1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
|
/**
* Retrieve the hexadecimal value (as a string) of the current ASN.1 element
* @returns {string}
* @public
*/
ASN1.prototype.getHexStringValue = function(){
var hexString = this.toHexString();
var offset = this.header * 2;
var length = this.length * 2;
return hexString.substr(offset,length);
};
/**
* Method to parse a pem encoded string containing both a public or private key.
* The method will translate the pem encoded string in a der encoded string and
* will parse private key and public key parameters. This method accepts public key
* in the rsaencryption pkcs #1 format (oid: 1.2.840.113549.1.1.1).
* @todo Check how many rsa formats use the same format of pkcs #1. The format is defined as:
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* it's possible to examine the structure of the keys obtained from openssl using
* an asn.1 dumper as the one used here to parse the components: http://lapo.it/asn1js/
* @argument {string} pem the pem encoded string, can include the BEGIN/END header/footer
* @private
*/
RSAKey.prototype.parseKey = function(pem) {
try{
var reHex = /^\s*(?:[0-9A-Fa-f][0-9A-Fa-f]\s*)+$/;
var der = reHex.test(pem) ? Hex.decode(pem) : Base64.unarmor(pem);
var asn1 = ASN1.decode(der);
if (asn1.sub.length === 9){
// the data is a Private key
//in order
//Algorithm version, n, e, d, p, q, dmp1, dmq1, coeff
//Alg version, modulus, public exponent, private exponent, prime 1, prime 2, exponent 1, exponent 2, coefficient
var modulus = asn1.sub[1].getHexStringValue(); //bigint
this.n = parseBigInt(modulus, 16);
var public_exponent = asn1.sub[2].getHexStringValue(); //int
this.e = parseInt(public_exponent, 16);
var private_exponent = asn1.sub[3].getHexStringValue(); //bigint
this.d = parseBigInt(private_exponent, 16);
var prime1 = asn1.sub[4].getHexStringValue(); //bigint
this.p = parseBigInt(prime1, 16);
var prime2 = asn1.sub[5].getHexStringValue(); //bigint
this.q = parseBigInt(prime2, 16);
var exponent1 = asn1.sub[6].getHexStringValue(); //bigint
this.dmp1 = parseBigInt(exponent1, 16);
var exponent2 = asn1.sub[7].getHexStringValue(); //bigint
this.dmq1 = parseBigInt(exponent2, 16);
var coefficient = asn1.sub[8].getHexStringValue(); //bigint
this.coeff = parseBigInt(coefficient, 16);
}else if (asn1.sub.length === 2){
//Public key
//The data PROBABLY is a public key
var bit_string = asn1.sub[1];
var sequence = bit_string.sub[0];
var modulus = sequence.sub[0].getHexStringValue();
this.n = parseBigInt(modulus, 16);
var public_exponent = sequence.sub[1].getHexStringValue();
this.e = parseInt(public_exponent, 16);
}else{
return false;
}
return true;
}catch(ex){
return false;
}
};
/**
* Translate rsa parameters in a hex encoded string representing the rsa key.
* The translation follow the ASN.1 notation :
* RSAPrivateKey ::= SEQUENCE {
* version Version,
* modulus INTEGER, -- n
* publicExponent INTEGER, -- e
* privateExponent INTEGER, -- d
* prime1 INTEGER, -- p
* prime2 INTEGER, -- q
* exponent1 INTEGER, -- d mod (p1)
* exponent2 INTEGER, -- d mod (q-1)
* coefficient INTEGER, -- (inverse of q) mod p
* }
* @returns {string} DER Encoded String representing the rsa private key
* @private
*/
RSAKey.prototype.getPrivateBaseKey = function() {
//Algorithm version, n, e, d, p, q, dmp1, dmq1, coeff
//Alg version, modulus, public exponent, private exponent, prime 1, prime 2, exponent 1, exponent 2, coefficient
var options = {
'array' : [
new KJUR.asn1.DERInteger({'int' : 0}),
new KJUR.asn1.DERInteger({'bigint' : this.n}),
new KJUR.asn1.DERInteger({'int' : this.e}),
new KJUR.asn1.DERInteger({'bigint' : this.d}),
new KJUR.asn1.DERInteger({'bigint' : this.p}),
new KJUR.asn1.DERInteger({'bigint' : this.q}),
new KJUR.asn1.DERInteger({'bigint' : this.dmp1}),
new KJUR.asn1.DERInteger({'bigint' : this.dmq1}),
new KJUR.asn1.DERInteger({'bigint' : this.coeff})
]
};
var seq = new KJUR.asn1.DERSequence(options);
return seq.getEncodedHex();
};
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
RSAKey.prototype.getPrivateBaseKeyB64 = function (){
return hex2b64(this.getPrivateBaseKey());
};
/**
* Translate rsa parameters in a hex encoded string representing the rsa public key.
* The representation follow the ASN.1 notation :
* PublicKeyInfo ::= SEQUENCE {
* algorithm AlgorithmIdentifier,
* PublicKey BIT STRING
* }
* Where AlgorithmIdentifier is:
* AlgorithmIdentifier ::= SEQUENCE {
* algorithm OBJECT IDENTIFIER, the OID of the enc algorithm
* parameters ANY DEFINED BY algorithm OPTIONAL (NULL for PKCS #1)
* }
* and PublicKey is a SEQUENCE encapsulated in a BIT STRING
* RSAPublicKey ::= SEQUENCE {
* modulus INTEGER, -- n
* publicExponent INTEGER -- e
* }
* @returns {string} DER Encoded String representing the rsa public key
* @private
*/
RSAKey.prototype.getPublicBaseKey = function() {
var options = {
'array' : [
new KJUR.asn1.DERObjectIdentifier({'oid':'1.2.840.113549.1.1.1'}), //RSA Encryption pkcs #1 oid
new KJUR.asn1.DERNull()
]
};
var first_sequence = new KJUR.asn1.DERSequence(options);
options = {
'array' : [
new KJUR.asn1.DERInteger({'bigint' : this.n}),
new KJUR.asn1.DERInteger({'int' : this.e})
]
};
var second_sequence = new KJUR.asn1.DERSequence(options);
options = {
'hex' : '00'+second_sequence.getEncodedHex()
};
var bit_string = new KJUR.asn1.DERBitString(options);
options = {
'array' : [
first_sequence,
bit_string
]
};
var seq = new KJUR.asn1.DERSequence(options);
return seq.getEncodedHex();
};
/**
* base64 (pem) encoded version of the DER encoded representation
* @returns {string} pem encoded representation without header and footer
* @public
*/
RSAKey.prototype.getPublicBaseKeyB64 = function (){
return hex2b64(this.getPublicBaseKey());
};
/**
* wrap the string in block of width chars. The default value for rsa keys is 64
* characters.
* @param {string} str the pem encoded string without header and footer
* @param {Number} [width=64] - the length the string has to be wrapped at
* @returns {string}
* @private
*/
RSAKey.prototype.wordwrap = function(str, width) {
width = width || 64;
if (!str)
return str;
var regex = '(.{1,' + width + '})( +|$\n?)|(.{1,' + width + '})';
return str.match(RegExp(regex, 'g')).join('\n');
};
/**
* Retrieve the pem encoded private key
* @returns {string} the pem encoded private key with header/footer
* @public
*/
RSAKey.prototype.getPrivateKey = function() {
var key = "-----BEGIN RSA PRIVATE KEY-----\n";
key += this.wordwrap(this.getPrivateBaseKeyB64()) + "\n";
key += "-----END RSA PRIVATE KEY-----";
return key;
};
/**
* Retrieve the pem encoded public key
* @returns {string} the pem encoded public key with header/footer
* @public
*/
RSAKey.prototype.getPublicKey = function() {
var key = "-----BEGIN PUBLIC KEY-----\n";
key += this.wordwrap(this.getPublicBaseKeyB64()) + "\n";
key += "-----END PUBLIC KEY-----";
return key;
};
/**
* Check if the object contains the necessary parameters to populate the rsa modulus
* and public exponent parameters.
* @param {Object} [obj={}] - An object that may contain the two public key
* parameters
* @returns {boolean} true if the object contains both the modulus and the public exponent
* properties (n and e)
* @todo check for types of n and e. N should be a parseable bigInt object, E should
* be a parseable integer number
* @private
*/
RSAKey.prototype.hasPublicKeyProperty = function(obj){
obj = obj || {};
return obj.hasOwnProperty('n') &&
obj.hasOwnProperty('e');
};
/**
* Check if the object contains ALL the parameters of an RSA key.
* @param {Object} [obj={}] - An object that may contain nine rsa key
* parameters
* @returns {boolean} true if the object contains all the parameters needed
* @todo check for types of the parameters all the parameters but the public exponent
* should be parseable bigint objects, the public exponent should be a parseable integer number
* @private
*/
RSAKey.prototype.hasPrivateKeyProperty = function(obj){
obj = obj || {};
return obj.hasOwnProperty('n') &&
obj.hasOwnProperty('e') &&
obj.hasOwnProperty('d') &&
obj.hasOwnProperty('p') &&
obj.hasOwnProperty('q') &&
obj.hasOwnProperty('dmp1') &&
obj.hasOwnProperty('dmq1') &&
obj.hasOwnProperty('coeff');
};
/**
* Parse the properties of obj in the current rsa object. Obj should AT LEAST
* include the modulus and public exponent (n, e) parameters.
* @param {Object} obj - the object containing rsa parameters
* @private
*/
RSAKey.prototype.parsePropertiesFrom = function(obj){
this.n = obj.n;
this.e = obj.e;
if (obj.hasOwnProperty('d')){
this.d = obj.d;
this.p = obj.p;
this.q = obj.q;
this.dmp1 = obj.dmp1;
this.dmq1 = obj.dmq1;
this.coeff = obj.coeff;
}
};
/**
* Create a new JSEncryptRSAKey that extends Tom Wu's RSA key object.
* This object is just a decorator for parsing the key parameter
* @param {string|Object} key - The key in string format, or an object containing
* the parameters needed to build a RSAKey object.
* @constructor
*/
var JSEncryptRSAKey = function(key) {
// Call the super constructor.
RSAKey.call(this);
// If a key key was provided.
if (key) {
// If this is a string...
if (typeof key === 'string') {
this.parseKey(key);
}else if (this.hasPrivateKeyProperty(key)||this.hasPublicKeyProperty(key)) {
// Set the values for the key.
this.parsePropertiesFrom(key);
}
}
};
// Derive from RSAKey.
JSEncryptRSAKey.prototype = new RSAKey();
// Reset the contructor.
JSEncryptRSAKey.prototype.constructor = JSEncryptRSAKey;
/**
*
* @param {Object} [options = {}] - An object to customize JSEncrypt behaviour
* possible parameters are:
* - default_key_size {number} default: 1024 the key size in bit
* - default_public_exponent {string} default: '010001' the hexadecimal representation of the public exponent
* - log {boolean} default: false whether log warn/error or not
* @constructor
*/
var JSEncrypt = function(options) {
options = options || {};
this.default_key_size = parseInt(options.default_key_size) || 1024;
this.default_public_exponent = options.default_public_exponent || '010001'; //65537 default openssl public exponent for rsa key type
this.log = options.log || false;
// The private and public key.
this.key = null;
};
/**
* Method to set the rsa key parameter (one method is enough to set both the public
* and the private key, since the private key contains the public key paramenters)
* Log a warning if logs are enabled
* @param {Object|string} key the pem encoded string or an object (with or without header/footer)
* @public
*/
JSEncrypt.prototype.setKey = function(key){
if (this.log && this.key)
console.warn('A key was already set, overriding existing.');
this.key = new JSEncryptRSAKey(key);
};
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPrivateKey = function(privkey) {
// Create the key.
this.setKey(privkey);
};
/**
* Proxy method for setKey, for api compatibility
* @see setKey
* @public
*/
JSEncrypt.prototype.setPublicKey = function(pubkey) {
// Sets the public key.
this.setKey(pubkey);
};
/**
* Proxy method for RSAKey object's decrypt, decrypt the string using the private
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} string base64 encoded crypted string to decrypt
* @return {string} the decrypted string
* @public
*/
JSEncrypt.prototype.decrypt = function(string) {
// Return the decrypted string.
try{
return this.getKey().decrypt(b64tohex(string));
}catch(ex){
return false;
}
};
/**
* Proxy method for RSAKey object's encrypt, encrypt the string using the public
* components of the rsa key object. Note that if the object was not set will be created
* on the fly (by the getKey method) using the parameters passed in the JSEncrypt constructor
* @param {string} string the string to encrypt
* @return {string} the encrypted string encoded in base64
* @public
*/
JSEncrypt.prototype.encrypt = function(string) {
// Return the encrypted string.
try{
return hex2b64(this.getKey().encrypt(string));
}catch(ex){
return false;
}
};
/**
* Getter for the current JSEncryptRSAKey object. If it doesn't exists a new object
* will be created and returned
* @param {callback} [cb] the callback to be called if we want the key to be generated
* in an async fashion
* @returns {JSEncryptRSAKey} the JSEncryptRSAKey object
* @public
*/
JSEncrypt.prototype.getKey = function(cb){
// Only create new if it does not exist.
if (!this.key) {
// Get a new private key.
this.key = new JSEncryptRSAKey();
if (cb && {}.toString.call(cb) === '[object Function]'){
this.key.generateAsync(this.default_key_size, this.default_public_exponent,cb);
return;
}
// Generate the key.
this.key.generate(this.default_key_size, this.default_public_exponent);
}
return this.key;
};
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKey = function() {
// Return the private representation of this key.
return this.getKey().getPrivateKey();
};
/**
* Returns the pem encoded representation of the private key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the private key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPrivateKeyB64 = function() {
// Return the private representation of this key.
return this.getKey().getPrivateBaseKeyB64();
};
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITH header and footer
* @public
*/
JSEncrypt.prototype.getPublicKey = function() {
// Return the private representation of this key.
return this.getKey().getPublicKey();
};
/**
* Returns the pem encoded representation of the public key
* If the key doesn't exists a new key will be created
* @returns {string} pem encoded representation of the public key WITHOUT header and footer
* @public
*/
JSEncrypt.prototype.getPublicKeyB64 = function() {
// Return the private representation of this key.
return this.getKey().getPublicBaseKeyB64();
};
|