File: pattern.py

package info (click to toggle)
python-xypattern 1.1.2-5
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 348 kB
  • sloc: python: 1,050; makefile: 4
file content (681 lines) | stat: -rw-r--r-- 23,364 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
# -*- coding: utf-8 -*-
from __future__ import annotations
import os

import numpy as np
from scipy.interpolate import interp1d
from scipy.ndimage import gaussian_filter1d

from .util.signal import Signal
from .auto_background import AutoBackground, SmoothBrucknerBackground


class Pattern(object):
    """
    A Pattern is a set of x and y values.
    It can be loaded from a file or created from scratch and can be modified by
    different methods.
    It builds the basis for all calculations in glassure.

    :param x: x values of the pattern
    :param y: y values of the pattern
    :param name: name of the pattern
    """

    def __init__(self, x: np.ndarray = None, y: np.ndarray = None, name: str = ""):
        """
        Creates a new Pattern object, x and y should have the same shape.
        """
        if x is None:
            self._original_x = np.linspace(0.1, 15, 100)
        else:
            self._original_x = x
        if y is None:
            self._original_y = (
                np.log(self._original_x**2) - (self._original_x * 0.2) ** 2
            )
        else:
            self._original_y = y

        self.name = name
        self.filename = ""
        self._offset = 0.0
        self._scaling = 1.0
        self._smoothing = 0.0
        self._background_pattern = None

        self._auto_bkg: AutoBackground | None = None
        self._auto_bkg_roi: list[float] | None = None

        self._pattern_x = self._original_x
        self._pattern_y = self._original_y

        self._auto_background_before_subtraction_pattern = None
        self._auto_background_pattern = None

        self.changed = Signal()

    def load(self, filename: str, skiprows: int = 0):
        """
        Loads a pattern from a file. The file can be either a .xy or a .chi file. The .chi file will be loaded with
        skiprows=4 by default.

        :param filename: path to the file
        :param skiprows: number of rows to skip when loading the data (header)
        """
        try:
            if filename.endswith(".chi"):
                skiprows = 4
            data = np.loadtxt(filename, skiprows=skiprows)
            self._original_x = data.T[0]
            self._original_y = data.T[1]
            self.filename = filename
            self.name = os.path.basename(filename).split(".")[:-1][0]
            self.recalculate_pattern()

        except ValueError:
            raise ValueError("Wrong data format for pattern file! - " + filename)

    @staticmethod
    def from_file(filename: str, skip_rows: int = 0) -> Pattern | "-1":
        """
        Loads a pattern from a file. The file can be either a .xy or a .chi file. The .chi file will be loaded with
        skiprows=4 by default.

        :param filename: path to the file
        :param skip_rows: number of rows to skip when loading the data (header)
        """
        try:
            pattern = Pattern()
            pattern.load(filename, skip_rows)
            return pattern

        except ValueError:
            raise ValueError("Wrong data format for pattern file! - " + filename)

    def save(self, filename, header="", subtract_background=False, unit="2th_deg"):
        """
        Saves the x, y data to file. Supporting several file formats: .chi, .xy, .fxye
        :param filename: where to save the data
        :param header: header for file
        :param subtract_background: whether to save subtracted data
        :param unit: x-unit used for the standard chi header (unused for other formats)
        """
        if subtract_background:
            x, y = self.data
        else:
            x, y = self.original_data

        num_points = len(x)

        file_handle = open(filename, "w")

        if filename.endswith(".chi"):
            if header is None or header == "":
                file_handle.write(filename + "\n")
                file_handle.write(unit + "\n\n")
                file_handle.write("       {0}\n".format(num_points))
            else:
                file_handle.write(header)
            for ind in range(num_points):
                file_handle.write(" {0:.7E}  {1:.7E}\n".format(x[ind], y[ind]))
        elif filename.endswith(".fxye"):
            factor = 100
            if "CONQ" in header:
                factor = 1
            header = header.replace("NUM_POINTS", "{0:.6g}".format(num_points))
            header = header.replace("MIN_X_VAL", "{0:.6g}".format(factor * x[0]))
            header = header.replace(
                "STEP_X_VAL", "{0:.6g}".format(factor * (x[1] - x[0]))
            )

            file_handle.write(header)
            file_handle.write("\n")
            for ind in range(num_points):
                file_handle.write(
                    "\t{0:.6g}\t{1:.6g}\t{2:.6g}\n".format(
                        factor * x[ind], y[ind], np.sqrt(abs(y[ind]))
                    )
                )
        else:

            data = np.dstack((x, y))
            np.savetxt(file_handle, data[0], header=header)
        file_handle.close()

    @property
    def background_pattern(self) -> Pattern:
        """
        Returns the background pattern of the current pattern.
        :return: background Pattern
        """
        return self._background_pattern

    @background_pattern.setter
    def background_pattern(self, pattern: Pattern | None):
        if self._background_pattern is not None:
            self._background_pattern.changed.disconnect(self.recalculate_pattern)

        self._background_pattern = pattern
        if self._background_pattern is not None:
            self._background_pattern.changed.connect(self.recalculate_pattern)
        self.recalculate_pattern()

    def rebin(self, bin_size: float) -> Pattern:
        """
        Returns a new pattern, which is a rebinned version of the current one.

        :param bin_size: Size of the bins
        :return: rebinned Pattern
        """
        x, y = self.data
        x_min = np.round(np.min(x) / bin_size) * bin_size
        x_max = np.round(np.max(x) / bin_size) * bin_size
        new_x = np.arange(x_min, x_max + 0.1 * bin_size, bin_size)

        bins = np.hstack((x_min - bin_size * 0.5, new_x + bin_size * 0.5))
        new_y = np.histogram(x, bins, weights=y)[0] / np.histogram(x, bins)[0]

        return Pattern(new_x, new_y)

    @property
    def data(self) -> tuple[np.ndarray, np.ndarray]:
        """
        Returns the data of the pattern. If a background pattern is set, the background will be subtracted from the
        pattern. If smoothing is set, the pattern will be smoothed.

        :return: Tuple of x and y values
        """
        return self._pattern_x, self._pattern_y

    def recalculate_pattern(self):
        """
        Returns the data of the pattern. If a background pattern is set, the background will be subtracted from the
        pattern. If smoothing is set, the pattern will be smoothed.

        :return: Tuple of x and y values
        """
        if self._background_pattern is not None:
            # create background function
            x_bkg, y_bkg = self._background_pattern.data

            if not np.array_equal(x_bkg, self._original_x):
                # the background will be interpolated
                f_bkg = interp1d(x_bkg, y_bkg, kind="linear")

                # find overlapping x and y values:
                ind = np.where(
                    (self._original_x <= np.max(x_bkg))
                    & (self._original_x >= np.min(x_bkg))
                )
                x = self._original_x[ind]
                y = self._original_y[ind]

                if len(x) == 0:
                    # if there is no overlapping between background and pattern, raise an error
                    raise BkgNotInRangeError(self.name)

                y = y * self._scaling + self.offset - f_bkg(x)
            else:
                # if pattern and bkg have the same x basis we just delete y-y_bkg
                x, y = (
                    self._original_x,
                    self._original_y * self._scaling + self.offset - y_bkg,
                )
        else:
            x, y = self.original_data
            y = y * self.scaling + self.offset

        if self.auto_bkg is not None:
            self._auto_background_before_subtraction_pattern = Pattern(x, y)
            roi = (
                self.auto_bkg_roi
                if self.auto_bkg_roi is not None
                else [x[0] - 0.1, x[-1] + 0.1]
            )
            x, y = self._auto_background_before_subtraction_pattern.limit(*roi).data
            y_bkg = self.auto_bkg.extract_background(Pattern(x, y))
            self._auto_background_pattern = Pattern(
                x, y_bkg, name="auto_bkg_" + self.name
            )
            y -= y_bkg

        if self.smoothing > 0:
            y = gaussian_filter1d(y, self.smoothing)

        self._pattern_x = x
        self._pattern_y = y
        self.changed.emit()

    @data.setter
    def data(self, data: tuple[np.ndarray, np.ndarray]):
        """
        Sets the data of the pattern. Also resets the scaling and offset to 1 and 0 respectively.

        :param data: tuple of x and y values
        """
        (x, y) = data
        self._original_x = x
        self._original_y = y
        self.scaling = 1.0
        self.offset = 0

    @property
    def original_data(self) -> tuple[np.ndarray, np.ndarray]:
        """
        Returns the original data of the pattern without any background subtraction or smoothing.

        :return: tuple of x and y values
        """
        return self._original_x, self._original_y

    @property
    def x(self) -> np.ndarray:
        """Returns the x values of the pattern"""
        return self._pattern_x

    @x.setter
    def x(self, new_value: np.ndarray):
        """Sets the x values of the pattern"""
        self._original_x = new_value
        self.recalculate_pattern()

    @property
    def y(self) -> np.ndarray:
        """Returns the y values of the pattern"""
        return self._pattern_y

    @y.setter
    def y(self, new_y: np.ndarray):
        """Sets the y values of the pattern"""
        self._original_y = new_y
        self.recalculate_pattern()

    @property
    def scaling(self) -> float:
        """Returns the scaling of the pattern"""
        return self._scaling

    @scaling.setter
    def scaling(self, value):
        """
        Sets the scaling of the pattern, if below 0, it will be set to 0
        instead.
        """
        if value < 0:
            self._scaling = 0.0
        else:
            self._scaling = value
        self.recalculate_pattern()

    @property
    def offset(self) -> float:
        """Returns the offset of the pattern"""
        return self._offset

    @offset.setter
    def offset(self, value):
        """Sets the offset of the pattern"""
        self._offset = value
        self.recalculate_pattern()

    @property
    def smoothing(self) -> float:
        """Returns the smoothing of the pattern"""
        return self._smoothing

    @smoothing.setter
    def smoothing(self, value):
        """Sets the smoothing of the pattern"""
        self._smoothing = value
        self.recalculate_pattern()

    @property
    def auto_bkg(self) -> AutoBackground | None:
        """
        Returns the auto background object
        :return: AutoBackground
        """
        return self._auto_bkg

    @auto_bkg.setter
    def auto_bkg(self, value: AutoBackground | None):
        """
        Sets the auto background object
        :param value: AutoBackground
        """
        self._auto_bkg = value
        self.recalculate_pattern()

    @property
    def auto_bkg_roi(self) -> list[float] | None:
        """
        Returns the region of interest for the auto background
        :return: list of two floats
        """
        return self._auto_bkg_roi

    @auto_bkg_roi.setter
    def auto_bkg_roi(self, value: list[float] | None):
        """
        Sets the region of interest for the auto background
        :param value: list of two floats
        """
        self._auto_bkg_roi = value
        self.recalculate_pattern()

    @property
    def auto_background_pattern(self) -> Pattern:
        """
        Returns the auto background pattern
        :return: background Pattern
        """
        return self._auto_background_pattern

    @property
    def auto_background_before_subtraction_pattern(self) -> Pattern:
        """
        Returns the pattern before the auto background subtraction
        :return: background Pattern
        """
        return self._auto_background_before_subtraction_pattern

    def limit(self, x_min: float, x_max: float) -> Pattern:
        """
        Limits the pattern to a specific x-range. Does not modify inplace but returns a new limited Pattern

        :param x_min: lower limit of the x-range
        :param x_max: upper limit of the x-range
        :return: limited Pattern
        """
        x, y = self.data
        return Pattern(
            x[np.where((x_min < x) & (x < x_max))],
            y[np.where((x_min < x) & (x < x_max))],
        )

    def extend_to(self, x_value: float, y_value: float) -> Pattern:
        """
        Extends the current pattern to a specific x_value by filling it with the y_value. Does not modify inplace but
        returns a new filled Pattern

        :param x_value: Point to which extending the pattern should be smaller than the lowest x-value in the pattern or
        vice versa
        :param y_value: number to fill the pattern with
        :return: extended Pattern
        """
        x_step = np.mean(np.diff(self.x))
        x_min = np.min(self.x)
        x_max = np.max(self.x)
        if x_value < x_min:
            x_fill = np.arange(x_min - x_step, x_value - x_step * 0.5, -x_step)[::-1]
            y_fill = np.zeros(x_fill.shape)
            y_fill.fill(y_value)

            new_x = np.concatenate((x_fill, self.x))
            new_y = np.concatenate((y_fill, self.y))
        elif x_value > x_max:
            x_fill = np.arange(x_max + x_step, x_value + x_step * 0.5, x_step)
            y_fill = np.zeros(x_fill.shape)
            y_fill.fill(y_value)

            new_x = np.concatenate((self.x, x_fill))
            new_y = np.concatenate((self.y, y_fill))
        else:
            return self

        return Pattern(new_x, new_y)

    def to_dict(self) -> dict:
        """
        Returns a dictionary representation of the pattern which can be used to save the pattern to a json file.

        :return: dictionary representation of the pattern
        """
        return {
            "name": self.name,
            "x": self._original_x.tolist(),
            "y": self._original_y.tolist(),
            "scaling": self.scaling,
            "offset": self.offset,
            "smoothing": self.smoothing,
            "bkg_pattern": (
                self._background_pattern.to_dict()
                if self._background_pattern is not None
                else None
            ),
        }

    @staticmethod
    def from_dict(json_dict: dict) -> Pattern:
        """
        Creates a new Pattern from a dictionary representation of a Pattern.

        :param json_dict: dictionary representation of a Pattern
        :return: new Pattern
        """
        pattern = Pattern(
            np.array(json_dict["x"]), np.array(json_dict["y"]), json_dict["name"]
        )

        pattern.scaling = json_dict["scaling"]
        pattern.offset = json_dict["offset"]

        if json_dict["bkg_pattern"] is not None:
            bkg_pattern = Pattern.from_dict(json_dict["bkg_pattern"])
        else:
            bkg_pattern = None
        pattern.background_pattern = bkg_pattern

        pattern.smoothing = json_dict["smoothing"]
        pattern.recalculate_pattern()

        return pattern

    def delete_range(self, x_range: list) -> Pattern:
        """
        Creates a new pattern from the provided pattern, in which
        the data points within the provided range are deleted.

        :param x_range: List of two floats of x values,
         The data points within x_range[0] and x_range[1]
         are deleted from the pattern.
        :return: New pattern without data points that lie within
         the provided range

        Example:
        >>> test_pattern = Pattern(np.arange(1, 11) / 10, np.arange(11, 21) / 10)
        >>> test_pattern.x
        array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
        >>> test_pattern.y
        array([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. ])
        >>> new_pattern = test_pattern.delete_range([0.33, 0.85])
        >>> new_pattern.x
        array([0.1, 0.2, 0.3, 0.9, 1. ])
        >>> new_pattern.y
        array([1.1, 1.2, 1.3, 1.9, 2. ])
        >>> test_pattern.x
        array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
        >>> test_pattern.y
        array([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. ])
        """
        x, y = self.data
        ind = np.where((x < x_range[0]) | (x > x_range[1]))

        return Pattern(x[ind], y[ind])

    def delete_ranges(self, x_ranges: list) -> Pattern:
        """
        Creates a new pattern from the provided pattern, in which
        the data points within each of the provided ranges are deleted.
        This is similar to the delete_range function, but allows
        the deletion of data points within several ranges provided.

        :param x_ranges: List containing lists of floats of x values,
         The data points between the two x values provided in each
         of the lists are deleted from the pattern.
        :return: New pattern without data points that lie within
         the provided ranges

        Example:
        >>> test_pattern = Pattern(np.arange(1, 11) / 10, np.arange(11, 21) / 10)
        >>> test_pattern.x
        array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
        >>> test_pattern.y
        array([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. ])
        >>> new_pattern = test_pattern.delete_ranges([[0.22, 0.41], [0.7, 0.9]])
        >>> new_pattern.x
        array([0.1, 0.2, 0.5, 0.6, 1. ])
        >>> new_pattern.y
        array([1.1, 1.2, 1.5, 1.6, 2. ])
        >>> test_pattern.x
        array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])
        >>> test_pattern.y
        array([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. ])
        """
        x, y = self.data
        for r in x_ranges:
            ind = np.where((x < r[0]) | (x > r[1]))
            x, y = x[ind], y[ind]

        return Pattern(x, y)

    def transform_x(self, fcn: callable) -> Pattern:
        """
        Transforms the x values of the pattern using the provided function.
        This takes care to also update the corresponding background pattern
        or auto background parameters.

        Example:
        >>> test_pattern = Pattern(
                np.arange(1, 11) / 10,
                np.arange(11, 21) / 10
            )
        >>> test_pattern.x
        array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. ])

        >>> new_pattern = test_pattern.transform_x(lambda x: x ** 2)
        >>> new_pattern.x
        array([0.01, 0.04, 0.09, 0.16, 0.25, 0.36, 0.49, 0.64, 0.81, 1.])


        :param fcn: function to transform the x values
        :return: current pattern with transformed x values
        """
        self.x = fcn(self.x)
        if self._background_pattern is not None:
            self._background_pattern.x = fcn(self._background_pattern.x)

        if self.auto_bkg_roi is not None:
            self.auto_bkg_roi = fcn(np.array(self.auto_bkg_roi))

        if self.auto_bkg is not None:
            self.auto_bkg.transform_x(fcn)

        self.recalculate_pattern()

        return self

    ###########################################################
    # Operators:

    def __sub__(self, other: Pattern) -> Pattern:
        """
        Subtracts the other pattern from the current one. If the other pattern
        has a different shape, the subtraction will be done on the overlapping
        x-values and the background will be interpolated. If there is no
        overlapping between the two patterns, a BkgNotInRangeError will be
        raised.

        :param other: Pattern to be subtracted
        :return: new Pattern
        """
        orig_x, orig_y = self.data
        other_x, other_y = other.data

        if orig_x.shape != other_x.shape:
            # the background will be interpolated
            other_fcn = interp1d(other_x, other_y, kind="cubic")

            # find overlapping x and y values:
            ind = np.where((orig_x <= np.max(other_x)) & (orig_x >= np.min(other_x)))
            x = orig_x[ind]
            y = orig_y[ind]

            if len(x) == 0:
                # if there is no overlapping between background and pattern, raise an error
                raise BkgNotInRangeError(self.name)
            return Pattern(x, y - other_fcn(x))
        else:
            return Pattern(orig_x, orig_y - other_y)

    def __add__(self, other: Pattern) -> Pattern:
        """
        Adds the other pattern to the current one. If the other pattern
        has a different shape, the addition will be done on the overlapping
        x-values and the y-values of the other pattern will be interpolated.
        If there is no overlapping between the two patterns, a BkgNotInRangeror
        will be raised.

        :param other: Pattern to be added
        :return: new Pattern
        """
        orig_x, orig_y = self.data
        other_x, other_y = other.data

        if orig_x.shape != other_x.shape:
            # the background will be interpolated
            other_fcn = interp1d(other_x, other_y, kind="linear")

            # find overlapping x and y values:
            ind = np.where((orig_x <= np.max(other_x)) & (orig_x >= np.min(other_x)))
            x = orig_x[ind]
            y = orig_y[ind]

            if len(x) == 0:
                # if there is no overlapping between background and pattern, raise an error
                raise BkgNotInRangeError(self.name)
            return Pattern(x, y + other_fcn(x))
        else:
            return Pattern(orig_x, orig_y + other_y)

    def __rmul__(self, other: float) -> Pattern:
        """
        Multiplies the pattern with a scalar.

        :param other: scalar to multiply with
        :return: new Pattern
        """
        orig_x, orig_y = self.data
        return Pattern(np.copy(orig_x), np.copy(orig_y) * other)

    def __eq__(self, other: Pattern) -> bool:
        """
        Checks if two patterns are equal. Two patterns are equal if their data
        is equal.

        :param other: Pattern to compare with
        :return: True if equal, False otherwise
        """
        if not isinstance(other, Pattern):
            return False
        if np.array_equal(self.data, other.data):
            return True
        return False

    def __len__(self):
        return len(self.x)

    def __str__(self):
        return f"Pattern '{self.name}' with {len(self)} points"


class BkgNotInRangeError(Exception):
    def __init__(self, pattern_name: str):
        self.pattern_name = pattern_name

    def __str__(self):
        return (
            "The background range does not overlap with the Pattern range for "
            + self.pattern_name
        )