File: sources_beams.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (423 lines) | stat: -rw-r--r-- 18,626 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev", "Roman Chernikov"
__date__ = "21 Jun 2022"

import numpy as np
import pickle
from .. import raycing

defaultEnergy = 9.0e3
allArguments = ('bl', 'name', 'center', 'pitch', 'roll', 'yaw', 'nrays',
                'eE', 'eI', 'eEspread', 'eSigmaX', 'eSigmaZ',
                'eEpsilonX', 'eEpsilonZ', 'betaX', 'betaZ',
                'distx', 'dx', 'disty', 'dy', 'distz', 'dz',
                'distxprime', 'dxprime', 'distzprime', 'dzprime',
                'xPrimeMax', 'zPrimeMax', 'minxprime', 'maxxprime',
                'minzprime', 'maxzprime',
                'xPrimeMaxAutoReduce', 'zPrimeMaxAutoReduce',
                'distE', 'energies', 'targetE', 'eMin', 'eMax', 'eN',
                'B0', 'rho', 'K', 'Kx', 'Ky', 'period',
                'n', 'phaseDeg', 'taper', 'R0',
                'polarization', 'filamentBeam',
                'uniformRayDensity', 'nx', 'nz', 'withCentralRay',
                'autoAppendToBL', 'customField', 'gp', 'gIntervals', 'nRK',
                'targetOpenCL', 'precisionOpenCL')


class BeamProxy(object):
    """An empty object to attach fields to it. With a simple instance of
    object() this is impossible but doable with an empty class."""
    basicAttrs = ['x', 'y', 'z', 'a', 'b', 'c', 'state', 'E', 'path',
                  'Es', 'Ep', 'Jss', 'Jpp', 'Jsp']
    # farAttrs = ['a', 'b', 'c', 'state', 'E', 'path',
    #             'Es', 'Ep', 'Jss', 'Jpp', 'Jsp']

    def __init__(self, copyFrom=None):
        if copyFrom is None:
            return
        for attr in self.basicAttrs:
            setattr(self, attr, np.copy(getattr(copyFrom, attr)))

    # def filter_by_index(self, indarr):
    #     for attr in self.farAttrs:
    #         setattr(self, attr, np.copy(getattr(self, attr))[indarr])


class Beam(object):
    """Container for the beam arrays. *x, y, z* give the starting points.
    *a, b, c* give normalized vectors of ray directions (the source must take
    care about the normalization). *E* is energy. *Jss*, *Jpp* and *Jsp* are
    the components  of the coherency matrix. The latter one is complex. *Es*
    and *Ep* are *s* and *p* field amplitudes (not always used). *path* is the
    total path length from the source to the last impact point. *theta* is the
    incidence angle. *order* is the order of grating diffraction. If multiple
    reflections are considered: *nRefl* is the number of reflections,
    *elevationD* is the maximum elevation distance between the rays and the
    surface as the ray travels from one impact point to the next one,
    *elevationX*, *elevationY*, *elevationZ* are the coordinates of the
    highest elevation points. If an OE uses a parametric representation,
    *s*, *phi*, *r* arrays store the impact points in the parametric
    coordinates.
    """
    listOfAttrs = ['x', 'y', 'z', 'sourceSIGMAx', 'sourceSIGMAz',
                   'filamentDX', 'filamentDZ', 'filamentDtheta',
                   'filamentDpsi', 'filamentDgamma',
                   'state', 'a', 'b', 'c', 'path',
                   'E', 'Jss', 'Jpp', 'Jsp', 'elevationD',
                   'elevationX', 'elevationY', 'elevationZ', 's',
                   'phi', 'r', 'theta', 'order', 'accepted',
                   'acceptedE', 'seeded', 'seededI', 'Es', 'Ep',
                   # 'area',
                   'nRefl']

    def __init__(self, nrays=raycing.nrays, copyFrom=None, forceState=False,
                 withNumberOfReflections=False, withAmplitudes=False,
                 xyzOnly=False, bl=None):
        # if type(copyFrom) == type(self):
        if hasattr(copyFrom, 'a') and hasattr(copyFrom, 'x'):
            try:
                for attr in self.listOfAttrs:
                    if hasattr(copyFrom, attr):
                        setattr(self, attr, np.copy(getattr(copyFrom, attr)))
#                if not withNumberOfReflections and hasattr(self, 'nRefl'):
#                    delattr(self, 'nRefl')
            except Exception as e:
                print(e)
                print("Can't copy beam from", copyFrom)
                copyFrom = None
        elif isinstance(copyFrom, raycing.basestring):
            try:
                if copyFrom.endswith('mat'):
                    import scipy.io as io
                    self.__dict__.update(io.loadmat(copyFrom))
                elif copyFrom.endswith('npy'):
                    self.__dict__.update(np.load(
                            copyFrom, allow_pickle=True).item())
                else:
                    pickleFile = open(copyFrom, 'rb')
                    self.__dict__.update(pickle.load(pickleFile))
                    pickleFile.close()
                for key in ['fromOE', 'toOE', 'parentId']:
                    if hasattr(self, key):
                        if bl is not None:
                            try:
                                setattr(self, key, bl.oesDict[getattr(
                                    self, key)][0])
                            except Exception as e:
                                print(e)
                                print("OEs cannot be resolved. This can cause "
                                      "errors in wave propagation routine.")
                                continue
                        else:
                            print(getattr(self, key), "cannot be resolved. Please provide the beamLine instance.")  # analysis:ignore

            except Exception as e:
                print(e)
                print("Can't load beam object from", copyFrom)
                copyFrom = None
                raise
        elif copyFrom is None:
            # coordinates of starting points
            nrays = np.int64(nrays)
            self.x = np.zeros(nrays)
            self.y = np.zeros(nrays)
            self.z = np.zeros(nrays)
            if not xyzOnly:
                self.sourceSIGMAx = 0.
                self.sourceSIGMAz = 0.
                self.filamentDtheta = 0.
                self.filamentDpsi = 0.
                self.filamentDgamma = 0.
                self.filamentDX = 0.
                self.filamentDZ = 0.
                self.state = np.zeros(nrays, dtype=np.int32)
                # components of direction
                self.a = np.zeros(nrays)
                self.b = np.ones(nrays)
                self.c = np.zeros(nrays)
                # total ray path
                self.path = np.zeros(nrays)
                # energy
                self.E = np.ones(nrays) * defaultEnergy
                # components of coherency matrix
                self.Jss = np.ones(nrays)
                self.Jpp = np.zeros(nrays)
                self.Jsp = np.zeros(nrays, dtype=complex)
                if withAmplitudes:
                    self.Es = np.zeros(nrays, dtype=complex)
                    self.Ep = np.zeros(nrays, dtype=complex)
        if type(forceState) == int:
            self.state[:] = forceState

    def export_beam(self, fileName, fformat='npy'):
        """Saves the *beam* to a binary file. File format can be Numpy 'npy',
        Matlab 'mat' or python 'pickle'. Matlab format should not be used for
        future imports in xrt as it does not allow correct load."""
        outputDict = dict()
        outputDict.update(self.__dict__)
        for key in ['fromOE', 'toOE', 'parentId']:
            if hasattr(self, key):
                try:
                    outputDict[key] = getattr(self, key).name
                except Exception as e:
                    print(e)
                    continue

        if str(fformat).lower() in ['npy', 'np', 'numpy']:  # numpy compress
            try:
                if not fileName.endswith('npy'):
                    fileName += '.npy'
                np.save(fileName, outputDict)
            except Exception as e:
                print(e)
                print("Can't save the beam to", str(fileName))
        elif str(fformat).lower() in ['mat', 'matlab']:  # Matlab *.mat
            try:
                import scipy.io as io
                if not fileName.endswith('mat'):
                    fileName += '.mat'
                io.savemat(fileName, outputDict)
            except Exception as e:
                print(e)
                print("Can't save the beam to", str(fileName))
        else:  # pickle
            try:
                if not fileName.endswith('pickle'):
                    fileName += '.pickle'
                f = open(fileName, 'wb')
                pickle.dump(outputDict, f, protocol=2)
                f.close()
            except Exception as e:
                print(e)
                print("Can't save the beam to", str(fileName))

    def concatenate(self, beam):
        """Adds *beam* to *self*. Useful when more than one source is
        presented."""
        self.state = np.concatenate((self.state, beam.state))
        self.x = np.concatenate((self.x, beam.x))
        self.y = np.concatenate((self.y, beam.y))
        self.z = np.concatenate((self.z, beam.z))
        self.a = np.concatenate((self.a, beam.a))
        self.b = np.concatenate((self.b, beam.b))
        self.c = np.concatenate((self.c, beam.c))
        self.path = np.concatenate((self.path, beam.path))
        self.E = np.concatenate((self.E, beam.E))
        self.Jss = np.concatenate((self.Jss, beam.Jss))
        self.Jpp = np.concatenate((self.Jpp, beam.Jpp))
        self.Jsp = np.concatenate((self.Jsp, beam.Jsp))
        if hasattr(self, 'nRefl') and hasattr(beam, 'nRefl'):
            self.nRefl = np.concatenate((self.nRefl, beam.nRefl))
        if hasattr(self, 'elevationD') and hasattr(beam, 'elevationD'):
            self.elevationD = np.concatenate(
                (self.elevationD, beam.elevationD))
            self.elevationX = np.concatenate(
                (self.elevationX, beam.elevationX))
            self.elevationY = np.concatenate(
                (self.elevationY, beam.elevationY))
            self.elevationZ = np.concatenate(
                (self.elevationZ, beam.elevationZ))
        if hasattr(self, 's') and hasattr(beam, 's'):
            self.s = np.concatenate((self.s, beam.s))
        if hasattr(self, 'phi') and hasattr(beam, 'phi'):
            self.phi = np.concatenate((self.phi, beam.phi))
        if hasattr(self, 'r') and hasattr(beam, 'r'):
            self.r = np.concatenate((self.r, beam.r))
        if hasattr(self, 'theta') and hasattr(beam, 'theta'):
            self.theta = np.concatenate((self.theta, beam.theta))
        if hasattr(self, 'order') and hasattr(beam, 'order'):
            self.order = np.concatenate((self.order, beam.order))
        if hasattr(self, 'accepted') and hasattr(beam, 'accepted'):
            seeded = self.seeded + beam.seeded
            self.accepted = (self.accepted / self.seeded +
                             beam.accepted / beam.seeded) * seeded
            self.acceptedE = (self.acceptedE / self.seeded +
                              beam.acceptedE / beam.seeded) * seeded
            self.seeded = seeded
            self.seededI = self.seededI + beam.seededI
        if hasattr(self, 'Es') and hasattr(beam, 'Es'):
            self.Es = np.concatenate((self.Es, beam.Es))
            self.Ep = np.concatenate((self.Ep, beam.Ep))

    def filter_by_index(self, indarr):
        self.state = self.state[indarr]
        self.x = self.x[indarr]
        self.y = self.y[indarr]
        self.z = self.z[indarr]
        self.a = self.a[indarr]
        self.b = self.b[indarr]
        self.c = self.c[indarr]
        self.path = self.path[indarr]
        self.E = self.E[indarr]
        self.Jss = self.Jss[indarr]
        self.Jpp = self.Jpp[indarr]
        self.Jsp = self.Jsp[indarr]
        if hasattr(self, 'nRefl'):
            self.nRefl = self.nRefl[indarr]
        if hasattr(self, 'elevationD'):
            self.elevationD = self.elevationD[indarr]
            self.elevationX = self.elevationX[indarr]
            self.elevationY = self.elevationY[indarr]
            self.elevationZ = self.elevationZ[indarr]
        if hasattr(self, 's'):
            self.s = self.s[indarr]
        if hasattr(self, 'phi'):
            self.phi = self.phi[indarr]
        if hasattr(self, 'r'):
            self.r = self.r[indarr]
        if hasattr(self, 'theta'):
            self.theta = self.theta[indarr]
        if hasattr(self, 'order'):
            self.order = self.order[indarr]
        if hasattr(self, 'Es'):
            self.Es = self.Es[indarr]
            self.Ep = self.Ep[indarr]
        return self

    def replace_by_index(self, indarr, beam):
        self.state[indarr] = beam.state[indarr]
        self.x[indarr] = beam.x[indarr]
        self.y[indarr] = beam.y[indarr]
        self.z[indarr] = beam.z[indarr]
        self.a[indarr] = beam.a[indarr]
        self.b[indarr] = beam.b[indarr]
        self.c[indarr] = beam.c[indarr]
        self.path[indarr] = beam.path[indarr]
        self.E[indarr] = beam.E[indarr]
        self.Jss[indarr] = beam.Jss[indarr]
        self.Jpp[indarr] = beam.Jpp[indarr]
        self.Jsp[indarr] = beam.Jsp[indarr]
        if hasattr(self, 'nRefl') and hasattr(beam, 'nRefl'):
            self.nRefl[indarr] = beam.nRefl[indarr]
        if hasattr(self, 'elevationD') and hasattr(beam, 'elevationD'):
            self.elevationD[indarr] = beam.elevationD[indarr]
            self.elevationX[indarr] = beam.elevationX[indarr]
            self.elevationY[indarr] = beam.elevationY[indarr]
            self.elevationZ[indarr] = beam.elevationZ[indarr]
        if hasattr(self, 's') and hasattr(beam, 's'):
            self.s[indarr] = beam.s[indarr]
        if hasattr(self, 'phi') and hasattr(beam, 'phi'):
            self.phi[indarr] = beam.phi[indarr]
        if hasattr(self, 'r') and hasattr(beam, 'r'):
            self.r[indarr] = beam.r[indarr]
        if hasattr(self, 'theta') and hasattr(beam, 'theta'):
            self.theta[indarr] = beam.theta[indarr]
        if hasattr(self, 'order') and hasattr(beam, 'order'):
            self.order[indarr] = beam.order[indarr]
        if hasattr(self, 'Es') and hasattr(beam, 'Es'):
            self.Es[indarr] = beam.Es[indarr]
        if hasattr(self, 'Ep') and hasattr(beam, 'Ep'):
            self.Ep[indarr] = beam.Ep[indarr]
        return self

    def filter_good(self):
        return self.filter_by_index(self.state == 1)

    def absorb_intensity(self, inBeam, sign=1):
        self.Jss = (inBeam.Jss - self.Jss) * sign
        self.Jpp = (inBeam.Jpp - self.Jpp) * sign
        self.Jsp = (inBeam.Jsp - self.Jsp) * sign
        self.displayAsAbsorbedPower = True

    def add_wave(self, wave, sign=1):
        self.Es += sign*wave.Es
        self.Ep += sign*wave.Ep
        self.Jss = (self.Es * self.Es.conjugate()).real
        self.Jpp = (self.Ep * self.Ep.conjugate()).real
        self.Jsp = self.Es * self.Ep.conjugate()

    def project_energy_to_band(self, EnewMin, EnewMax):
        """Uniformly projects the energy array self.E to a new band determined
        by *EnewMin* and *EnewMax*. This function is useful for simultaneous
        ray tracing of white beam and monochromatic beam parts of a beamline.
        """
        EoldMin = np.min(self.E)
        EoldMax = np.max(self.E)
        if EoldMin >= EoldMax:
            return
        self.E[:] = EnewMin +\
            (self.E-EoldMin) / (EoldMax-EoldMin) * (EnewMax-EnewMin)

    def make_uniform_energy_band(self, EnewMin, EnewMax):
        """Makes a uniform energy distribution. This function is useful for
        simultaneous ray tracing of white beam and monochromatic beam parts of
        a beamline.
        """
        self.E[:] = np.random.uniform(EnewMin, EnewMax, len(self.E))

    def diffract(self, wave):
        from . import waves as rw
        return rw.diffract(self, wave)


def copy_beam(
        beamTo, beamFrom, indarr, includeState=False, includeJspEsp=True):
    """Copies arrays of *beamFrom* to arrays of *beamTo*. The slicing of the
    arrays is given by *indarr*."""
    beamTo.x[indarr] = beamFrom.x[indarr]
    beamTo.y[indarr] = beamFrom.y[indarr]
    beamTo.z[indarr] = beamFrom.z[indarr]
    beamTo.a[indarr] = beamFrom.a[indarr]
    beamTo.b[indarr] = beamFrom.b[indarr]
    beamTo.c[indarr] = beamFrom.c[indarr]
    beamTo.path[indarr] = beamFrom.path[indarr]
    beamTo.E[indarr] = beamFrom.E[indarr]
    if includeState:
        beamTo.state[indarr] = beamFrom.state[indarr]
    if hasattr(beamFrom, 'nRefl') and hasattr(beamTo, 'nRefl'):
        beamTo.nRefl[indarr] = beamFrom.nRefl[indarr]
    if hasattr(beamFrom, 'order'):
        beamTo.order = beamFrom.order
    if hasattr(beamFrom, 'elevationD') and hasattr(beamTo, 'elevationD'):
        beamTo.elevationD[indarr] = beamFrom.elevationD[indarr]
        beamTo.elevationX[indarr] = beamFrom.elevationX[indarr]
        beamTo.elevationY[indarr] = beamFrom.elevationY[indarr]
        beamTo.elevationZ[indarr] = beamFrom.elevationZ[indarr]
    if hasattr(beamFrom, 'accepted'):
        beamTo.accepted = beamFrom.accepted
        beamTo.acceptedE = beamFrom.acceptedE
        beamTo.seeded = beamFrom.seeded
        beamTo.seededI = beamFrom.seededI
    if hasattr(beamTo, 'area'):
        beamTo.area = beamFrom.area
    if includeJspEsp:
        beamTo.Jss[indarr] = beamFrom.Jss[indarr]
        beamTo.Jpp[indarr] = beamFrom.Jpp[indarr]
        beamTo.Jsp[indarr] = beamFrom.Jsp[indarr]
        if hasattr(beamFrom, 'Es') and hasattr(beamTo, 'Es'):
            beamTo.Es[indarr] = beamFrom.Es[indarr]
            beamTo.Ep[indarr] = beamFrom.Ep[indarr]


def rotate_coherency_matrix(beam, indarr, roll):
    r"""Rotates the coherency matrix :math:`J`:

    .. math::

        J = \left( \begin{array}{ccc}
        J_{ss} & J_{sp} \\
        J^*_{sp} & J_{pp}\end{array} \right)

    by angle :math:`\phi` around the beam direction as :math:`J' = R_{\phi}
    J R^{-1}_{\phi}` with the rotation matrix :math:`R_{\phi}` defined as:

    .. math::

        R_{\phi} = \left( \begin{array}{ccc}
        \cos{\phi} & \sin{\phi} \\
        -\sin{\phi} & \cos{\phi}\end{array} \right)
    """
#    if (roll == 0).all():
#        return beam.Jss[indarr], beam.Jpp[indarr], beam.Jsp[indarr]
    c = np.cos(roll)
    s = np.sin(roll)
    c2 = c**2
    s2 = s**2
    cs = c * s
    JssN = beam.Jss[indarr]*c2 + beam.Jpp[indarr]*s2 +\
        2*beam.Jsp[indarr].real*cs
    JppN = beam.Jss[indarr]*s2 + beam.Jpp[indarr]*c2 -\
        2*beam.Jsp[indarr].real*cs
    JspN = (beam.Jpp[indarr]-beam.Jss[indarr])*cs +\
        beam.Jsp[indarr].real*(c2-s2) + beam.Jsp[indarr].imag*1j
    return JssN, JppN, JspN