1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
# Profiling Greenlets
Yappi now supports profiling [greenlets](https://greenlet.readthedocs.io/en/latest/)!
How do you use it?
- [profile basic greenlet applications](#profile-simple-greenlets)
- [profile gevent applications](#profile-gevent-applications)
## Profile simple greenlets
### Basic Usage
Here's an example of profiling a simple greenlet based application which runs two greenlets
```python
import yappi
from greenlet import greenlet
import time
## Application logic
def burn_cpu(secs):
t0 = time.process_time()
elapsed = 0
while (elapsed <= secs):
for _ in range(1000):
pass
elapsed = time.process_time() - t0
class GreenletA(greenlet):
def run(self):
burn_cpu(0.1)
class GreenletB(greenlet):
def run(self):
burn_cpu(0.2)
# Running the profiler:
# Step 1: Configure the profiler to work with greenlets
yappi.set_context_backend("greenlet")
yappi.set_clock_type("cpu")
# Step 2: Run the profiler and stop it
yappi.start()
a = GreenletA()
b = GreenletB()
a.switch()
b.switch()
yappi.stop()
# Step 3: View results
print("## Function stats:")
yappi.get_func_stats().print_all()
print("\n## Greenlet stats:")
yappi.get_greenlet_stats().print_all()
```
Sample Output:
```
## Function stats:
Clock type: CPU
Ordered by: totaltime, desc
name ncall tsub ttot tavg
test.py:7 burn_cpu 2 0.255467 0.300078 0.150039
test.py:20 GreenletB.run 1 0.000009 0.200057 0.200057
test.py:16 GreenletA.run 1 0.000008 0.100038 0.100038
## Greenlet stats:
name id ttot scnt
GreenletB 3 0.200074 1
GreenletA 2 0.100051 1
greenlet 1 0.000076 3
```
The meaning of each column and table is explained here - [Introduction](https://github.com/sumerc/yappi/blob/master/doc/introduction.md)
## Profile gevent applications
With support for greenlets, you can now profile popular async frameworks built on top of greenlets like Gevents.
### Basic Usage
```python
import yappi
from gevent import Greenlet
import time
## Application logic
def burn_cpu(secs):
t0 = time.process_time()
elapsed = 0
while (elapsed <= secs):
for _ in range(1000):
pass
elapsed = time.process_time() - t0
class GreenletA(Greenlet):
def _run(self):
burn_cpu(0.1)
class GreenletB(Greenlet):
def _run(self):
burn_cpu(0.2)
# Running the profiler:
# Step 1: Configure the profiler to work with greenlets
yappi.set_context_backend("greenlet")
yappi.set_clock_type("cpu")
# Step 2: Run the profiler and stop it
yappi.start()
a = GreenletA()
b = GreenletB()
a.start()
b.start()
a.get()
b.get()
yappi.stop()
# Step 3: View results
print("## Function stats:")
yappi.get_func_stats().print_all()
print("\n## Greenlet stats:")
yappi.get_greenlet_stats().print_all()
```
Sample output:
```
## Function stats:
Clock type: CPU
Ordered by: totaltime, desc
name ncall tsub ttot tavg
tests/test_random.py:7 burn_cpu 2 0.257554 0.300067 0.150033
..s/test_random.py:20 GreenletB._run 1 0.000007 0.200025 0.200025
..s/test_random.py:16 GreenletA._run 1 0.000009 0.100058 0.100058
..
.. More function stats
..
## Greenlet stats:
name id ttot scnt
GreenletB 4 0.200048 1
GreenletA 3 0.100075 1
greenlet 1 0.006496 2
Hub 2 0.000212 1
```
### With 'threading' monkey patched
When the threading module is monkey patched, `threading.Thread` is used to spawn greenlets instead
of `gevent.Greenlet`. Since yappi reports the name of each greenlet class by default, the user must
inform yappi to retrieve the class name from the `threading` library instead. Yappi provides
`set_context_name_callback` to do so. See below for an example:
```python
from gevent import monkey
monkey.patch_all()
import yappi
import threading
import gevent
import time
## Application logic
def burn_cpu(secs):
t0 = time.process_time()
elapsed = 0
while (elapsed <= secs):
for _ in range(1000):
pass
elapsed = time.process_time() - t0
class ThreadA(threading.Thread):
def run(self):
burn_cpu(0.1)
class ThreadB(threading.Thread):
def run(self):
burn_cpu(0.2)
# Running the profiler:
# Step 1: Configure the profiler to work with greenlets
yappi.set_context_backend("greenlet")
yappi.set_clock_type("cpu")
# Step 2: Configure the system to capture thread names correctly
def _ctx_name_callback():
curr_gl = gevent.getcurrent()
if curr_gl is gevent.get_hub():
return curr_gl.__class__.__name__
# yappi._ctx_name_callback returns the name of the thread
# class
return yappi._ctx_name_callback()
yappi.set_context_name_callback(_ctx_name_callback)
# Step 3: Run the profiler and stop it
yappi.start()
a = ThreadA()
b = ThreadB()
a.start()
b.start()
a.join()
b.join()
yappi.stop()
# Step 4: View results
print("## Function stats:")
yappi.get_func_stats().print_all()
print("\n## Greenlet stats:")
yappi.get_greenlet_stats().print_all()
```
Sample Output:
```
## Function stats:
Clock type: CPU
Ordered by: totaltime, desc
name ncall tsub ttot tavg
tests/test_random.py:11 burn_cpu 2 0.255339 0.300063 0.150031
..hreading.py:870 ThreadB._bootstrap 1 0.000011 0.200229 0.200229
..ng.py:901 ThreadB._bootstrap_inner 1 0.000059 0.200218 0.200218
tests/test_random.py:24 ThreadB.run 1 0.000010 0.200042 0.200042
..hreading.py:870 ThreadA._bootstrap 1 0.000012 0.100218 0.100218
..
.. More function stats
..
## Greenlet stats:
name id ttot scnt
ThreadB 4 0.200243 1
ThreadA 3 0.100228 1
_MainThread 1 0.000875 4
Hub 2 0.000182 3
```
### Limitations in gevent profiling
Gevent allows users to run functions on a pool of native threads via [ThreadPool](http://www.gevent.org/api/gevent.threadpool.html). All threads spawned as part of this pool cannot be tracked by yappi and so yappi cannot report stats for functions / greenlets running on them.
|