1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006
|
# -*- coding: utf-8 -*-
__author__ = "Konstantin Klementiev", "Roman Chernikov"
__date__ = "12 Aug 2021"
import sys
import numpy as np
from scipy import special
from scipy.interpolate import interp1d
import inspect
from .. import raycing
from .sources_beams import Beam, allArguments
from .physconsts import E0, C, M0, EV2ERG, K2B, SIE0, EMC,\
SIM0, FINE_STR, PI, PI2, SQ3, E2W, E2WC, CHeVcm
from .sources_sybase import SourceBase, IntegratedSource
# _DEBUG replaced with raycing._VERBOSITY_
class BendingMagnet(SourceBase):
u"""
Bending magnet source. The computation is reasonably fast and thus a GPU
is not required and is not implemented.
"""
def __init__(self, *args, **kwargs):
u"""
*B0*: float
Magnetic field (T). Alternatively, specify *rho*.
*rho*: float
Curvature radius (m). Alternatively, specify *B0*.
"""
B0 = kwargs.pop('B0', 1.)
rho = kwargs.pop('rho', None)
super(BendingMagnet, self).__init__(*args, **kwargs)
if isinstance(self, Wiggler):
self.B = K2B * self.K / self.L0
self.ro = M0 * C**2 * self.gamma / self.B / E0 / 1e6
self.X0 = 0.5 * self.K * self.L0 / self.gamma / PI
self.isMPW = True
else:
self.Np = 0.5
self.B = B0
self.ro = rho
if self.ro:
if not self.B:
self.B = M0 * C**2 * self.gamma / self.ro / E0 / 1e6
elif self.B:
self.ro = M0 * C**2 * self.gamma / self.B / E0 / 1e6
self.isMPW = False
if self.isMPW: # xPrimeMaxAutoReduce
xPrimeMaxTmp = self.K / self.gamma
if abs(self._xPrimeMax) > xPrimeMaxTmp:
print("Reducing xPrimeMax from {0} down to {1} mrad".format(
self.xPrimeMax * 1e3, xPrimeMaxTmp * 1e3))
self._xPrimeMax = xPrimeMaxTmp
if abs(self._xPrimeMin) > abs(xPrimeMaxTmp):
print("Reducing xPrimeMin from {0} down to {1} mrad".format(
self._xPrimeMin * 1e3, xPrimeMaxTmp * 1e3))
self._xPrimeMin = np.sign(self._xPrimeMin) * xPrimeMaxTmp
@property
def B0(self):
return self.B
@B0.setter
def B0(self, B):
self.B = float(B)
self.ro = M0 * C**2 * self.gamma / B / E0 / 1e6
if hasattr(self, 'L0'):
self._K = B * self.L0 / K2B # Only for the Wiggler
self.needReset = True
# Need to recalculate the integration parameters
@property
def rho(self):
return self.ro
@rho.setter
def rho(self, rho):
self.ro = rho
self.B = M0 * C**2 * self.gamma / rho / E0 / 1e6
if hasattr(self, 'L0'):
self._K = self.B * self.L0 / K2B
self.needReset = True
# Need to recalculate the integration parameters
def prefix_save_name(self):
return '3-BM-xrt'
def build_I_map(self, dde, ddtheta, ddpsi, harmonic=None, dg=None):
if self.needReset:
self.reset()
np.seterr(invalid='ignore')
np.seterr(divide='ignore')
gamma = self.gamma
if self.eEspread > 0:
if np.array(dde).shape:
if dde.shape[0] > 1:
gamma += np.random.normal(0, gamma*self.eEspread,
dde.shape)
gamma2 = gamma**2
else:
gamma2 = self.gamma2
w_cr = 1.5 * gamma2 * self.B * SIE0 / SIM0
if self.isMPW:
w_cr *= np.sin(np.arccos(ddtheta * gamma / self.K))
w_cr = np.where(np.isfinite(w_cr), w_cr, 0.)
gammapsi = gamma * ddpsi
gamma2psi2p1 = gammapsi**2 + 1
eta = 0.5 * dde * E2W / w_cr * gamma2psi2p1**1.5
ampSP = -0.5j * SQ3 / PI * gamma * dde * E2W / w_cr * gamma2psi2p1
ampS = ampSP * special.kv(2./3., eta)
ampP = 1j * gammapsi * ampSP * special.kv(1./3., eta) /\
np.sqrt(gamma2psi2p1)
ampS = np.where(np.isfinite(ampS), ampS, 0.)
ampP = np.where(np.isfinite(ampP), ampP, 0.)
bwFact = 0.001 if self.distE == 'BW' else 1./dde
Amp2Flux = FINE_STR * bwFact * self.eI / SIE0 * 2 * self.Np
np.seterr(invalid='warn')
np.seterr(divide='warn')
return (Amp2Flux * (np.abs(ampS)**2 + np.abs(ampP)**2),
np.sqrt(Amp2Flux) * ampS,
np.sqrt(Amp2Flux) * ampP)
def shine(self, toGlobal=True, withAmplitudes=True, fixedEnergy=False,
accuBeam=None):
u"""
Returns the source beam. If *toGlobal* is True, the output is in
the global system. If *withAmplitudes* is True, the resulted beam
contains arrays Es and Ep with the *s* and *p* components of the
electric field.
.. Returned values: beamGlobal
"""
if self.needReset:
self.reset()
if self.bl is not None:
try:
self.bl._alignE = float(self.bl.alignE)
except ValueError:
self.bl._alignE = 0.5 * (self.eMin + self.eMax)
if self.uniformRayDensity:
withAmplitudes = True
bo = None
length = 0
seeded = np.int64(0)
seededI = 0.
np.seterr(invalid='warn')
np.seterr(divide='warn')
mcRays = np.int64(self.nrays * 1.2) if not self.uniformRayDensity else\
self.nrays
if self.filamentBeam:
if accuBeam is None:
rE = np.random.random_sample() *\
float(self.E_max - self.E_min) + self.E_min
if self.isMPW:
sigma_r2 = 2 * (CHeVcm/rE*10*self.L0*self.Np) / PI2**2
sourceSIGMAx = self.dx
sourceSIGMAz = self.dz
rTheta0 = np.random.random_sample() *\
(self.Theta_max - self.Theta_min) + self.Theta_min
ryNp = 0.5 * self.L0 *\
(np.arccos(rTheta0 * self.gamma / self.K) / PI) +\
0.5 * self.L0 *\
np.random.random_integers(0, int(2*self.Np - 1))
rY = ryNp - 0.5*self.L0*self.Np
if (ryNp - 0.25*self.L0 <= 0):
rY += self.L0*self.Np
rX = self.X0 * np.sin(PI2 * rY / self.L0) +\
sourceSIGMAx * np.random.standard_normal()
rY -= 0.25 * self.L0
rZ = sourceSIGMAz * np.random.standard_normal()
else:
rZ = self.dz * np.random.standard_normal()
rTheta0 = np.random.random_sample() *\
(self.Theta_max - self.Theta_min) + self.Theta_min
R1 = self.dx * np.random.standard_normal() +\
self.ro * 1000.
rX = -R1 * np.cos(rTheta0) + self.ro*1000.
rY = R1 * np.sin(rTheta0)
dtheta = self.dxprime * np.random.standard_normal()
dpsi = self.dzprime * np.random.standard_normal()
else:
rE = accuBeam.E[0]
rX = accuBeam.x[0]
rY = accuBeam.y[0]
rZ = accuBeam.z[0]
dtheta = accuBeam.filamentDtheta
dpsi = accuBeam.filamentDpsi
if fixedEnergy:
rE = fixedEnergy
nrep = 0
rep_condition = True
# while length < self.nrays:
while rep_condition:
"""Preparing 4 columns of random numbers
0: Energy
1: Theta / horizontal
2: Psi / vertical
3: Monte-Carlo discriminator"""
rnd_r = np.random.rand(mcRays, 4)
seeded += mcRays
if self.filamentBeam:
rThetaMin = np.max((self.Theta_min, rTheta0 - 1. / self.gamma))
rThetaMax = np.min((self.Theta_max, rTheta0 + 1. / self.gamma))
rTheta = (rnd_r[:, 1]) * (rThetaMax - rThetaMin) +\
rThetaMin
rE *= np.ones(mcRays)
else:
rE = rnd_r[:, 0] * float(self.E_max - self.E_min) +\
self.E_min
rTheta = (rnd_r[:, 1]) * (self.Theta_max - self.Theta_min) +\
self.Theta_min
rPsi = rnd_r[:, 2] * (self.Psi_max - self.Psi_min) +\
self.Psi_min
Intensity, mJss, mJpp = self.build_I_map(rE, rTheta, rPsi)
if self.uniformRayDensity:
seededI += self.nrays * self.xzE
else:
seededI += Intensity.sum() * self.xzE
tmp_max = np.max(Intensity)
if tmp_max > self.Imax:
self.Imax = tmp_max
self.fluxConst = self.Imax * self.xzE
if raycing._VERBOSITY_ > 10:
imax = np.argmax(Intensity)
print(self.Imax, imax, rE[imax], rTheta[imax], rPsi[imax])
if self.uniformRayDensity:
I_pass = slice(None)
npassed = mcRays
else:
I_pass =\
np.where(self.Imax * rnd_r[:, 3] < Intensity)[0]
npassed = len(I_pass)
if npassed == 0:
print('No good rays in this seed!'
' {0} of {1} rays in total so far...'.format(
length, self.nrays))
continue
bot = Beam(npassed, withAmplitudes=withAmplitudes)
bot.state[:] = 1 # good
bot.E[:] = rE[I_pass]
Theta0 = rTheta[I_pass]
Psi0 = rPsi[I_pass]
if not self.filamentBeam:
if self.dxprime > 0:
dtheta = np.random.normal(0, self.dxprime, npassed)
else:
dtheta = 0
if not self.isMPW:
dtheta += np.random.normal(0, 1/self.gamma, npassed)
if self.dzprime > 0:
dpsi = np.random.normal(0, self.dzprime, npassed)
else:
dpsi = 0
bot.a[:] = np.tan(Theta0 + dtheta)
bot.c[:] = np.tan(Psi0 + dpsi)
intensS = (mJss[I_pass] * np.conj(mJss[I_pass])).real
intensP = (mJpp[I_pass] * np.conj(mJpp[I_pass])).real
if self.uniformRayDensity:
sSP = 1.
else:
sSP = intensS + intensP
# as by Walker and by Ellaume; SPECTRA's value is twice smaller:
if self.isMPW:
sigma_r2 = 2 * (CHeVcm/bot.E*10 * self.L0*self.Np) / PI2**2
bot.sourceSIGMAx = np.sqrt(self.dx**2 + sigma_r2)
bot.sourceSIGMAz = np.sqrt(self.dz**2 + sigma_r2)
if self.filamentBeam:
bot.z[:] = rZ
bot.x[:] = rX
bot.y[:] = rY
else:
bot.y[:] = ((np.arccos(Theta0*self.gamma/self.K) / PI) +
np.random.randint(
-int(self.Np), int(self.Np), npassed) -
0.5) * 0.5 * self.L0
bot.x[:] = self.X0 * np.sin(PI2 * bot.y / self.L0) +\
np.random.normal(0., bot.sourceSIGMAx, npassed)
bot.z[:] = np.random.normal(0., bot.sourceSIGMAz, npassed)
bot.Jsp[:] = np.zeros(npassed)
else:
if self.filamentBeam:
bot.z[:] = rZ
bot.x[:] = rX
bot.y[:] = rY
else:
if self.dz > 0:
bot.z[:] = np.random.normal(0., self.dz, npassed)
if self.dx > 0:
R1 = np.random.normal(self.ro*1e3, self.dx, npassed)
else:
R1 = self.ro * 1e3
bot.x[:] = -R1 * np.cos(Theta0) + self.ro*1000.
bot.y[:] = R1 * np.sin(Theta0)
bot.Jsp[:] = np.array(
np.where(sSP,
mJss[I_pass] * np.conj(mJpp[I_pass]) / sSP,
sSP), dtype=complex)
bot.Jss[:] = np.where(sSP, intensS / sSP, sSP)
bot.Jpp[:] = np.where(sSP, intensP / sSP, sSP)
if withAmplitudes:
bot.Es[:] = mJss[I_pass]
bot.Ep[:] = mJpp[I_pass]
if bo is None:
bo = bot
else:
bo.concatenate(bot)
length = len(bo.a)
if raycing._VERBOSITY_ > 0:
print("{0} rays of {1}".format(length, self.nrays))
try:
if self.bl is not None:
if self.bl.flowSource == 'Qook' and\
self.bl.statusSignal is not None:
ptg = (self.bl.statusSignal[1] +
float(length) / float(self.nrays)) /\
self.bl.statusSignal[2]
self.bl.statusSignal[0].emit(
(ptg, self.bl.statusSignal[3]))
except Exception:
pass
if self.filamentBeam:
nrep += 1
rep_condition = nrep < self.nrepmax
else:
rep_condition = length < self.nrays
if self.uniformRayDensity:
rep_condition = False
if raycing._VERBOSITY_ > 0:
sys.stdout.flush()
if length >= self.nrays:
bo.accepted = length * self.fluxConst
bo.acceptedE = bo.E.sum() * self.fluxConst * SIE0
bo.seeded = seeded
bo.seededI = seededI
if length > self.nrays and not self.filamentBeam:
bo.filter_by_index(slice(0, np.int64(self.nrays)))
if self.filamentBeam:
bo.filamentDtheta = dtheta
bo.filamentDpsi = dpsi
norm = np.sqrt(bo.a**2 + 1.0 + bo.c**2)
bo.a /= norm
bo.b /= norm
bo.c /= norm
if self.pitch or self.yaw:
raycing.rotate_beam(bo, pitch=self.pitch, yaw=self.yaw)
if toGlobal: # in global coordinate system:
raycing.virgin_local_to_global(self.bl, bo, self.center)
raycing.append_to_flow(self.shine, [bo],
inspect.currentframe())
return bo
class Wiggler(BendingMagnet):
u"""
Wiggler source. The computation is reasonably fast and thus a GPU
is not required and is not implemented.
"""
hiddenParams = ['B0', 'rho']
def __init__(self, *args, **kwargs):
u"""Parameters are the same as in BendingMagnet except *B0* and *rho*
which are not required and additionally:
*K*: float
Deflection parameter
*period*: float
period length in mm.
*n*: int
Number of periods.
"""
self._K = kwargs.pop('K', 8.446)
self.L0 = kwargs.pop('period', 50)
self.Np = kwargs.pop('n', 40)
name = kwargs.pop('name', 'wiggler')
kwargs['name'] = name
super(Wiggler, self).__init__(*args, **kwargs)
self.needReset = True
@property
def period(self):
return self.L0
@period.setter
def period(self, period):
self.L0 = float(period)
self.needReset = True
# Need to recalculate the integration parameters
@property
def n(self):
return self.Np
@n.setter
def n(self, n):
self.Np = float(n)
self.needReset = True
# Need to recalculate the integration parameters
@property
def K(self):
return self._K
@K.setter
def K(self, K):
self._K = float(K)
self._B = K2B * K / self.L0
self.ro = M0 * C**2 * self.gamma / self.B / E0 / 1e6
self.X0 = 0.5 * K * self.L0 / self.gamma / PI
self.needReset = True
# Need to recalculate the integration parameters
def prefix_save_name(self):
return '2-Wiggler-xrt'
def power_vs_K(self, energy, theta, psi, Ks):
u"""
Calculates *power curve* -- total power in W at given K values (*Ks*).
The power is calculated through the aperture defined by *theta* and
*psi* opening angles within the *energy* range.
Returns a 1D array corresponding to *Ks*.
"""
try:
dtheta, dpsi, dE = \
theta[1] - theta[0], psi[1] - psi[0], energy[1] - energy[0]
except TypeError:
dtheta, dpsi, dE = 1, 1, 1
tmpK = self.K
powers = []
for iK, K in enumerate(Ks):
if raycing._VERBOSITY_ > 10:
print("K={0}, {1} of {2}".format(K, iK+1, len(Ks)))
self.K = K
self.reset()
I0 = self.intensities_on_mesh(energy, theta, psi)[0]
if self.distE == 'BW':
I0 *= 1e3
else: # 'eV'
I0 *= energy[:, np.newaxis, np.newaxis]
power = I0.sum() * dtheta * dpsi * dE * EV2ERG * 1e-7 # [W]
powers.append(power)
self.K = tmpK
return np.array(powers)
class SourceFromField(IntegratedSource):
"""Dedicated class for the sources based on a custom field table."""
def __init__(self, *args, **kwargs):
"""
*customField*: float or str or tuple(fileName, kwargs) or numpy array.
If float, adds a constant longitudinal field.
If str or tuple, expects table of field samples given as an Excel
file or as text file. If given as a tuple or list, the 2nd member
is a key word dictionary for reading Excel by
:meth:`pandas.read_excel()` or reading text file by
:meth:`numpy.loadtxt()`, e.g. ``dict(skiprows=4)`` for skipping the
file header. The file must contain the columns with longitudinal
coordinate in mm, {B_hor,} B_ver {, B_long}, all in T. The field
can be provided as a numpy array with the same structure as the
table from file.
"""
customField = kwargs.pop('customField', None)
super(SourceFromField, self).__init__(*args, **kwargs)
self.spl_kw = {'kind': 'cubic',
'bounds_error': False,
'fill_value': 'extrapolate'}
self.periodicTest = False
self._customField = customField
self.deviceLength = 0
if customField is not None:
if isinstance(customField, (tuple, list)):
fname = customField[0]
readkw = customField[1]
elif isinstance(customField, np.ndarray):
self.customFieldData = customField
fname = None
else:
fname = customField
readkw = {}
if fname:
self.customFieldData = self.read_custom_field(fname, readkw)
else: # Test with periodic field
self.Kx = 0.
self.Ky = 4.4 # 17.274 #1.7
self.phase = 0
self.L0 = 53.96 # 100 #10.
self.Np = 41 # 70 #30
self.quadm = 50
self.gIntervals = 2 # *self.Np
self.wtGrid = np.linspace(-self.L0*self.Np*0.5,
self.L0*self.Np*0.5,
1000*self.Np) # 1000 points per period
self.customFieldData = None
Bx, By, Bz = self._magnetic_field_periodic(self.wtGrid)
self.customFieldData = np.vstack((self.wtGrid, Bx, By, Bz)).T
self.needReset = True
@property
def customField(self):
return self._customField
@customField.setter
def customField(self, customField):
self._customField = customField
if customField is not None:
if isinstance(customField, (tuple, list)):
fname = customField[0]
kwargs = customField[1]
elif isinstance(customField, np.ndarray):
self.customFieldData = customField
else:
fname = customField
kwargs = {}
if fname:
self.customFieldData = self.read_custom_field(fname, kwargs)
else:
self.customFieldData = None
self.needReset = True
def prefix_save_name(self):
return '5-SFF-xrt'
def read_custom_field(self, fname, kwargs={}):
if fname.endswith('.xls') or fname.endswith('.xlsx'):
from pandas import read_excel
data = read_excel(fname, **kwargs).values
else:
data = np.loadtxt(fname, **kwargs)
z = data[:, 0]
B = np.abs(data[:, 1:]).max(axis=1)
self.deviceLength = self._fwhm(z, B)
return data
def _fwhm(self, z, a):
dz = z[1] - z[0]
args = np.argwhere(a >= a.max()*0.5)
return z[np.max(args)] - z[np.min(args)] + dz
def get_sigma_r02(self, E): # linear size
"""Squared sigma_{r0} as by Walker and by Ellaume and
Tanaka and Kitamura J. Synchrotron Rad. 16 (2009) 380–386 (see the
text after Eq(23))"""
return 2 * CHeVcm/E*10 * self.deviceLength / PI2**2
def get_sigmaP_r02(self, E): # angular size
"""Squared sigmaP_{r0}"""
return CHeVcm/E*10 / (2 * self.deviceLength)
def get_SIGMA(self, E, onlyOddHarmonics=True):
sigma_r2 = self.get_sigma_r02(E)
return ((self.dx**2 + sigma_r2)**0.5,
(self.dz**2 + sigma_r2)**0.5)
def _magnetic_field(self, grid=None):
dataz = self.customFieldData[:, 0]
if grid is None:
lenmm = np.abs(dataz[-1] - dataz[0])
self.wtGrid = np.linspace(dataz[0], dataz[-1], int(lenmm*10))
self.BGrid = np.linspace(dataz[0], dataz[-1], 2*len(self.wtGrid)-1)
z = self.BGrid # 'z' in mm
else:
z = grid
dataShape = self.customFieldData.shape
if dataShape[1] == 2:
By = interp1d(dataz, self.customFieldData[:, 1], **self.spl_kw)(z)
Bx = np.zeros_like(By)
Bz = np.zeros_like(By)
elif dataShape[1] == 3:
Bx = interp1d(dataz, self.customFieldData[:, 1], **self.spl_kw)(z)
By = interp1d(dataz, self.customFieldData[:, 2], **self.spl_kw)(z)
Bz = np.zeros_like(By)
elif dataShape[1] == 4:
Bx = interp1d(dataz, self.customFieldData[:, 1], **self.spl_kw)(z)
By = interp1d(dataz, self.customFieldData[:, 2], **self.spl_kw)(z)
Bz = interp1d(dataz, self.customFieldData[:, 3], **self.spl_kw)(z)
else:
print("Unknown file structure.")
raise
return Bx, By, Bz
def _magnetic_field_periodic(self, grid=None):
if grid is None:
dataz = self.customFieldData[:, 0]
lenmm = np.abs(dataz[-1] - dataz[0])
self.wtGrid = np.linspace(dataz[0], dataz[-1], int(lenmm*10))
self.BGrid = np.linspace(dataz[0], dataz[-1], 2*len(self.wtGrid)-1)
z = self.BGrid
else:
z = grid
self.B0x = K2B * self.Kx / self.L0
self.B0y = K2B * self.Ky / self.L0
self.B0z = 0
z = 2*np.pi*z/self.L0
Bx = self.B0x*np.sin(z + self.phase)
By = self.B0y*np.sin(z)
Bz = self.B0z*np.ones_like(Bx)
return Bx, By, Bz
def _sp(self, dim, emcg, w, gamma, ddphi, ddpsi, Bx, By, Bz,
betax, betay, betam, trajx, trajy, trajz, R0=None):
lengamma = 1 if len(np.array(gamma).shape) == 0 else len(gamma)
gS = gamma
if dim == 0:
wS = w
ddphiS = ddphi
ddpsiS = ddpsi
elif dim == 1:
wS = w[:, np.newaxis]
ddphiS = ddphi[:, np.newaxis]
ddpsiS = ddpsi[:, np.newaxis]
if lengamma > 1:
gS = gamma[:, np.newaxis]
# elif dim == 3:
# wS = w[:, :, :, np.newaxis]
# ddphiS = ddphi[:, :, :, np.newaxis]
# ddpsiS = ddpsi[:, :, :, np.newaxis]
# if lengamma > 1:
# gS = gamma[:, :, :, np.newaxis]
dirx = ddphiS
diry = ddpsiS
dirz = 1. - 0.5*(ddphiS**2 + ddpsiS**2)
revgamma2 = 1./gS**2
if self.filamentBeam:
wc = wS * E2WC / betam
betax_ = betax
betay_ = betay
trajx_ = trajx
trajy_ = trajy
trajz_ = trajz
else:
wc = wS*E2WC/(1. + (betam*EMC**2 - 0.5)*revgamma2)
betax_ = emcg*betax
betay_ = emcg*betay
trajx_ = emcg*trajx
trajy_ = emcg*trajy
trajz_ = self.tg*(1.-0.5*revgamma2) + EMC**2*revgamma2*trajz
rloc = np.array([trajx_, trajy_, trajz_])
if R0 is not None:
if len(R0.shape) < 2:
R0 = np.expand_dims(R0, 1)
dr = R0 - rloc
dist = np.linalg.norm(dr, axis=0)
sinr0z = np.sin(wc*R0[2, :])
cosr0z = np.cos(wc*R0[2, :])
rdrz = 1./dr[2, :]
drs = (dr[0, :]**2+dr[1, :]**2)*rdrz
LRS = 0.5*drs - 0.125*drs**2*rdrz + 0.0625*drs**3*rdrz**2
sinzloc = np.sin(wc * (self.tg - trajz_))
coszloc = np.cos(wc * (self.tg - trajz_))
sindrs = np.sin(wc * LRS)
cosdrs = np.cos(wc * LRS)
eucosx = (-sinr0z*sinzloc*cosdrs - sinr0z*coszloc*sindrs -
cosr0z*sinzloc*sindrs + cosr0z*coszloc*cosdrs)
eucosy = (-sinr0z*sinzloc*sindrs + sinr0z*coszloc*cosdrs +
cosr0z*sinzloc*cosdrs + cosr0z*coszloc*sindrs)
else:
phz = wc*(self.tg - dirz*trajz_)
phxy = wc*(dirx*trajx_ + diry*trajy_)
sinphz, cosphz = np.sin(phz), np.cos(phz)
sinphxy, cosphxy = np.sin(phxy), np.cos(phxy)
eucosx = sinphz*cosphxy - cosphz*sinphxy
eucosy = cosphz*cosphxy + sinphz*sinphxy
eucos = eucosx + 1j*eucosy
if R0 is not None:
direction = dr/dist
dirx = direction[0, :]
diry = direction[1, :]
dirz = direction[2, :]
smTerm = 1./gS**2 + betax_**2 + betay_**2
betaz = 1 - 0.5*smTerm + 0.125*smTerm**2
betaPx = betay_*Bz - betaz*By
betaPy = -betax_*Bz + betaz*Bx
betaPz = betax_*By - betay_*Bx
rkrel = 1./(1. - dirx*betax_ - diry*betay_ - dirz*betaz)
eucos *= self.ag * rkrel**2
bnx = dirx - betax_
bny = diry - betay_
bnz = dirz - betaz
dirDotBetaP = dirx*betaPx + diry*betaPy + dirz*betaPz
dirDotDmB = dirx*bnx + diry*bny + dirz*bnz
Bsr = np.sum(eucos*emcg*(bnx*dirDotBetaP - betaPx*dirDotDmB), axis=dim)
Bpr = np.sum(eucos*emcg*(bny*dirDotBetaP - betaPy*dirDotDmB), axis=dim)
return Bsr, Bpr
# @profile
def _sp_sum(self, emcg, w, gamma, ddphi, ddpsi, Bx, By, Bz,
betax, betay, betam, trajx, trajy, trajz, R0=None):
Bsr = np.complex128(0)
Bpr = np.complex128(0)
gamma_ = gamma[0] if self.filamentBeam else gamma
dirx = ddphi
diry = ddpsi
dirz = 1. - 0.5*(ddphi**2 + ddpsi**2)
revgamma2 = 1./gamma_**2
wc = w * E2WC / (1. + (betam*EMC**2 - 0.5)*revgamma2) if\
self.filamentBeam else w * E2WC / betam
if R0 is not None:
sinr0z, cosr0z = np.sin(wc*R0[2, :]), np.cos(wc*R0[2, :])
for i in range(len(self.tg)):
if self.filamentBeam:
betax_ = betax[i]
betay_ = betay[i]
trajx_ = trajx[i]
trajy_ = trajy[i]
trajz_ = trajz[i]
else:
betax_ = emcg*betax[i]
betay_ = emcg*betay[i]
trajx_ = emcg*trajx[i]
trajy_ = emcg*trajy[i]
trajz_ = self.tg[i]*(1.-0.5*revgamma2) +\
EMC**2*revgamma2*trajz[i]
if R0 is not None:
rloc = np.array([trajx_, trajy_, trajz_])
if len(rloc.shape) < 2:
rloc = np.expand_dims(rloc, 1)
dr = R0 - rloc
dist = np.linalg.norm(dr, axis=0)
rdrz = 1./dr[2, :]
drs = (dr[0, :]**2+dr[1, :]**2)*rdrz
LRS = 0.5*drs - 0.125*drs**2*rdrz + 0.0625*drs**3*rdrz**2
sinzloc = np.sin(wc * (self.tg[i] - trajz_))
coszloc = np.cos(wc * (self.tg[i] - trajz_))
sindrs = np.sin(wc * LRS)
cosdrs = np.cos(wc * LRS)
eucosx = (-sinr0z*sinzloc*cosdrs - sinr0z*coszloc*sindrs -
cosr0z*sinzloc*sindrs + cosr0z*coszloc*cosdrs)
eucosy = (-sinr0z*sinzloc*sindrs + sinr0z*coszloc*cosdrs +
cosr0z*sinzloc*cosdrs + cosr0z*coszloc*sindrs)
else:
phz = wc*(self.tg[i] - dirz*trajz_)
phxy = wc*(dirx*trajx_ + diry*trajy_)
sinphz, cosphz = np.sin(phz), np.cos(phz)
sinphxy, cosphxy = np.sin(phxy), np.cos(phxy)
eucosx = sinphz*cosphxy - cosphz*sinphxy
eucosy = cosphz*cosphxy + sinphz*sinphxy
eucos = eucosx + 1j*eucosy
if R0 is not None:
direction = dr/dist
dirx = direction[0, :]
diry = direction[1, :]
dirz = direction[2, :]
smTerm = revgamma2 + betax_**2 + betay_**2
betaz = 1. - 0.5*smTerm + 0.125*smTerm**2
betaPx = betay_*Bz[i] - betaz*By[i]
betaPy = -betax_*Bz[i] + betaz*Bx[i]
betaPz = betax_*By[i] - betay_*Bx[i]
rkrel = 1./(1. - dirx*betax_ - diry*betay_ - dirz*betaz)
eucos *= self.ag[i] * rkrel**2
bnx = dirx - betax_
bny = diry - betay_
bnz = dirz - betaz
dirDotBetaP = dirx*betaPx + diry*betaPy + dirz*betaPz
dirDotDmB = dirx*bnx + diry*bny + dirz*bnz
Bsr += eucos*(bnx*dirDotBetaP - betaPx*dirDotDmB)
Bpr += eucos*(bny*dirDotBetaP - betaPy*dirDotDmB)
return Bsr*emcg, Bpr*emcg
def build_I_map(self, w, ddtheta, ddpsi, dh=None, dg=None):
if self.needReset:
self.reset()
useCL = False
if isinstance(w, np.ndarray):
if w.shape[0] > 1:
useCL = True
if (self.cl_ctx is None) or not useCL:
return \
self._build_I_map_custom_field_conv(w, ddtheta, ddpsi, dh, dg)
else:
return self._build_I_map_custom_field_CL(w, ddtheta, ddpsi, dh, dg)
def _build_integration_grid(self):
quad_rule = np.polynomial.legendre.leggauss if self._useGauLeg else\
self._clenshaw_curtis
tg_n, ag_n = quad_rule(self.quadm)
if isinstance(self.customFieldData, (float, int)) or \
self.customFieldData is None: # TODO: this is not 100% correct
dataz = [-0.5*self.L0*self.Np, 0.5*self.L0*self.Np]
else:
dataz = self.customFieldData[:, 0]
dstep = (dataz[-1] - dataz[0]) / float(self.gIntervals)
dI = np.arange(0.5 * dstep + dataz[0], dataz[-1], dstep)
self.tg = (dI[:, None]+0.5*dstep*tg_n).ravel()
self.ag = (dI[:, None]*0+ag_n).ravel()
self.dstep = dstep
def build_trajectory(self, Bx, By, Bz, gamma=None):
if self.cl_ctx is None:
return self._build_trajectory_conv(Bx, By, Bz, gamma)
else:
return self._build_trajectory_CL(Bx, By, Bz, gamma)
def _build_trajectory_CL(self, Bx, By, Bz, gamma=None):
if gamma is None:
gamma = self.gamma
scalarArgs = [np.int32(len(self.wtGrid))] # jend
if self.filamentBeam:
scalarArgs.extend([self.cl_precisionF(gamma)])
nonSlicedROArgs = [self.cl_precisionF(self.wtGrid), # Integration grid
self.cl_precisionF(Bx), # Mangetic field
self.cl_precisionF(By), # components on the
self.cl_precisionF(Bz)] # Runge-Kutta grid
nonSlicedRWArgs = [np.zeros_like(self.wtGrid), # beta.x
np.zeros_like(self.wtGrid), # beta.y
np.zeros_like(self.wtGrid), # beta.z average
np.zeros_like(self.wtGrid), # traj.x
np.zeros_like(self.wtGrid), # traj.y
np.zeros_like(self.wtGrid)] # traj.z
clKernel = 'get_trajectory_filament' if self.filamentBeam\
else 'get_trajectory'
betax, betay, betazav, trajx, trajy, trajz = self.ucl.run_parallel(
clKernel, scalarArgs, None, nonSlicedROArgs,
None, nonSlicedRWArgs, 1)
betaxTg = interp1d(self.wtGrid, betax, **self.spl_kw)(self.tg)
betayTg = interp1d(self.wtGrid, betay, **self.spl_kw)(self.tg)
trajxTg = interp1d(self.wtGrid, trajx, **self.spl_kw)(self.tg)
trajyTg = interp1d(self.wtGrid, trajy, **self.spl_kw)(self.tg)
trajzTg = interp1d(self.wtGrid, trajz, **self.spl_kw)(self.tg)
return betaxTg, betayTg, [betazav[-1]], trajxTg, trajyTg, trajzTg
def _build_trajectory_conv(self, Bx, By, Bz, gamma=None):
def f_beta(B, beta):
return emcg*np.array((beta[1]*B[2]-B[1], B[0] - beta[0]*B[2]))
def f_traj(beta):
if self.filamentBeam:
smTerm = 1./gamma**2 + beta[0]**2 + beta[1]**2
betaz = 1.-0.5*smTerm-0.125*smTerm**2
else:
betaz = -0.5*(beta[0]**2 + beta[1]**2)
return np.array((beta[0], beta[1], betaz))
def next_beta_rk(iB, beta):
k1beta = rkStep * f_beta([Bx[iB], By[iB], Bz[iB]],
beta)
k2beta = rkStep * f_beta([Bx[iB+1], By[iB+1], Bz[iB+1]],
beta + 0.5*k1beta)
k3beta = rkStep * f_beta([Bx[iB+1], By[iB+1], Bz[iB+1]],
beta + 0.5*k2beta)
k4beta = rkStep * f_beta([Bx[iB+2], By[iB+2], Bz[iB+2]],
beta + k3beta)
return beta + (k1beta + 2*k2beta + 2*k3beta + k4beta)/6.
def next_traj_rk(iB, beta, traj):
k1beta = rkStep * f_beta([Bx[iB], By[iB], Bz[iB]], beta)
k1traj = rkStep * f_traj(beta)
k2beta = rkStep * f_beta([Bx[iB+1], By[iB+1], Bz[iB+1]],
beta + 0.5*k1beta)
k2traj = rkStep * f_traj(beta + 0.5*k1beta)
k3beta = rkStep * f_beta([Bx[iB+1], By[iB+1], Bz[iB+1]],
beta + 0.5*k2beta)
k3traj = rkStep * f_traj(beta + 0.5*k2beta)
k4beta = rkStep * f_beta([Bx[iB+2], By[iB+2], Bz[iB+2]],
beta + k3beta)
k4traj = rkStep * f_traj(beta + k3beta)
return (beta + (k1beta + 2*k2beta + 2*k3beta + k4beta)/6.,
traj + (k1traj + 2*k2traj + 2*k3traj + k4traj)/6.)
if gamma is None:
gamma = np.array(self.gamma)
emcg = SIE0 / SIM0 / C / 10. / gamma if self.filamentBeam else 1.
beta_next = np.zeros(2)
beta0 = np.zeros(2)
betam_int = 0
for i in range(len(self.wtGrid)-1):
rkStep = self.wtGrid[i+1] - self.wtGrid[i]
beta_next = next_beta_rk(2*i, beta_next)
beta0 += rkStep * beta_next
beta0 /= -(self.wtGrid[-1] - self.wtGrid[0])
beta_next = np.copy(beta0)
traj_next = np.zeros(3)
traj0 = np.zeros(3)
for i in range(len(self.wtGrid)-1):
rkStep = self.wtGrid[i+1] - self.wtGrid[i]
beta_next, traj_next = next_traj_rk(2*i, beta_next, traj_next)
traj0 += rkStep * traj_next
if self.filamentBeam:
betam_int += rkStep * np.sqrt(
1. - 1./gamma**2 - beta_next[0]**2 - beta_next[1]**2)
else:
betam_int += beta_next[0]**2 + beta_next[1]**2
traj0 /= -(self.wtGrid[-1] - self.wtGrid[0])
beta_next = np.copy(beta0)
traj_next = np.copy(traj0)
if self.filamentBeam:
betam_int /= -(self.wtGrid[-1] - self.wtGrid[0])
else:
betam_int *= -0.5/(len(self.wtGrid)-1)
betax = [beta0[0]]
betay = [beta0[1]]
trajx = [traj0[0]]
trajy = [traj0[1]]
trajz = [traj0[2]]
for i in range(len(self.wtGrid)-1):
rkStep = self.wtGrid[i+1] - self.wtGrid[i]
beta_next, traj_next = next_traj_rk(2*i, beta_next, traj_next)
betax.append(beta_next[0])
betay.append(beta_next[1])
trajx.append(traj_next[0])
trajy.append(traj_next[1])
trajz.append(traj_next[2])
betaxTg = interp1d(self.wtGrid, betax, **self.spl_kw)(self.tg)
betayTg = interp1d(self.wtGrid, betay, **self.spl_kw)(self.tg)
trajxTg = interp1d(self.wtGrid, trajx, **self.spl_kw)(self.tg)
trajyTg = interp1d(self.wtGrid, trajy, **self.spl_kw)(self.tg)
trajzTg = interp1d(self.wtGrid, trajz, **self.spl_kw)(self.tg)
return betaxTg, betayTg, [betam_int], trajxTg, trajyTg, trajzTg
def build_trajectory_periodic(self, Bx, By, Bz, gamma=None):
if gamma is None:
gamma = self.gamma
gamma2 = gamma**2
betam = 1. - (1. + 0.5*self.Kx**2 + 0.5*self.Ky**2) / 2. / gamma2
self.wu = PI / self.L0 / gamma2 * \
(2*gamma2 - 1 - 0.5*self.Kx**2 - 0.5*self.Ky**2) / E2WC
z = 2*np.pi*self.tg/self.L0
tgw = self.L0 / 2. / np.pi
betax = self.Ky / gamma * np.cos(z)
betay = -self.Kx / gamma * np.cos(z + self.phase)
trajx = tgw * self.Ky / gamma * np.sin(z)
trajy = -tgw * self.Kx / gamma * np.sin(z + self.phase)
trajz = tgw * (betam*z - 0.125/gamma**2 *
(self.Ky**2 * np.sin(2*z) +
self.Kx**2 * np.sin(2*(z + self.phase))))
return betax, betay, [betam], trajx, trajy, trajz
def _build_I_map_custom_field_CL(
self, w, ddtheta, ddpsi, harmonic=None, dgamma=None):
NRAYS = 1 if len(np.array(w).shape) == 0 else len(w)
gamma = self.gamma
if self.eEspread > 0:
if dgamma is not None:
gamma += dgamma
else:
sz = 1 if self.filamentBeam else NRAYS
gamma += gamma * self.eEspread * np.random.normal(size=sz)
gamma = gamma * np.ones(NRAYS, dtype=self.cl_precisionF)
scalarArgs = [] # R0
R0 = self.R0 if self.R0 is not None else 0
if self.customFieldData is not None:
Bx, By, Bz = self._magnetic_field()
else:
Bx, By, Bz = self._magnetic_field_periodic()
if self.customFieldData is not None:
betax, betay, betazav, trajx, trajy, trajz =\
self.build_trajectory(Bx, By, Bz)
Bxt, Byt, Bzt = self._magnetic_field(self.tg)
else:
betax, betay, betazav, trajx, trajy, trajz =\
self.build_trajectory_periodic(Bx, By, Bz)
Bxt, Byt, Bzt = self._magnetic_field_periodic(self.tg)
emcg0 = EMC/gamma[0]
if self.filamentBeam:
self.beta = [betax, betay]
self.trajectory = [trajx, trajy, trajz]
else:
self.beta = [betax*emcg0, betay*emcg0]
self.trajectory = [
trajx*emcg0, trajy*emcg0,
self.tg*(1.-0.5/gamma[0]**2) + trajz*EMC**2/gamma[0]**2]
betam = betazav[-1]
ab = 0.5 / np.pi / betam
if self.filamentBeam:
scalarArgsTest = [np.int32(len(self.tg)),
self.cl_precisionF(emcg0),
self.cl_precisionF(1./gamma[0]**2),
self.cl_precisionF(R0),
self.cl_precisionF(w[0]*E2WC/betam)]
slicedROArgs = [self.cl_precisionF(ddtheta), # Theta
self.cl_precisionF(ddpsi)] # Psi
nonSlicedROArgs = [self.cl_precisionF(self.tg), # Integration grid
self.cl_precisionF(self.ag), # Intn weights
self.cl_precisionF(Bxt), # Mangetic field
self.cl_precisionF(Byt), # components on the
self.cl_precisionF(Bzt), # CC grid
self.cl_precisionF(betax), # Components of the
self.cl_precisionF(betay), # velosity and
self.cl_precisionF(trajx), # trajectory of the
self.cl_precisionF(trajy), # electron on the
self.cl_precisionF(trajz)] # CC grid
slicedRWArgs = [np.zeros(NRAYS, dtype=self.cl_precisionC), # Is
np.zeros(NRAYS, dtype=self.cl_precisionC)] # Ip
clKernel = 'custom_field_filament'
Is_local, Ip_local = self.ucl.run_parallel(
clKernel, scalarArgsTest, slicedROArgs, nonSlicedROArgs,
slicedRWArgs, None, NRAYS)
else:
ab = 0.5 / np.pi / (1. - 0.5/gamma**2 + betam*EMC**2/gamma**2)
scalarArgs.extend([np.int32(len(self.tg)), # jend
self.cl_precisionF(betam),
self.cl_precisionF(self.R0)])
slicedROArgs = [self.cl_precisionF(gamma), # gamma
self.cl_precisionF(w), # Energy
self.cl_precisionF(ddtheta), # Theta
self.cl_precisionF(ddpsi)] # Psi
nonSlicedROArgs = [self.cl_precisionF(self.tg), # Integration grid
self.cl_precisionF(self.ag), # Intn weights
self.cl_precisionF(Bxt), # Mangetic field
self.cl_precisionF(Byt), # components on the
self.cl_precisionF(Bzt), # CC grid
self.cl_precisionF(betax), # Components of the
self.cl_precisionF(betay), # velosity and
self.cl_precisionF(trajx), # trajectory of the
self.cl_precisionF(trajy), # electron on the
self.cl_precisionF(trajz)] # CC grid
slicedRWArgs = [np.zeros(NRAYS, dtype=self.cl_precisionC), # Is
np.zeros(NRAYS, dtype=self.cl_precisionC)] # Ip
clKernel = 'custom_field'
Is_local, Ip_local = self.ucl.run_parallel(
clKernel, scalarArgs, slicedROArgs, nonSlicedROArgs,
slicedRWArgs, None, NRAYS)
bwFact = 0.001 if self.distE == 'BW' else 1./w
Amp2Flux = FINE_STR * bwFact * self.eI / SIE0
integralField = np.abs(Is_local)**2 + np.abs(Ip_local)**2
if self.convergenceSearchFlag:
return np.abs(np.sqrt(integralField) * 0.5 * self.dstep)
else:
return (Amp2Flux * 0.25 * self.dstep**2 * ab**2 * integralField,
np.sqrt(Amp2Flux) * Is_local * 0.5 * self.dstep * ab,
np.sqrt(Amp2Flux) * Ip_local * 0.5 * self.dstep * ab)
def _build_I_map_custom_field_conv(self, w, ddtheta, ddpsi, harmonic=None,
dgamma=None):
NRAYS = 1 if len(np.array(w).shape) == 0 else len(w)
gamma = self.gamma
if self.eEspread > 0:
if dgamma is not None:
gamma += dgamma
else:
sz = 1 if self.filamentBeam else NRAYS
gamma += gamma * self.eEspread * np.random.normal(size=sz)
gamma = gamma * np.ones(NRAYS)
R0 = self.R0 if self.R0 is not None else 0
if self.customFieldData is not None and not self.periodicTest:
Bx, By, Bz = self._magnetic_field()
else:
Bx, By, Bz = self._magnetic_field_periodic()
if self.customFieldData is not None and not self.periodicTest:
betax, betay, betazav, trajx, trajy, trajz =\
self.build_trajectory(Bx, By, Bz)
# betax3, betay3, betazav3, trajx3, trajy3, trajz3 =\
# self.build_trajectory_conv(Bx, By, Bz, gamma[0])
Bxt, Byt, Bzt = self._magnetic_field(self.tg)
else:
betax, betay, betazav, trajx, trajy, trajz =\
self.build_trajectory_periodic(Bx, By, Bz)
Bxt, Byt, Bzt = self._magnetic_field_periodic(self.tg)
self.beta = [betax, betay]
self.trajectory = [trajx, trajy, trajz]
betam = betazav[-1]
ab = 0.5 / np.pi / betam if self.filamentBeam else\
0.5 / np.pi / (1. - 0.5/gamma**2 + betam*EMC**2/gamma**2)
emcg = SIE0 / SIM0 / C / 10. / gamma
if self.R0:
R0v = np.array(
(np.tan(ddtheta), np.tan(ddpsi), np.ones_like(ddpsi)))
# R0n = np.linalg.norm(R0v, axis=0) # Only for spherical screen
R0v *= R0 # /R0n
else:
R0v = None
if NRAYS > 10: # sum along the integration grid in a loop
Is_local, Ip_local = self._sp_sum(
emcg, w, gamma, ddtheta, ddpsi, Bxt, Byt, Bzt,
betax, betay, betam, trajx, trajy, trajz, R0v)
else: # Convergence only
dim = len(np.array(w).shape)
Is_local, Ip_local = self._sp(
dim, emcg, w, gamma, ddtheta, ddpsi, Bxt, Byt, Bzt,
betax, betay, betam, trajx, trajy, trajz, R0v)
bwFact = 0.001 if self.distE == 'BW' else 1./w
Amp2Flux = FINE_STR * bwFact * self.eI / SIE0
integralField = np.abs(Is_local)**2 + np.abs(Ip_local)**2
if self.convergenceSearchFlag:
return np.abs(np.sqrt(integralField) * 0.5 * self.dstep)
else:
return (Amp2Flux * 0.25 * self.dstep**2 * ab**2 * integralField,
np.sqrt(Amp2Flux) * Is_local * 0.5 * self.dstep * ab,
np.sqrt(Amp2Flux) * Ip_local * 0.5 * self.dstep * ab)
class Undulator(IntegratedSource):
u"""
Undulator source. The computation is volumnous and thus a decent GPU is
highly recommended.
"""
def __init__(self, *args, **kwargs):
"""
*period*, *n*:
Magnetic period (mm) length and number of periods.
*K*, *Kx*, *Ky*: float
Deflection parameter for the vertical field or for an elliptical
undulator.
*B0x*, *B0y*: float
Maximum magnetic field. If both K and B provided at the init, K
value will be used.
*phaseDeg*: float
Phase difference between horizontal and vertical magnetic arrays.
Used in the elliptical case where it should be equal to 90 or -90.
*taper*: tuple(dgap(mm), gap(mm))
Linear variation in undulator gap. None if tapering is not used.
Pyopencl is recommended for tapering.
*targetE*: a tuple (Energy, harmonic{, isElliptical})
Can be given for automatic calculation of the deflection parameter.
If isElliptical is not given, it is assumed as False (as planar).
*xPrimeMaxAutoReduce*, *zPrimeMaxAutoReduce*: bool
Whether to reduce too large angular ranges down to the feasible
values in order to improve efficiency. It is highly recommended to
keep them True.
"""
period = kwargs.pop('period', 50)
n = kwargs.pop('n', 50)
K = kwargs.pop('K', 0)
Kx = kwargs.pop('Kx', 0)
Ky = kwargs.pop('Ky', 0)
B0x = kwargs.pop('B0x', 0)
B0y = kwargs.pop('B0y', 0)
phaseDeg = kwargs.pop('phaseDeg', 0)
taper = kwargs.pop('taper', None)
targetE = kwargs.pop('targetE', None)
xPrimeMaxAutoReduce = kwargs.pop('xPrimeMaxAutoReduce', True)
zPrimeMaxAutoReduce = kwargs.pop('zPrimeMaxAutoReduce', True)
super(Undulator, self).__init__(*args, **kwargs)
self.L0 = period
self.Np = n
if targetE is not None:
self._targetE = targetE
Ky = np.sqrt(targetE[1] * 8 * PI * self.gamma2 /
period / targetE[0] / E2WC - 2)
if raycing._VERBOSITY_ > 10:
print("K = {0}".format(Ky))
if np.isnan(Ky):
raise ValueError("Cannot calculate K, try to increase the "
"undulator harmonic number")
if len(targetE) > 2:
isElliptical = targetE[2]
if isElliptical:
Kx = Ky / 2**0.5
if raycing._VERBOSITY_ > 10:
print("Kx = Ky = {0}".format(Kx))
phaseDeg = np.degrees(raycing.auto_units_angle(phaseDeg)) if\
isinstance(phaseDeg, raycing.basestring) else phaseDeg
self.phase = np.radians(phaseDeg)
if taper is not None:
self.taper = taper[0] / self.Np / self.L0 / taper[1]
self.gap = taper[1]
else:
self.taper = None
self.Kbase = True
if Kx == 0 and Ky == 0:
if abs(K) > 0:
self.Kx = 0
self.K = K
elif B0x == 0 and B0y == 0:
self.Kx = 0
self.K = 1
raise("Please define either K or B0!")
else:
self.Kbase = False
self.B0y = B0y
self.B0x = B0x
else:
self.Kx = Kx
self.Ky = Ky
self.xPrimeMaxAutoReduce = xPrimeMaxAutoReduce
self.zPrimeMaxAutoReduce = zPrimeMaxAutoReduce
if self.R0 is not None: # Required for convergence
self.xPrimeMaxAutoReduce = True
self.zPrimeMaxAutoReduce = True
if xPrimeMaxAutoReduce:
K0 = self.Ky if abs(self.Ky) > 0 else 2.
xPrimeMaxTmp = K0 / self.gamma
if abs(self._xPrimeMax) > abs(xPrimeMaxTmp):
print("Reducing xPrimeMax from {0} down to {1} mrad".format(
self._xPrimeMax * 1e3, xPrimeMaxTmp * 1e3))
self._xPrimeMax = xPrimeMaxTmp
if abs(self._xPrimeMin) > abs(xPrimeMaxTmp):
print("Reducing xPrimeMin from {0} down to {1} mrad".format(
self._xPrimeMin * 1e3, xPrimeMaxTmp * 1e3))
self._xPrimeMin = np.sign(self._xPrimeMin) * xPrimeMaxTmp
if zPrimeMaxAutoReduce:
K0 = self.Kx if abs(self.Kx) > 0 else 2.
zPrimeMaxTmp = K0 / self.gamma
if abs(self._zPrimeMax) > abs(zPrimeMaxTmp):
print("Reducing zPrimeMax from {0} down to {1} mrad".format(
self._zPrimeMax * 1e3, zPrimeMaxTmp * 1e3))
self._zPrimeMax = zPrimeMaxTmp
if abs(self._zPrimeMin) > abs(zPrimeMaxTmp):
print("Reducing xPrimeMin from {0} down to {1} mrad".format(
self._zPrimeMin * 1e3, zPrimeMaxTmp * 1e3))
self._zPrimeMin = np.sign(self._zPrimeMin) * zPrimeMaxTmp
@property
def period(self):
return self.L0
@period.setter
def period(self, period):
self.L0 = float(period)
if hasattr(self, 'Kbase'):
if self.Kbase:
self._B0x = K2B * self.Kx / self.L0
self._B0y = K2B * self.Ky / self.L0
else:
self._Kx = self.B0x * self.L0 / K2B
self._Ky = self.B0y * self.L0 / K2B
self.report_E1()
self.needReset = True
# Need to recalculate the integration parameters
@property
def n(self):
return self.Np
@n.setter
def n(self, n):
self.Np = float(n)
self.needReset = True
# Need to recalculate the integration parameters
@property
def targetE(self):
return self._targetE
@targetE.setter
def targetE(self, targetE):
self._targetE = targetE
Ky = np.sqrt(targetE[1] * 8 * PI * self.gamma2 /
self.L0 / targetE[0] / E2WC - 2)
Kx = 0
if raycing._VERBOSITY_ > 10:
print("K = {0}".format(Ky))
if np.isnan(Ky):
raise ValueError("Cannot calculate K, try to increase the "
"undulator harmonic number")
if len(targetE) > 2:
isElliptical = targetE[2]
if isElliptical:
Kx = Ky / 2**0.5
if raycing._VERBOSITY_ > 10:
print("Kx = Ky = {0}".format(Kx))
self._Kx = Kx
self._Ky = Ky
self.report_E1()
self.needReset = True
# Need to recalculate the integration parameters
@property
def Kx(self):
return self._Kx
@Kx.setter
def Kx(self, Kx):
self._Kx = float(Kx)
self._B0x = K2B * Kx / self.L0
if hasattr(self, '_Ky'):
self.report_E1()
self.needReset = True
# Need to recalculate the integration parameters
@property
def Ky(self):
return self._Ky
@Ky.setter
def Ky(self, Ky):
self._Ky = float(Ky)
self._K = float(Ky)
self._B0y = K2B * Ky / self.L0
if hasattr(self, '_Kx'):
self.report_E1()
self.needReset = True
# Need to recalculate the integration parameters
@property
def K(self):
return self._Ky
@K.setter
def K(self, K):
self._Ky = float(K)
self._B0y = K2B * K / self.L0
if hasattr(self, '_Kx'):
self.report_E1()
self.needReset = True
# Need to recalculate the integration parameters
@property
def B0x(self):
return self._B0x
@B0x.setter
def B0x(self, B0x):
self._B0x = float(B0x)
self._Kx = B0x * self.L0 / K2B
if hasattr(self, '_Ky'):
self.report_E1()
self.needReset = True
# Need to recalculate the integration parameters
@property
def B0y(self):
return self._B0y
@B0y.setter
def B0y(self, B0y):
self._B0y = float(B0y)
self._Ky = B0y * self.L0 / K2B
if hasattr(self, '_Kx'):
self.report_E1()
self.needReset = True
# Need to recalculate the integration parameters
def report_E1(self):
wu = PI / self.L0 / self.gamma2 * \
(2*self.gamma2 - 1. - 0.5*self.Kx**2 - 0.5*self.Ky**2) / E2WC
E1 = 2*wu*self.gamma2 / (1 + 0.5*self.Kx**2 + 0.5*self.Ky**2)
if raycing._VERBOSITY_ > 10:
print("E1 = {0}".format(E1))
print("E3 = {0}".format(3*E1))
print("B0 = {0}".format(self.B0y))
if self.taper is not None:
print("dB/dx/B = {0}".format(
-PI * self.gap * self.taper / self.L0 * 1e3))
self.E1 = E1
def prefix_save_name(self):
if self.Kx > 0:
return '4-elu-xrt'
else:
return '1-und-xrt'
def tuning_curves(self, energy, theta, psi, harmonics, Ks):
"""Calculates *tuning curves* -- maximum flux of given *harmomonics* at
given K values (*Ks*). The flux is calculated through the aperture
defined by *theta* and *psi* opening angles (1D arrays).
Returns two 2D arrays: energy positions and flux values. The rows
correspond to *Ks*, the colums correspond to *harmomonics*.
"""
try:
dtheta, dpsi = theta[1] - theta[0], psi[1] - psi[0]
except TypeError:
dtheta, dpsi = 1, 1
tunesE, tunesF = [], []
tmpKy = self.Ky
for iK, K in enumerate(Ks):
if raycing._VERBOSITY_ >= 10:
print("Calculation {1} of {2}, K={0}".format(K, iK+1, len(Ks)))
self.Ky = K
I0 = self.intensities_on_mesh(energy, theta, psi, harmonics)[0]
flux = I0.sum(axis=(1, 2)) * dtheta * dpsi
argm = np.argmax(flux, axis=0)
fluxm = np.max(flux, axis=0)
tunesE.append(energy[argm] / 1000.)
tunesF.append(fluxm)
self.Ky = tmpKy
return np.array(tunesE).T, np.array(tunesF).T
def power_vs_K(self, energy, theta, psi, harmonics, Ks):
"""Calculates *power curve* -- total power in W for all *harmomonics*
at given K values (*Ks*). The power is calculated through the aperture
defined by *theta* and *psi* opening angles within the *energy* range.
The result of this numerical integration depends on the used angular
and energy meshes; you should check convergence. Internally, electron
beam energy spread is also sampled by adding another dimension to the
intensity array and making it 5-dimensional. You therefore may want to
set energy spread to zero, it doesn’t affect the resulting power
anyway.
Returns a 1D array corresponding to *Ks*.
"""
try:
dtheta, dpsi, dE = \
theta[1] - theta[0], psi[1] - psi[0], energy[1] - energy[0]
except TypeError:
dtheta, dpsi, dE = 1, 1, 1
tmpKy = self.Ky
powers = []
for iK, K in enumerate(Ks):
if raycing._VERBOSITY_ >= 10:
print("Calculation {1} of {2}, K={0}".format(K, iK+1, len(Ks)))
self.Ky = K
I0 = self.intensities_on_mesh(energy, theta, psi, harmonics)[0]
if self.distE == 'BW':
I0 *= 1e3
else: # 'eV'
I0 *= energy[:, np.newaxis, np.newaxis, np.newaxis]
power = I0.sum() * dtheta * dpsi * dE * EV2ERG * 1e-7 # [W]
powers.append(power)
self.Ky = tmpKy
return np.array(powers)
def _build_integration_grid(self):
quad_rule = np.polynomial.legendre.leggauss if self._useGauLeg else\
self._clenshaw_curtis
self.tg_n, self.ag_n = quad_rule(self.quadm)
dstep = 2 * PI / float(self.gIntervals)
dI = np.arange(-PI + 0.5 * dstep, PI, dstep)
self.tg = (dI[:, None]+0.5*dstep*self.tg_n).ravel()
self.ag = (dI[:, None]*0+self.ag_n).ravel()
self.sintg = np.sin(self.tg)
self.costg = np.cos(self.tg)
self.sintgph = np.sin(self.tg + self.phase)
self.costgph = np.cos(self.tg + self.phase)
self.dstep = dstep
# @profile
def _sp(self, dim, ww1, w, wu, gamma, ddphi, ddpsi, R0=None):
lengamma = 1 if len(np.array(gamma).shape) == 0 else len(gamma)
gS = gamma
if dim == 0:
ww1S = ww1
wS, wuS = w, wu
ddphiS = ddphi
ddpsiS = ddpsi
elif dim == 1:
ww1S = ww1[:, np.newaxis]
wS = w[:, np.newaxis]
wuS = wu[:, np.newaxis]
ddphiS = ddphi[:, np.newaxis]
ddpsiS = ddpsi[:, np.newaxis]
if lengamma > 1:
gS = gamma[:, np.newaxis]
# elif dim == 3:
# ww1S = ww1[:, :, :, np.newaxis]
# wS, wuS = w[:, :, :, np.newaxis], wu[:, :, :, np.newaxis]
# ddphiS = ddphi[:, :, :, np.newaxis]
# ddpsiS = ddpsi[:, :, :, np.newaxis]
# if lengamma > 1:
# gS = gamma[:, :, :, np.newaxis]
taperC = 1
alphaS = 0
if (R0 is not None) or (self.taper is not None):
dI = np.arange(0.5*self.dstep - PI*self.Np, PI*self.Np, self.dstep)
tg = (dI[:, None] + 0.5*self.dstep*self.tg_n).ravel()
ag = np.tile(self.ag, self.Np)
sinx = np.tile(self.sintg, self.Np)
cosx = np.tile(self.costg, self.Np)
sinxph = np.tile(self.sintgph, self.Np)
cosxph = np.tile(self.costgph, self.Np)
else:
tg = self.tg
ag = self.ag
sinx = self.sintg
cosx = self.costg
sinxph = self.sintgph
cosxph = self.costgph
sin2x = 2*sinx*cosx
sin2xph = 2*sinxph*cosxph
revgamma = 1./gS
revgamma2 = revgamma**2
betam = 1. - (1. + 0.5*self.Kx**2 + 0.5*self.Ky**2)*0.5*revgamma2
wwuS = wS/wuS
dirx = ddphiS
diry = ddpsiS
dirz = 1. - 0.5*(ddphiS**2 + ddpsiS**2)
if self.taper is not None:
alphaS = self.taper/E2WC
taperC = 1 - alphaS*tg/wuS
ucos = ww1S*tg + \
wwuS*revgamma*(
-self.Ky*dirx*(sinx + alphaS/wuS*(1 - cosx - tg*sinx)) +
self.Kx*diry*sinx + 0.125*revgamma*(
self.Kx**2 * sin2xph + self.Ky**2 *
(sin2x - 2*alphaS/wuS*(tg**2 + cosx**2 + tg*sin2x))))
eucos = np.exp(1j*ucos)
elif R0 is not None:
sinr0z = np.sin(wwuS*R0[-1])
cosr0z = np.cos(wwuS*R0[-1])
zterm = 0.5*(self.Ky**2*sin2x +
self.Kx**2*sin2xph)*revgamma
rloc = np.array([self.Ky*sinx*revgamma,
self.Kx*sinxph*revgamma,
betam*tg-0.25*zterm*revgamma])
dr = R0 - rloc
dist = np.linalg.norm(dr, axis=0)
ucos = wwuS*(tg + dist)
drs = 0.5*(dr[0, :]**2+dr[1, :]**2)/dr[2, :]
sinzloc = np.sin(wwuS * tg*(1.-betam))
coszloc = np.cos(wwuS * tg*(1.-betam))
sindrs = np.sin(wwuS * (drs + 0.25 * zterm * revgamma))
cosdrs = np.cos(wwuS * (drs + 0.25 * zterm * revgamma))
eucosx = (-sinr0z*sinzloc*cosdrs - sinr0z*coszloc*sindrs -
cosr0z*sinzloc*sindrs + cosr0z*coszloc*cosdrs)
eucosy = (-sinr0z*sinzloc*sindrs + sinr0z*coszloc*cosdrs +
cosr0z*sinzloc*cosdrs + cosr0z*coszloc*sindrs)
eucos = eucosx + 1j*eucosy
direction = dr/dist
dirx = direction[0, :]
diry = direction[1, :]
dirz = direction[2, :]
else:
ucos = ww1S*tg + wwuS*revgamma*(
-self.Ky*ddphiS*sinx + self.Kx*ddpsiS*sinxph +
0.125*revgamma*(self.Ky**2 * sin2x + self.Kx**2 * sin2xph))
eucos = np.exp(1j*ucos)
betax = taperC*self.Ky*revgamma*cosx
betay = -self.Kx*revgamma*cosxph
betaz = 1. - 0.5*(revgamma2 + betax*betax + betay*betay)
betaPx = -self.Ky*(alphaS*cosx + taperC*sinx)
betaPy = self.Kx*sinxph
betaPz = 0.5*revgamma*(
self.Ky**2 * taperC*(alphaS*cosx**2 + taperC*sin2x) +
self.Kx**2 * sin2xph)
rkrel = 1./(1. - dirx*betax - diry*betay - dirz*betaz)
eucos *= ag * rkrel**2
bnx = dirx - betax
bny = diry - betay
bnz = dirz - betaz
dirDotBetaP = dirx*betaPx + diry*betaPy + dirz*betaPz
dirDotDmB = dirx*bnx + diry*bny + dirz*bnz
Bsr = np.sum(eucos*wuS*revgamma*(bnx*dirDotBetaP - betaPx*dirDotDmB),
axis=dim)
Bpr = np.sum(eucos*wuS*revgamma*(bny*dirDotBetaP - betaPy*dirDotDmB),
axis=dim)
return Bsr, Bpr
# @profile
def _sp_sum(self, ww1S, wS, wuS, gS, ddphiS, ddpsiS, R0=None):
taperC = 1
alphaS = 0
sin2x = 2.*self.sintg*self.costg
sin2xph = 2.*self.sintgph*self.costgph
revgamma = 1. / gS
revgamma2 = revgamma**2
betam = 1. - (1. + 0.5*self.Kx**2 + 0.5*self.Ky**2)*0.5*revgamma2
wwuS = wS/wuS
Bsr = np.complex128(0)
Bpr = np.complex128(0)
dirx = ddphiS
diry = ddpsiS
dirz = 1. - 0.5*(ddphiS**2 + ddpsiS**2)
Nmx = self.Np if (R0 is not None or self.taper is not None) else 1
if R0 is not None:
sinr0z = np.sin(R0[-1])
cosr0z = np.cos(R0[-1])
for Nperiod in range(Nmx):
if raycing._VERBOSITY_ > 80 and (self.taper is not None or
R0 is not None):
print("Period {} out of {}".format(Nperiod+1, Nmx))
for i in range(len(self.tg)):
if self.taper is not None:
zloc = -(Nmx-1)*np.pi + Nperiod*PI2 + self.tg[i]
alphaS = self.taper/E2WC
taperC = 1. - alphaS*zloc/wuS
ucos = ww1S*zloc +\
wwuS*revgamma *\
(-self.Ky*dirx*(self.sintg[i] + alphaS/wuS *
(1 - self.costg[i] -
zloc*self.sintg[i])) +
self.Kx*diry*self.sintg[i] + 0.125*revgamma *
(self.Kx**2 * sin2xph[i] + self.Ky**2 * (sin2x[i] -
2*alphaS/wuS*(zloc**2 + self.costg[i]**2 +
zloc*sin2x[i]))))
eucos = np.exp(1j*ucos)
elif R0 is not None:
zterm = 0.5*(self.Ky**2*sin2x[i] +
self.Kx**2*sin2xph[i])*revgamma
zloc = -(Nmx-1)*np.pi + Nperiod*PI2 + self.tg[i]
rloc = np.array([self.Ky*self.sintg[i]*revgamma,
self.Kx*self.sintgph[i]*revgamma,
betam*zloc-0.25*zterm*revgamma])
dr = R0 - rloc
dist = np.linalg.norm(dr, axis=0)
drs = 0.5*(dr[0, :]**2+dr[1, :]**2) / dr[2, :]
sinzloc = np.sin(wwuS * zloc*(1.-betam))
coszloc = np.cos(wwuS * zloc*(1.-betam))
sindrs = np.sin(wwuS * (drs + 0.25*zterm*revgamma))
cosdrs = np.cos(wwuS * (drs + 0.25*zterm*revgamma))
eucosx = (-sinr0z*sinzloc*cosdrs - sinr0z*coszloc*sindrs -
cosr0z*sinzloc*sindrs + cosr0z*coszloc*cosdrs)
eucosy = (-sinr0z*sinzloc*sindrs + sinr0z*coszloc*cosdrs +
cosr0z*sinzloc*cosdrs + cosr0z*coszloc*sindrs)
eucos = eucosx + 1j*eucosy
direction = dr/dist
dirx = direction[0, :]
diry = direction[1, :]
dirz = direction[2, :]
else:
ucos = ww1S*self.tg[i] + wwuS*revgamma *\
(-self.Ky*ddphiS*self.sintg[i] +
self.Kx*ddpsiS*self.sintgph[i] +
0.125*revgamma*(self.Ky**2 * sin2x[i] +
self.Kx**2 * sin2xph[i]))
eucos = np.exp(1j*ucos)
# print("eucos.shape", eucos.shape)
betax = taperC*self.Ky*revgamma*self.costg[i]
betay = -self.Kx*revgamma*self.costgph[i]
betaz = 1. - 0.5*(revgamma2 + betax*betax + betay*betay)
betaPx = -self.Ky*(alphaS*self.costg[i] + taperC*self.sintg[i])
betaPy = self.Kx*self.sintgph[i]
betaPz = 0.5*revgamma *\
(self.Ky**2 * taperC*(
alphaS*self.costg[i]**2 + taperC*sin2x[i]) +
self.Kx**2 * sin2xph[i])
rkrel = 1./(1. - dirx*betax - diry*betay - dirz*betaz)
eucos *= self.ag[i] * rkrel**2
bnx = dirx - betax
bny = diry - betay
bnz = dirz - betaz
dirDotBetaP = dirx*betaPx + diry*betaPy + dirz*betaPz
dirDotDmB = dirx*bnx + diry*bny + dirz*bnz
Bsr += eucos*(bnx*dirDotBetaP - betaPx*dirDotDmB)
Bpr += eucos*(bny*dirDotBetaP - betaPy*dirDotDmB)
return wuS*revgamma*Bsr, wuS*revgamma*Bpr
def build_I_map(self, w, ddtheta, ddpsi, harmonic=None, dg=None):
if self.needReset:
self.reset()
useCL = False
if isinstance(w, np.ndarray):
if w.shape[0] > 1:
useCL = True
if (self.cl_ctx is None) or not useCL:
return self._build_I_map_conv(w, ddtheta, ddpsi, harmonic, dg)
else:
return self._build_I_map_CL(w, ddtheta, ddpsi, harmonic, dg)
def _build_I_map_conv(self, w, ddtheta, ddpsi, harmonic, dgamma=None):
# np.seterr(invalid='ignore')
# np.seterr(divide='ignore')
NRAYS = 1 if len(np.array(w).shape) == 0 else len(w)
gamma = self.gamma
if self.eEspread > 0:
if dgamma is not None:
gamma += dgamma
else:
sz = 1 if self.filamentBeam else NRAYS
gamma += gamma * self.eEspread * np.random.normal(size=sz)
gamma = gamma * np.ones(NRAYS)
gamma2 = gamma**2
wu = PI / self.L0 / gamma2 * np.ones_like(w) *\
(2*gamma2 - 1 - 0.5*self.Kx**2 - 0.5*self.Ky**2) / E2WC
ww1 = w * ((1. + 0.5*self.Kx**2 + 0.5*self.Ky**2) +
gamma2 * (ddtheta**2 + ddpsi**2)) / (2. * gamma2 * wu)
if (self.taper is not None) or (self.R0 is not None):
ab = 1. / PI2 / wu
else:
ab = 1. / PI2 / wu * np.sin(PI * self.Np * ww1) / np.sin(PI * ww1)
if self.R0:
R0v = np.array((np.tan(ddtheta),
np.tan(ddpsi),
np.ones_like(ddpsi)))
# R0n = np.linalg.norm(R0v, axis=0) # TODO: Only for spher. screen
R0v *= self.R0*np.pi*2/self.L0 # /R0n
else:
R0v = None
if NRAYS > 10:
# if self.filamentBeam:
# gamma = self.gamma * np.ones(NRAYS)
Is_local, Ip_local = self._sp_sum(
ww1, w, wu, gamma, ddtheta, ddpsi, R0v)
else: # Convergence only
dim = len(np.array(w).shape)
Is_local, Ip_local = self._sp(
dim, ww1, w, wu, gamma, ddtheta, ddpsi, R0v)
bwFact = 0.001 if self.distE == 'BW' else 1./w
Amp2Flux = FINE_STR * bwFact * self.eI / SIE0
if harmonic is not None:
Is_local[ww1 > harmonic+0.5] = 0
Ip_local[ww1 > harmonic+0.5] = 0
Is_local[ww1 < harmonic-0.5] = 0
Ip_local[ww1 < harmonic-0.5] = 0
# np.seterr(invalid='warn')
# np.seterr(divide='warn')
integralField = np.abs(Is_local)**2 + np.abs(Ip_local)**2
if self.convergenceSearchFlag:
return np.abs(np.sqrt(integralField) * 0.5 * self.dstep)
else:
return (Amp2Flux * ab**2 * 0.25 * self.dstep**2 * integralField,
np.sqrt(Amp2Flux) * ab * Is_local * 0.5 * self.dstep,
np.sqrt(Amp2Flux) * ab * Ip_local * 0.5 * self.dstep)
def _build_I_map_CL(self, w, ddtheta, ddpsi, harmonic, dgamma=None):
NRAYS = 1 if len(np.array(w).shape) == 0 else len(w)
gamma = self.gamma
if self.eEspread > 0:
if dgamma is not None:
gamma += dgamma
else:
sz = 1 if self.filamentBeam else NRAYS
gamma += gamma * self.eEspread * np.random.normal(size=sz)
gamma = gamma * np.ones(NRAYS, dtype=self.cl_precisionF)
gamma2 = gamma**2
wu = PI / self.L0 / gamma2 *\
(2*gamma2 - 1 - 0.5*self.Kx**2 - 0.5*self.Ky**2) / E2WC
# wu = 2*PI / self.L0 / E2WC * np.ones_like(gamma)
ww1 = w * ((1. + 0.5 * self.Kx**2 + 0.5 * self.Ky**2) +
gamma2 * (ddtheta * ddtheta + ddpsi * ddpsi)) /\
(2. * gamma2 * wu)
if (self.taper is not None) or (self.R0 is not None):
ab = 1. / PI2 / wu
else:
ab = 1. / PI2 / wu * np.sin(PI * self.Np * ww1) / np.sin(PI * ww1)
scalarArgs = [self.cl_precisionF(0.)]
if self.R0 is not None:
scalarArgs = [self.cl_precisionF(self.R0*np.pi*2/self.L0)]
elif self.taper:
scalarArgs = [self.cl_precisionF(self.taper)]
scalarArgs.extend([self.cl_precisionF(self.Kx), # Kx
self.cl_precisionF(self.Ky), # Ky
np.int32(len(self.tg))]) # jend
if (self.taper is not None) or (self.R0 is not None):
scalarArgs.extend([np.int32(self.Np)])
slicedROArgs = [self.cl_precisionF(gamma), # gamma
self.cl_precisionF(wu), # Wund
self.cl_precisionF(w), # Energy
self.cl_precisionF(ww1), # Energy/Eund(0)
self.cl_precisionF(ddtheta), # Theta
self.cl_precisionF(ddpsi)] # Psi
nonSlicedROArgs = [self.cl_precisionF(self.tg), # Integration grid
self.cl_precisionF(self.ag), # Integration weights
self.cl_precisionF(self.sintg), # Move outside
self.cl_precisionF(self.costg),
self.cl_precisionF(self.sintgph),
self.cl_precisionF(self.costgph)]
slicedRWArgs = [np.zeros(NRAYS, dtype=self.cl_precisionC), # Is
np.zeros(NRAYS, dtype=self.cl_precisionC)] # Ip
if self.taper is not None:
clKernel = 'undulator_taper'
elif self.R0 is not None:
clKernel = 'undulator_nf'
# if self.full:
# clKernel = 'undulator_nf_full'
# elif self.full:
# clKernel = 'undulator_full'
else:
clKernel = 'undulator'
Is_local, Ip_local = self.ucl.run_parallel(
clKernel, scalarArgs, slicedROArgs, nonSlicedROArgs,
slicedRWArgs, dimension=NRAYS)
bwFact = 0.001 if self.distE == 'BW' else 1./w
Amp2Flux = FINE_STR * bwFact * self.eI / SIE0
if harmonic is not None:
Is_local[ww1 > harmonic+0.5] = 0
Ip_local[ww1 > harmonic+0.5] = 0
Is_local[ww1 < harmonic-0.5] = 0
Ip_local[ww1 < harmonic-0.5] = 0
integralField = np.abs(Is_local)**2 + np.abs(Ip_local)**2
if self.convergenceSearchFlag:
return np.abs(np.sqrt(integralField) * 0.5 * self.dstep)
else:
return (Amp2Flux * ab**2 * 0.25 * self.dstep**2 * integralField,
np.sqrt(Amp2Flux) * Is_local * ab * 0.5 * self.dstep,
np.sqrt(Amp2Flux) * Ip_local * ab * 0.5 * self.dstep)
# def _reportNaN(self, x, strName):
# nanSum = np.isnan(x).sum()
# if nanSum > 0:
# print("{0} NaN rays in {1}!".format(nanSum, strName))
def get_sigma_r02(self, E): # linear size
"""Squared sigma_{r0} as by Walker and by Ellaume and
Tanaka and Kitamura J. Synchrotron Rad. 16 (2009) 380–386 (see the
text after Eq(23))"""
return 2 * CHeVcm/E*10 * self.L0*self.Np / PI2**2
def get_sigmaP_r02(self, E): # angular size
"""Squared sigmaP_{r0}"""
return CHeVcm/E*10 / (2 * self.L0*self.Np)
def get_sigma_r2(self, E, onlyOddHarmonics=True, with0eSpread=False):
"""Squared sigma_{r} as by
Tanaka and Kitamura J. Synchrotron Rad. 16 (2009) 380–386
that also depends on energy spread."""
sigma_r02 = self.get_sigma_r02(E)
if self.eEspread == 0 or with0eSpread:
return sigma_r02
harmonic = np.floor_divide(E, self.E1)
# harmonic[harmonic < 1] = 1
if onlyOddHarmonics:
harmonic += harmonic % 2 - 1
eEspread_norm = PI2 * harmonic * self.Np * self.eEspread
Qa2 = self.tanaka_kitamura_Qa2(eEspread_norm/4.) # note 1/4
return sigma_r02 * Qa2**(2/3.)
def get_sigmaP_r2(self, E, onlyOddHarmonics=True, with0eSpread=False):
"""Squared sigmaP_{r} as by
Tanaka and Kitamura J. Synchrotron Rad. 16 (2009) 380–386
that also depends on energy spread."""
sigmaP_r02 = self.get_sigmaP_r02(E)
if self.eEspread == 0 or with0eSpread:
return sigmaP_r02
harmonic = np.floor_divide(E, self.E1)
# harmonic[harmonic < 1] = 1
if onlyOddHarmonics:
harmonic += harmonic % 2 - 1
eEspread_norm = PI2 * harmonic * self.Np * self.eEspread
Qa2 = self.tanaka_kitamura_Qa2(eEspread_norm)
return sigmaP_r02 * Qa2
def get_SIGMA(self, E, onlyOddHarmonics=True, with0eSpread=False):
"""Calculates total linear source size, also including the effect of
electron beam energy spread. Uses Tanaka and Kitamura, J. Synchrotron
Rad. 16 (2009) 380–6.
*E* can be a value or an array. Returns a 2-tuple with x and y sizes.
"""
sigma_r2 = self.get_sigma_r2(E, onlyOddHarmonics, with0eSpread)
return ((self.dx**2 + sigma_r2)**0.5,
(self.dz**2 + sigma_r2)**0.5)
def get_SIGMAP(self, E, onlyOddHarmonics=True, with0eSpread=False):
"""Calculates total angular source size, also including the effect of
electron beam energy spread. Uses Tanaka and Kitamura, J. Synchrotron
Rad. 16 (2009) 380–6.
*E* can be a value or an array. Returns a 2-tuple with x and y sizes.
"""
sigmaP_r2 = self.get_sigmaP_r2(E, onlyOddHarmonics, with0eSpread)
return ((self.dxprime**2 + sigmaP_r2)**0.5,
(self.dzprime**2 + sigmaP_r2)**0.5)
|