File: multipro.py

package info (click to toggle)
python-xrt 1.6.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 17,572 kB
  • sloc: python: 59,424; xml: 4,786; lisp: 4,082; sh: 22; javascript: 18; makefile: 17
file content (378 lines) | stat: -rw-r--r-- 15,809 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
# -*- coding: utf-8 -*-
"""
Module :mod:`multipro` defines :class:`BackendProcess` as a subclass of
``multiprocessing.Process`` or ``threading.Thread``. You can opt between
deriving from :mod:`multiprocessing` or :mod:`threading` by selecting the
corresponding parameter in :func:`~xrt.runner.run_ray_tracing`. The
multiprocessing is normally faster than multithreading but has an inconvenience
when the user aborts the execution: the processes have to be killed manually.
"""
__author__ = "Konstantin Klementiev, Roman Chernikov"
__date__ = "26 Mar 2016"

import os
import time
from multiprocessing import Process
from threading import Thread
import numpy as np
from . import kde
import matplotlib as mpl

from .backends import shadow
from .backends import dummy
from .backends import raycing

__fdir__ = os.path.dirname(__file__)


_DEBUG = 1


class GenericProcessOrThread(object):
    """
    Defines a ray tracing process or thread that can run in parallel execution.
    If the backend is 'shadow', the working directory of the process or the
    thread is changed to the corresponding 'tmpNN' directory (see
    mod:`shadow`).
    """
    def __init__(self, locCard, plots, outPlotQueues, alarmQueue, idLoc):
        self.status = -1
        if locCard.backend.startswith('shadow'):
            self.runDir = locCard.cwd + os.sep + 'tmp' + str(idLoc)
        self.idN = idLoc
        self.status = 0
        self.plots = plots
        self.outPlotQueues = outPlotQueues
        self.alarmQueue = alarmQueue
        self.card = locCard
        if self.card.backend.startswith('raycing'):
            self.card.beamLine.flow = []

    def do_hist1d(self, x, intensity, cDataRGB, axis):
        """
        Calculates the specified 1D histogram.
        *x, intensity*: ndarray, shape(NumberOfRays,)
            arrays of position and intensity
        *cDataRGB*: ndarray, shape(NumberOfRays, 3)
            used for weighing the histogram in order to colorize it
        *axis*: XYCAxis instance
            the abscissa of the 1D histogram."""
        hist1dRGB = np.zeros((axis.bins, 3))
        if axis.density.lower() == 'kde':
            if axis.limits is None:
                binEdges = np.linspace(x.min(), x.max(), axis.bins+1)
            else:
                binEdges = np.linspace(
                    axis.limits[0], axis.limits[1], axis.bins+1)
            binCenters = (binEdges[:-1] + binEdges[1:]) / 2.

            kdeobj = kde.Gaussian_kde(x, weights=intensity)
            hist1d = kdeobj(binCenters)
            if cDataRGB is not None:
                for i in range(3):  # over RGB components
                    kdeobj = kde.Gaussian_kde(x, weights=cDataRGB[:, i])
                    norm = cDataRGB[:, i].sum()
                    hist1dRGB[:, i] = kdeobj(binCenters)
                    hist1dRGB[:, i] *= norm / hist1dRGB[:, i].sum()
        else:
            histogram = np.histogram

            hist1d, binEdges = histogram(
                x, bins=axis.bins, range=axis.limits, weights=intensity)
            if cDataRGB is not None:
                for i in range(3):  # over RGB components
                    hist1dRGB[:, i], binEdges = histogram(
                        x, bins=axis.bins, range=axis.limits,
                        weights=cDataRGB[:, i])
        return hist1d, hist1dRGB, binEdges

    def do_histXXZZ(self, x, intensity, cDataRGB, axis):
        """
        Used for 2D mutual intensity functions X1X2 or Y1Y2.
        """
        hist1dr, hist1dRGB, binEdges =\
            self.do_hist1d(x, intensity.real, None, axis)
        hist1di, hist1dRGB, binEdges =\
            self.do_hist1d(x, intensity.imag, cDataRGB, axis)
        xs = hist1dr + 1j*hist1di
        hist2d = np.outer(xs, xs.conjugate())

        hist2dRGB = np.zeros((axis.bins, axis.bins, 3))
        for i in range(3):  # over RGB components
            hist2dRGB[:, :, i] = np.outer(hist1dRGB[:, i], hist1dRGB[:, i])
        return hist2d, hist2dRGB

    def do_hist2d(self, x, y, intensity, cDataRGB, plot):
        """
        Calculates the 2D histogram.
        *x, y, intensity*: ndarray, shape(NumberOfRays,)
            arrays of positions and intensity
        *cDataRGB*: ndarray, shape(NumberOfRays, 3)
            used for weighing the histogram in order to colorize it
        *plot* instance of :class:`XYCPlot`: the plot hosting the 2D histogram.

        If *plot.fluxKind* starts with 'E' then the field amplitude or mutual
        intensity is accumulated in the 2D histogram:

            - If *plot.fluxKind* ends with 'xx' or 'zz', the corresponding 2D
              cuts are done. The *plot* must have equal axes.

            - If *plot.fluxKind* ends with '4D', the complete mutual intensity
              is accumulated in *plot.hist4D*.

            .. warning::

                Be cautious with the size of the mutual intensity object, it is
                four-dimensional!

            - If *plot.fluxKind* ends with 'PCA', the field distributions are
              accumulated in *plot.field3D* as a 3D array with the shape
              (repeats, plot.xaxis.bins, plot.yaxis.bins)

            - If without these endings, the field aplitudes are simply summed.

        """
        hist4d = None
        histogram2d = np.histogram2d

        xyrange = [plot.yaxis.limits, plot.xaxis.limits]
        if not (raycing.is_sequence(plot.xaxis.limits) and
                raycing.is_sequence(plot.yaxis.limits)):
            raise ValueError()
        xybins = [plot.yaxis.bins, plot.xaxis.bins]

        if plot.fluxKind.startswith('E'):
            if plot.fluxKind.lower().endswith('xx'):
                return self.do_histXXZZ(x, intensity, cDataRGB, plot.xaxis)
            elif plot.fluxKind.lower().endswith('zz') \
                    or plot.fluxKind.lower().endswith('yy'):
                return self.do_histXXZZ(y, intensity, cDataRGB, plot.yaxis)

            hist2dr, t1, t2 = histogram2d(
                y, x, bins=xybins, range=xyrange, weights=intensity.real)
            hist2di, t1, t2 = histogram2d(
                y, x, bins=xybins, range=xyrange, weights=intensity.imag)
            hist2d = hist2dr + 1j*hist2di

            if plot.fluxKind.lower().endswith('4d'):
                hist4d = np.outer(hist2d, hist2d.conjugate())
            elif plot.fluxKind.lower().endswith('pca'):
                hist4d = hist2d.T

        else:
            hist2d, yedges, xedges = histogram2d(
                y, x, bins=xybins, range=xyrange, weights=intensity)

        hist2dRGB = np.zeros((xybins[0], xybins[1], 3))
        if len(x) > 0:
            for i in range(3):  # over RGB components
                hist2dRGB[:, :, i], yedges, xedges = histogram2d(
                    y, x, bins=xybins, range=xyrange, weights=cDataRGB[:, i])
        return hist2d, hist2dRGB, hist4d

    def update_limits(self, axis, x):
        """
        Updates the *axis* limits given the data in *x*. Used at the 1st
        iteration."""
        if (axis.limits is None) or isinstance(axis.limits, str):
            if len(x) > 1:
                xmin, xmax = np.min(x), np.max(x)
                dx = axis.extraMargin * (xmax-xmin) / axis.bins
                xmin -= dx
                xmax += dx
                if xmin == xmax:
                    xmin -= 1.
                    xmax += 1.
            else:
                xmin, xmax = 1., 10.
            if isinstance(axis.limits, str):
                xmm = max(abs(xmin), abs(xmax))
                xmin, xmax = -xmm, xmm
            axis.limits = [xmin, xmax]
        else:
            xmin, xmax = axis.limits[0], axis.limits[1]
        return xmin, xmax

    def equalize_xy(self, plot, leadingLimits):
        """
        Updates the limits of *xaxis* and *yaxis* according to the given
        *aspect*.
        """
        if plot.aspect == 'equal':
            plot.aspect = 1.0
        if not isinstance(plot.aspect, float):
            return
        xaxis = plot.xaxis
        yaxis = plot.yaxis
        aspect = plot.aspect * xaxis.pixels / float(yaxis.pixels)
        dx = xaxis.limits[1] - xaxis.limits[0]
        dy = yaxis.limits[1] - yaxis.limits[0]
        if aspect == 1.0 and dx == dy:
            return

        if leadingLimits is None:
            if dx > (dy * aspect):
                leadingLimits = 'x'
            else:
                leadingLimits = 'y'
        if leadingLimits == 'x':
            yMid = (yaxis.limits[1]+yaxis.limits[0]) / 2.
            dy2 = dx / aspect / 2
            yaxis.limits = [yMid-dy2, yMid+dy2]
        else:
            xMid = (xaxis.limits[1]+xaxis.limits[0]) / 2.
            dx2 = dy * aspect / 2
            xaxis.limits = [xMid-dx2, xMid+dx2]
        return xaxis.limits[0], xaxis.limits[1], yaxis.limits[0],\
            yaxis.limits[1]

    def run(self):
        """
        Starts the chosen ray-tracing backend, invokes the 1D and 2D
        histogramming routines and puts them into the output queue.
        """
        seed = int(time.time()) ^ (os.getpid()+self.idN)
#        random.seed(seed) - has no effect!
        np.random.seed(seed)
        if _DEBUG > 2:
            print(seed)
        if _DEBUG > 2:
            print('parent process id:{0}, process id{1}'.format(
                  os.getppid(), os.getpid()))
        if self.card.backend.startswith('shadow'):
            self.alarmQueue.put([])
            ret = shadow.run_process(
                'source', self.card.fWiggler, self.runDir)
            if ret != 0:
                for queue in self.outPlotQueues:
                    queue.put([])
                return
            if self.card.backend.startswith('shadow'):
                time.sleep(0.1)
            if not self.card.backend.startswith('shadow0'):
                ret = shadow.run_process(
                    'trace', self.card.fWiggler, self.runDir)
                if ret != 0:
                    for queue in self.outPlotQueues:
                        queue.put([])
                    return
                if self.card.backend.startswith('shadow'):
                    time.sleep(0.1)
        elif self.card.backend.startswith('dummy'):
            dummy_output = dummy.run_process()
            self.alarmQueue.put([])
        elif self.card.backend.startswith('raycing'):
            raycing_output = raycing.run.run_process(self.card.beamLine)
            self.alarmQueue.put(self.card.beamLine.alarms)

        for plot, queue in zip(self.plots, self.outPlotQueues):
            displayAsAbsorbedPower = False
            if self.card.backend.startswith('shadow'):
                x, y, intensity, cData, locNrays, locNraysNeeded = \
                    shadow.get_output(
                        plot, self.card.fPolar, self.card.blockNRays,
                        self.runDir)
                flux = intensity
            elif self.card.backend.startswith('raycing'):
                x, y, intensity, flux, cData, locNrays, locAlive, locGood,\
                    locOut, locOver, locDead, locAccepted, locAcceptedE,\
                    locSeeded, locSeededI =\
                    raycing.get_output(plot, raycing_output)
                if hasattr(plot, 'displayAsAbsorbedPower'):
                    displayAsAbsorbedPower = True
            elif self.card.backend.startswith('dummy'):
                x, y, intensity, cData, locNrays = dummy_output
                flux = intensity

            if self.card.iteration == 0:
                leadingLimits = None
                xLimitsDefined = (plot.xaxis.limits is not None) and \
                    (not isinstance(plot.xaxis.limits, str))
                yLimitsDefined = (plot.yaxis.limits is not None) and \
                    (not isinstance(plot.yaxis.limits, str))
                if xLimitsDefined and (not yLimitsDefined):
                    leadingLimits = 'x'
                elif yLimitsDefined and (not xLimitsDefined):
                    leadingLimits = 'y'
                xmin, xmax = self.update_limits(plot.xaxis, x)
                ymin, ymax = self.update_limits(plot.yaxis, y)
                emin, emax = self.update_limits(plot.caxis, cData)
                if plot.aspect == 'equal' or isinstance(plot.aspect,
                                                        (int, float)):
                    xyeq = self.equalize_xy(plot, leadingLimits)
                    if xyeq is not None:
                        xmin, xmax, ymin, ymax = xyeq

            limits = plot.caxis.limits
            cData01 = ((cData - limits[0]) * plot.colorFactor /
                       (limits[1] - limits[0])).reshape(-1, 1)
            cData01[cData01 < 0] = 0.
            cData01[cData01 > 1] = 1.
            if plot.invertColorMap:
                cData01 -= 0.5
                cData01[cData01 < 0] += 1

            cDataHSV = np.dstack(
                (cData01, np.ones_like(cData01) * plot.colorSaturation,
                 flux.reshape(-1, 1)))
            cDataRGB = (mpl.colors.hsv_to_rgb(cDataHSV)).reshape(-1, 3)
# 1D x, y and cData histograms
            xh, xhRGB, xbe = self.do_hist1d(x, flux, cDataRGB, plot.xaxis)
            yh, yhRGB, ybe = self.do_hist1d(y, flux, cDataRGB, plot.yaxis)
            if plot.ePos:
                eh, ehRGB, ebe = self.do_hist1d(
                    cData, flux, cDataRGB, plot.caxis)
            else:
                eh, ehRGB, ebe = None, None, None
# 2D histogram
            res = self.do_hist2d(x, y, intensity, cDataRGB, plot)
            xyh, xyhRGB = res[0], res[1]
            is4d = (plot.fluxKind.lower().endswith('4d') or
                    plot.fluxKind.lower().endswith('pca'))
            xyh4 = res[2] if is4d else None

            if plot.fluxKind.endswith('log'):
                xh = np.log10(xh)
                xh[np.where(np.isnan(xh))] = 0
                xhRGB = np.log10(xhRGB)
                xhRGB[np.where(np.isnan(xhRGB))] = 0
                yh = np.log10(yh)
                yh[np.where(np.isnan(yh))] = 0
                yhRGB = np.log10(yhRGB)
                yhRGB[np.where(np.isnan(yhRGB))] = 0
                if plot.ePos:
                    eh = np.log10(eh)
                    eh[np.where(np.isnan(eh))] = 0
                    ehRGB = np.log10(ehRGB)
                    ehRGB[np.where(np.isnan(ehRGB))] = 0
                xyh = np.log10(xyh)
                xyh[np.where(np.isnan(xyh))] = 0
                xyhRGB = np.log10(xyhRGB)
                xyhRGB[np.where(np.isnan(xyhRGB))] = 0

            outList = [xh, xhRGB, xbe, yh, yhRGB, ybe,
                       eh, ehRGB, ebe, xyh, xyhRGB, xyh4, sum(flux), locNrays]
            if self.card.backend.startswith('shadow'):
                outList.append(locNraysNeeded)
            elif self.card.backend.startswith('raycing'):
                outList.append((locAlive, locGood, locOut, locOver, locDead,
                                locAccepted, locAcceptedE, locSeeded,
                                locSeededI))
            outList.append(displayAsAbsorbedPower)
            if self.card.iteration == 0:  # needed for multiprocessing
                outList.append((xmin, xmax, ymin, ymax, emin, emax))
            queue.put(outList)


class BackendProcess(GenericProcessOrThread, Process):
    def __init__(self, locCard, plots, outPlotQueues, alarmQueue, idLoc):
        Process.__init__(self)
        GenericProcessOrThread.__init__(self, locCard, plots, outPlotQueues,
                                        alarmQueue, idLoc)


class BackendThread(GenericProcessOrThread, Thread):
    def __init__(self, locCard, plots, outPlotQueues, alarmQueue, idLoc):
        Thread.__init__(self)
        GenericProcessOrThread.__init__(self, locCard, plots, outPlotQueues,
                                        alarmQueue, idLoc)