1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
<p align="center">
<img src="https://raw.githubusercontent.com/sumerc/yappi/master/Misc/logo.png" alt="yappi">
</p>
<h1 align="center">Yappi</h1>
<p align="center">
A tracing profiler that is <b>multithreading, asyncio and gevent</b> aware.
</p>
[](https://freepalestine.dev)
<p align="center">
<a href="https://github.com/sumerc/yappi/actions/workflows/main.yml"><img src="https://github.com/sumerc/yappi/workflows/CI/badge.svg?branch=master"></a>
<a href="https://pypi.org/project/yappi/"><img src="https://img.shields.io/pypi/v/yappi.svg"></a>
<a href="https://pypi.org/project/yappi/"><img src="https://img.shields.io/pypi/dw/yappi.svg"></a>
<a href="https://pypi.org/project/yappi/"><img src="https://img.shields.io/pypi/pyversions/yappi.svg"></a>
<a href="https://github.com/sumerc/yappi/commits/"><img src="https://img.shields.io/github/last-commit/sumerc/yappi.svg"></a>
<a href="https://github.com/sumerc/yappi/blob/master/LICENSE"><img src="https://img.shields.io/github/license/sumerc/yappi.svg"></a>
<a href="https://freepalestine.dev"><img src="https://freepalestine.dev/badge?t=d&u=0&r=1" alt="From the river to the sea, Palestine will be free" /></a>
</p>
## Highlights
- **Fast**: Yappi is fast. It is completely written in C and lots of love and care went into making it fast.
- **Unique**: Yappi supports multithreaded, [asyncio](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) and [gevent](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) profiling. Tagging/filtering multiple profiler results has interesting [use cases](https://github.com/sumerc/yappi/blob/master/doc/api.md#set_tag_callback).
- **Intuitive**: Profiler can be started/stopped and results can be obtained from any time and any thread.
- **Standards Compliant**: Profiler results can be saved in [callgrind](http://valgrind.org/docs/manual/cl-format.html) or [pstat](http://docs.python.org/3.4/library/profile.html#pstats.Stats) formats.
- **Rich in Feature set**: Profiler results can show either [Wall Time](https://en.wikipedia.org/wiki/Elapsed_real_time) or actual [CPU Time](http://en.wikipedia.org/wiki/CPU_time) and can be aggregated from different sessions. Various flags are defined for filtering and sorting profiler results.
- **Robust**: Yappi has been around for years.
## Motivation
CPython standard distribution comes with three deterministic profilers. `cProfile`, `Profile` and `hotshot`. `cProfile` is implemented as a C module based on `lsprof`, `Profile` is in pure Python and `hotshot` can be seen as a small subset of a cProfile. The major issue is that all of these profilers lack support for multi-threaded programs and CPU time.
If you want to profile a multi-threaded application, you must give an entry point to these profilers and then maybe merge the outputs. None of these profilers are designed to work on long-running multi-threaded applications. It is also not possible to profile an application that start/stop/retrieve traces on the fly with these profilers.
Now fast forwarding to 2019: With the latest improvements on `asyncio` library and asynchronous frameworks, most of the current profilers lacks the ability to show correct wall/cpu time or even call count information per-coroutine. Thus we need a different kind of approach to profile asynchronous code. Yappi, with v1.2 introduces the concept of `coroutine profiling`. With `coroutine-profiling`, you should be able to profile correct wall/cpu time and call count of your coroutine. (including the time spent in context switches, too). You can see details [here](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md).
## Installation
Can be installed via PyPI
```
$ pip install yappi
```
OR from the source directly.
```
$ pip install git+https://github.com/sumerc/yappi#egg=yappi
```
## Examples
### A simple example:
```python
import yappi
def a():
for _ in range(10000000): # do something CPU heavy
pass
yappi.set_clock_type("cpu") # Use set_clock_type("wall") for wall time
yappi.start()
a()
yappi.get_func_stats().print_all()
yappi.get_thread_stats().print_all()
'''
Clock type: CPU
Ordered by: totaltime, desc
name ncall tsub ttot tavg
doc.py:5 a 1 0.117907 0.117907 0.117907
name id tid ttot scnt
_MainThread 0 139867147315008 0.118297 1
'''
```
### Profile a multithreaded application:
You can profile a multithreaded application via Yappi and can easily retrieve
per-thread profile information by filtering on `ctx_id` with `get_func_stats` API.
```python
import yappi
import time
import threading
_NTHREAD = 3
def _work(n):
time.sleep(n * 0.1)
yappi.start()
threads = []
# generate _NTHREAD threads
for i in range(_NTHREAD):
t = threading.Thread(target=_work, args=(i + 1, ))
t.start()
threads.append(t)
# wait all threads to finish
for t in threads:
t.join()
yappi.stop()
# retrieve thread stats by their thread id (given by yappi)
threads = yappi.get_thread_stats()
for thread in threads:
print(
"Function stats for (%s) (%d)" % (thread.name, thread.id)
) # it is the Thread.__class__.__name__
yappi.get_func_stats(ctx_id=thread.id).print_all()
'''
Function stats for (Thread) (3)
name ncall tsub ttot tavg
..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000062 0.000062
doc3.py:8 _work 1 0.000012 0.000045 0.000045
Function stats for (Thread) (2)
name ncall tsub ttot tavg
..hon3.7/threading.py:859 Thread.run 1 0.000017 0.000065 0.000065
doc3.py:8 _work 1 0.000010 0.000048 0.000048
Function stats for (Thread) (1)
name ncall tsub ttot tavg
..hon3.7/threading.py:859 Thread.run 1 0.000010 0.000043 0.000043
doc3.py:8 _work 1 0.000006 0.000033 0.000033
'''
```
### Different ways to filter/sort stats:
You can use `filter_callback` on `get_func_stats` API to filter on functions, modules
or whatever available in `YFuncStat` object.
```python
import package_a
import yappi
import sys
def a():
pass
def b():
pass
yappi.start()
a()
b()
package_a.a()
yappi.stop()
# filter by module object
current_module = sys.modules[__name__]
stats = yappi.get_func_stats(
filter_callback=lambda x: yappi.module_matches(x, [current_module])
) # x is a yappi.YFuncStat object
stats.sort("name", "desc").print_all()
'''
Clock type: CPU
Ordered by: name, desc
name ncall tsub ttot tavg
doc2.py:10 b 1 0.000001 0.000001 0.000001
doc2.py:6 a 1 0.000001 0.000001 0.000001
'''
# filter by function object
stats = yappi.get_func_stats(
filter_callback=lambda x: yappi.func_matches(x, [a, b])
).print_all()
'''
name ncall tsub ttot tavg
doc2.py:6 a 1 0.000001 0.000001 0.000001
doc2.py:10 b 1 0.000001 0.000001 0.000001
'''
# filter by module name
stats = yappi.get_func_stats(filter_callback=lambda x: 'package_a' in x.module
).print_all()
'''
name ncall tsub ttot tavg
package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001
'''
# filter by function name
stats = yappi.get_func_stats(filter_callback=lambda x: 'a' in x.name
).print_all()
'''
name ncall tsub ttot tavg
doc2.py:6 a 1 0.000001 0.000001 0.000001
package_a/__init__.py:1 a 1 0.000001 0.000001 0.000001
'''
```
### Profile an asyncio application:
You can see that coroutine wall-time's are correctly profiled.
```python
import asyncio
import yappi
async def foo():
await asyncio.sleep(1.0)
await baz()
await asyncio.sleep(0.5)
async def bar():
await asyncio.sleep(2.0)
async def baz():
await asyncio.sleep(1.0)
yappi.set_clock_type("WALL")
with yappi.run():
asyncio.run(foo())
asyncio.run(bar())
yappi.get_func_stats().print_all()
'''
Clock type: WALL
Ordered by: totaltime, desc
name ncall tsub ttot tavg
doc4.py:5 foo 1 0.000030 2.503808 2.503808
doc4.py:11 bar 1 0.000012 2.002492 2.002492
doc4.py:15 baz 1 0.000013 1.001397 1.001397
'''
```
### Profile a gevent application:
You can use yappi to profile greenlet applications now!
```python
import yappi
from greenlet import greenlet
import time
class GreenletA(greenlet):
def run(self):
time.sleep(1)
yappi.set_context_backend("greenlet")
yappi.set_clock_type("wall")
yappi.start(builtins=True)
a = GreenletA()
a.switch()
yappi.stop()
yappi.get_func_stats().print_all()
'''
name ncall tsub ttot tavg
tests/test_random.py:6 GreenletA.run 1 0.000007 1.000494 1.000494
time.sleep 1 1.000487 1.000487 1.000487
'''
```
## Documentation
- [Introduction](https://github.com/sumerc/yappi/blob/master/doc/introduction.md)
- [Clock Types](https://github.com/sumerc/yappi/blob/master/doc/clock_types.md)
- [API](https://github.com/sumerc/yappi/blob/master/doc/api.md)
- [Coroutine Profiling](https://github.com/sumerc/yappi/blob/master/doc/coroutine-profiling.md) _(new in 1.2)_
- [Greenlet Profiling](https://github.com/sumerc/yappi/blob/master/doc/greenlet-profiling.md) _(new in 1.3)_
Note: Yes. I know I should be moving docs to readthedocs.io. Stay tuned!
## Related Talks
Special thanks to A.Jesse Jiryu Davis:
- [Python Performance Profiling: The Guts And The Glory (PyCon 2015)](https://www.youtube.com/watch?v=4uJWWXYHxaM)
## PyCharm Integration
Yappi is the default profiler in `PyCharm`. If you have Yappi installed, `PyCharm` will use it. See [the official](https://www.jetbrains.com/help/pycharm/profiler.html) documentation for more details.
|