing.maxHalfSizeOfOE, raycing.maxHalfSizeOfOE])
self.limOptX2 = kwargs.pop('limOptX2', None)
self.limOptY2 = kwargs.pop('limOptY2', None)
self.material = kwargs.get('material', None)
self.material2 = kwargs.pop('material2', None)
self.fixedOffset = kwargs.pop('fixedOffset', None)
return kwargs
@property
def bragg(self):
return self._bragg if self._braggVal is None else self._braggVal
@bragg.setter
def bragg(self, bragg):
bragg = raycing.auto_units_angle(bragg)
if isinstance(bragg, (raycing.basestring, list, tuple)):
self._bragg = copy.copy(bragg)
self._braggVal = None
self._braggInit = copy.copy(bragg) # For glow auto-recognition
else:
self._braggVal = raycing.auto_units_angle(bragg)
self.update_orientation_quaternion()
@property
def cryst1roll(self):
return self._cryst1roll
@cryst1roll.setter
def cryst1roll(self, cryst1roll):
self._cryst1roll = raycing.auto_units_angle(cryst1roll)
self.update_orientation_quaternion()
@property
def cryst2roll(self):
return self._cryst2roll
@cryst2roll.setter
def cryst2roll(self, cryst2roll):
self._cryst2roll = raycing.auto_units_angle(cryst2roll)
self.update_orientation_quaternion()
@property
def cryst2pitch(self):
return self._cryst2pitch
@cryst2pitch.setter
def cryst2pitch(self, cryst2pitch):
self._cryst2pitch = raycing.auto_units_angle(cryst2pitch)
self.update_orientation_quaternion()
@property
def cryst2finePitch(self):
return self._cryst2finePitch
@cryst2finePitch.setter
def cryst2finePitch(self, cryst2finePitch):
self._cryst2finePitch = raycing.auto_units_angle(cryst2finePitch)
self.update_orientation_quaternion()
@property
def limPhysX2(self):
return self._limPhysX2
@limPhysX2.setter
def limPhysX2(self, limPhysX2):
if limPhysX2 is None:
self._limPhysX2 = [-raycing.maxHalfSizeOfOE,
raycing.maxHalfSizeOfOE]
else:
self._limPhysX2 = limPhysX2
@property
def limPhysY2(self):
return self._limPhysY2
@limPhysY2.setter
def limPhysY2(self, limPhysY2):
if limPhysY2 is None:
self._limPhysY2 = [-raycing.maxHalfSizeOfOE,
raycing.maxHalfSizeOfOE]
else:
self._limPhysY2 = limPhysY2
def get_surface_limits(self):
"""Returns surface_limits."""
OE.get_surface_limits(self)
cs = self.curSurface
self.surfPhysX2 = self.limPhysX2
if self.limPhysX2 is not None:
if raycing.is_sequence(self.limPhysX2[0]):
self.surfPhysX2 = (self.limPhysX2[0][cs],
self.limPhysX2[1][cs])
self.surfPhysY2 = self.limPhysY2
if self.limPhysY2 is not None:
if raycing.is_sequence(self.limPhysY2[0]):
self.surfPhysY = (self.limPhysY2[0][cs], self.limPhysY2[1][cs])
self.surfOptX2 = self.limOptX2
if self.limOptX2 is not None:
if raycing.is_sequence(self.limOptX2[0]):
self.surfOptX = (self.limOptX2[0][cs], self.limOptX2[1][cs])
self.surfOptY2 = self.limOptY2
if self.limOptY2 is not None:
if raycing.is_sequence(self.limOptY2[0]):
self.surfOptY = (self.limOptY2[0][cs], self.limOptY2[1][cs])
def local_z1(self, x, y):
"""Determines the normal vector of OE at (x, y) position."""
# just flat:
return self.local_z(x, y)
def local_z2(self, x, y):
return self.local_z1(x, y)
def local_n1(self, x, y):
"""Determines the normal vector of OE at (x, y) position."""
# just flat:
return self.local_n(x, y)
def local_n2(self, x, y):
res = self.local_n1(x, y)
if self.alpha:
res[1] *= -1
return res
def get_orientation(self):
if self.fixedOffset not in [0, None]:
self.cryst2perpTransl = self.fixedOffset/2./np.cos(self.bragg)
def double_reflect(self, beam=None, needLocal=True,
fromVacuum1=True, fromVacuum2=True,
returnLocalAbsorbed=None):
"""
Returns the reflected beam in global and two local (if *needLocal*
is true) systems.
*returnLocalAbsorbed*: None or int
If not None, returns the absorbed intensity in local beam. If
equals zero, total absorbed intensity is return in the last local
beam, otherwise the N-th local beam returns the
absorbed intensity on N-th surface of the optical element.
.. Returned values: beamGlobal, beamLocal1, beamLocal2
"""
self.footprint = []
if self.bl is not None:
self.bl.auto_align(self, beam)
self.get_orientation()
gb = rs.Beam(copyFrom=beam) # output beam in global coordinates
if needLocal:
lo1 = rs.Beam(copyFrom=beam) # output beam in local coordinates
else:
lo1 = gb
good1 = beam.state > 0
if good1.sum() == 0:
return gb, lo1, lo1
raycing.global_to_virgin_local(self.bl, beam, lo1, self.center, good1)
self._reflect_local(
good1, lo1, gb, self.pitch + self.bragg,
self.roll + self.positionRoll + self.cryst1roll, self.yaw, self.dx,
local_z=self.local_z1, local_n=self.local_n1,
fromVacuum=fromVacuum1, material=self.material)
goodAfter1 = (gb.state == 1) | (gb.state == 2)
# not intersected rays remain unchanged except their state:
notGood = ~goodAfter1
if notGood.sum() > 0:
rs.copy_beam(gb, beam, notGood)
gb2 = rs.Beam(copyFrom=gb)
if needLocal:
lo2 = rs.Beam(copyFrom=gb2) # output beam in local coordinates
else:
lo2 = gb2
good2 = goodAfter1
if hasattr(self, 't'): # is instance of Plate
gb2.state[~good2] = self.lostNum
if good2.sum() == 0:
return gb2, lo1, lo2
self._reflect_local(
good2, lo2, gb2,
-self.pitch - self.bragg + self.cryst2pitch + self.cryst2finePitch,
self.roll + self.cryst2roll + self.positionRoll, -self.yaw,
-self.dx, self.cryst2longTransl, -self.cryst2perpTransl,
local_z=self.local_z2, local_n=self.local_n2,
fromVacuum=fromVacuum2, material=self.material2, is2ndXtal=True)
goodAfter2 = (gb2.state == 1) | (gb2.state == 2)
# in global coordinate system:
raycing.virgin_local_to_global(self.bl, gb2, self.center, goodAfter2)
# not intersected rays remain unchanged except their state:
notGood = ~goodAfter2
if hasattr(self, 't'): # is instance of Plate
gb2.state[notGood] = self.lostNum
if notGood.sum() > 0:
rs.copy_beam(gb2, beam, notGood)
if returnLocalAbsorbed is not None:
if returnLocalAbsorbed == 0:
absorbedLb = rs.Beam(copyFrom=lo2)
absorbedLb.absorb_intensity(beam)
lo2 = absorbedLb
elif returnLocalAbsorbed == 1:
absorbedLb = rs.Beam(copyFrom=lo1)
absorbedLb.absorb_intensity(beam)
lo1 = absorbedLb
elif returnLocalAbsorbed == 1:
absorbedLb = rs.Beam(copyFrom=lo2)
absorbedLb.absorb_intensity(lo1)
lo2 = absorbedLb
lo2.parentId = self.name
raycing.append_to_flow(self.double_reflect, [gb2, lo1, lo2],
inspect.currentframe())
return gb2, lo1, lo2 # in global and local(lo1 and lo2) coordinates
|