File: scoring.py

package info (click to toggle)
python-zxcvbn 1.0%2Bgit20130503.bc1c2d-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 9,524 kB
  • ctags: 100
  • sloc: python: 935; makefile: 16
file content (343 lines) | stat: -rw-r--r-- 12,196 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import math
import re

from zxcvbn.matching import (KEYBOARD_STARTING_POSITIONS, KEYBOARD_AVERAGE_DEGREE,
                             KEYPAD_STARTING_POSITIONS, KEYPAD_AVERAGE_DEGREE)

def binom(n, k):
    """
    Returns binomial coefficient (n choose k).
    """
    # http://blog.plover.com/math/choose.html
    if k > n:
        return 0
    if k == 0:
        return 1
    result = 1
    for denom in range(1, k + 1):
        result *= n
        result /= denom
        n -= 1
    return result


def lg(n):
    """
    Returns logarithm of n in base 2.
    """
    return math.log(n, 2)

# ------------------------------------------------------------------------------
# minimum entropy search -------------------------------------------------------
# ------------------------------------------------------------------------------
#
# takes a list of overlapping matches, returns the non-overlapping sublist with
# minimum entropy. O(nm) dp alg for length-n password with m candidate matches.
# ------------------------------------------------------------------------------
def get(a, i):
    if i < 0 or i >= len(a):
        return 0
    return a[i]


def minimum_entropy_match_sequence(password, matches):
    """
    Returns minimum entropy

    Takes a list of overlapping matches, returns the non-overlapping sublist with
    minimum entropy. O(nm) dp alg for length-n password with m candidate matches.
    """
    bruteforce_cardinality = calc_bruteforce_cardinality(password) # e.g. 26 for lowercase
    up_to_k = [0] * len(password) # minimum entropy up to k.
    # for the optimal sequence of matches up to k, holds the final match (match['j'] == k). null means the sequence ends
    # without a brute-force character.
    backpointers = []
    for k in range(0, len(password)):
        # starting scenario to try and beat: adding a brute-force character to the minimum entropy sequence at k-1.
        up_to_k[k] = get(up_to_k, k-1) + lg(bruteforce_cardinality)
        backpointers.append(None)
        for match in matches:
            if match['j'] != k:
                continue
            i, j = match['i'], match['j']
            # see if best entropy up to i-1 + entropy of this match is less than the current minimum at j.
            up_to = get(up_to_k, i-1)
            candidate_entropy = up_to + calc_entropy(match)
            if candidate_entropy < up_to_k[j]:
                #print "New minimum: using " + str(match)
                #print "Entropy: " + str(candidate_entropy)
                up_to_k[j] = candidate_entropy
                backpointers[j] = match

    # walk backwards and decode the best sequence
    match_sequence = []
    k = len(password) - 1
    while k >= 0:
        match = backpointers[k]
        if match:
            match_sequence.append(match)
            k = match['i'] - 1
        else:
            k -= 1
    match_sequence.reverse()

    # fill in the blanks between pattern matches with bruteforce "matches"
    # that way the match sequence fully covers the password: match1.j == match2.i - 1 for every adjacent match1, match2.
    def make_bruteforce_match(i, j):
        return {
            'pattern': 'bruteforce',
            'i': i,
            'j': j,
            'token': password[i:j+1],
            'entropy': lg(math.pow(bruteforce_cardinality, j - i + 1)),
            'cardinality': bruteforce_cardinality,
        }
    k = 0
    match_sequence_copy = []
    for match in match_sequence:
        i, j = match['i'], match['j']
        if i - k > 0:
            match_sequence_copy.append(make_bruteforce_match(k, i - 1))
        k = j + 1
        match_sequence_copy.append(match)

    if k < len(password):
        match_sequence_copy.append(make_bruteforce_match(k, len(password) - 1))
    match_sequence = match_sequence_copy

    min_entropy = 0 if len(password) == 0 else up_to_k[len(password) - 1] # corner case is for an empty password ''
    crack_time = entropy_to_crack_time(min_entropy)

    # final result object
    return {
        'password': password,
        'entropy': round_to_x_digits(min_entropy, 3),
        'match_sequence': match_sequence,
        'crack_time': round_to_x_digits(crack_time, 3),
        'crack_time_display': display_time(crack_time),
        'score': crack_time_to_score(crack_time),
    }


def round_to_x_digits(number, digits):
    """
    Returns 'number' rounded to 'digits' digits.
    """
    return round(number * math.pow(10, digits)) / math.pow(10, digits)

# ------------------------------------------------------------------------------
# threat model -- stolen hash catastrophe scenario -----------------------------
# ------------------------------------------------------------------------------
#
# assumes:
# * passwords are stored as salted hashes, different random salt per user.
#   (making rainbow attacks infeasable.)
# * hashes and salts were stolen. attacker is guessing passwords at max rate.
# * attacker has several CPUs at their disposal.
# ------------------------------------------------------------------------------

# for a hash function like bcrypt/scrypt/PBKDF2, 10ms per guess is a safe lower bound.
# (usually a guess would take longer -- this assumes fast hardware and a small work factor.)
# adjust for your site accordingly if you use another hash function, possibly by
# several orders of magnitude!
SINGLE_GUESS = .010
NUM_ATTACKERS = 100 # number of cores guessing in parallel.

SECONDS_PER_GUESS = SINGLE_GUESS / NUM_ATTACKERS


def entropy_to_crack_time(entropy):
    return (0.5 * math.pow(2, entropy)) * SECONDS_PER_GUESS # average, not total


def crack_time_to_score(seconds):
    if seconds < math.pow(10, 2):
        return 0
    if seconds < math.pow(10, 4):
        return 1
    if seconds < math.pow(10, 6):
        return 2
    if seconds < math.pow(10, 8):
        return 3
    return 4

# ------------------------------------------------------------------------------
# entropy calcs -- one function per match pattern ------------------------------
# ------------------------------------------------------------------------------

def calc_entropy(match):
    if 'entropy' in match: return match['entropy']

    if match['pattern'] == 'repeat':
        entropy_func = repeat_entropy
    elif match['pattern'] == 'sequence':
        entropy_func = sequence_entropy
    elif match['pattern'] == 'digits':
        entropy_func = digits_entropy
    elif match['pattern'] == 'year':
        entropy_func = year_entropy
    elif match['pattern'] == 'date':
        entropy_func = date_entropy
    elif match['pattern'] == 'spatial':
        entropy_func = spatial_entropy
    elif match['pattern'] == 'dictionary':
        entropy_func = dictionary_entropy
    match['entropy'] = entropy_func(match)
    return match['entropy']


def repeat_entropy(match):
    cardinality = calc_bruteforce_cardinality(match['token'])
    return lg(cardinality * len(match['token']))


def sequence_entropy(match):
    first_chr = match['token'][0]
    if first_chr in ['a', '1']:
        base_entropy = 1
    else:
        if first_chr.isdigit():
            base_entropy = lg(10) # digits
        elif first_chr.isalpha():
            base_entropy = lg(26) # lower
        else:
            base_entropy = lg(26) + 1 # extra bit for uppercase
    if not match['ascending']:
        base_entropy += 1 # extra bit for descending instead of ascending
    return base_entropy + lg(len(match['token']))


def digits_entropy(match):
    return lg(math.pow(10, len(match['token'])))


NUM_YEARS = 119 # years match against 1900 - 2019
NUM_MONTHS = 12
NUM_DAYS = 31


def year_entropy(match):
    return lg(NUM_YEARS)


def date_entropy(match):
    if match['year'] < 100:
        entropy = lg(NUM_DAYS * NUM_MONTHS * 100) # two-digit year
    else:
        entropy = lg(NUM_DAYS * NUM_MONTHS * NUM_YEARS) # four-digit year

    if match['separator']:
        entropy += 2 # add two bits for separator selection [/,-,.,etc]
    return entropy


def spatial_entropy(match):
    if match['graph'] in ['qwerty', 'dvorak']:
        s = KEYBOARD_STARTING_POSITIONS
        d = KEYBOARD_AVERAGE_DEGREE
    else:
        s = KEYPAD_STARTING_POSITIONS
        d = KEYPAD_AVERAGE_DEGREE
    possibilities = 0
    L = len(match['token'])
    t = match['turns']
    # estimate the number of possible patterns w/ length L or less with t turns or less.
    for i in range(2, L + 1):
        possible_turns = min(t, i - 1)
        for j in range(1, possible_turns+1):
            x =  binom(i - 1, j - 1) * s * math.pow(d, j)
            possibilities += x
    entropy = lg(possibilities)
    # add extra entropy for shifted keys. (% instead of 5, A instead of a.)
    # math is similar to extra entropy from uppercase letters in dictionary matches.
    if 'shifted_count' in match:
        S = match['shifted_count']
        U = L - S # unshifted count
        possibilities = sum(binom(S + U, i) for i in xrange(0, min(S, U) + 1))
        entropy += lg(possibilities)
    return entropy


def dictionary_entropy(match):
    match['base_entropy'] = lg(match['rank']) # keep these as properties for display purposes
    match['uppercase_entropy'] = extra_uppercase_entropy(match)
    match['l33t_entropy'] = extra_l33t_entropy(match)
    ret = match['base_entropy'] + match['uppercase_entropy'] + match['l33t_entropy']
    return ret


START_UPPER = re.compile('^[A-Z][^A-Z]+$')
END_UPPER = re.compile('^[^A-Z]+[A-Z]$')
ALL_UPPER = re.compile('^[A-Z]+$')


def extra_uppercase_entropy(match):
    word = match['token']
    if word.islower():
        return 0
    # a capitalized word is the most common capitalization scheme,
    # so it only doubles the search space (uncapitalized + capitalized): 1 extra bit of entropy.
    # allcaps and end-capitalized are common enough too, underestimate as 1 extra bit to be safe.
    for regex in [START_UPPER, END_UPPER, ALL_UPPER]:
        if regex.match(word):
            return 1
    # Otherwise calculate the number of ways to capitalize U+L uppercase+lowercase letters with U uppercase letters or
    # less. Or, if there's more uppercase than lower (for e.g. PASSwORD), the number of ways to lowercase U+L letters
    # with L lowercase letters or less.
    upp_len = len([x for x in word if x.isupper()])
    low_len = len([x for x in word if x.islower()])
    possibilities = sum(binom(upp_len + low_len, i) for i in range(0, min(upp_len, low_len) + 1))
    return lg(possibilities)


def extra_l33t_entropy(match):
    if 'l33t' not in match or not match['l33t']:
        return 0
    possibilities = 0
    for subbed, unsubbed in match['sub'].items():
        sub_len = len([x for x in match['token'] if x == subbed])
        unsub_len = len([x for x in match['token'] if x == unsubbed])
        possibilities += sum(binom(unsub_len + sub_len, i) for i in range(0, min(unsub_len, sub_len) + 1))
    # corner: return 1 bit for single-letter subs, like 4pple -> apple, instead of 0.
    if possibilities <= 1:
        return 1
    return lg(possibilities)

# utilities --------------------------------------------------------------------

def calc_bruteforce_cardinality(password):
    lower, upper, digits, symbols = 0, 0, 0, 0
    for char in password:
        if char.islower():
            lower = 26
        elif char.isdigit():
            digits = 10
        elif char.isupper():
            upper = 26
        else:
            symbols = 33
    cardinality = lower + digits + upper + symbols
    return cardinality


def display_time(seconds):
    minute = 60
    hour = minute * 60
    day = hour * 24
    month = day * 31
    year = month * 12
    century = year * 100
    if seconds < minute:
        return 'instant'
    elif seconds < hour:
        return str(1 + math.ceil(seconds / minute)) + " minutes"
    elif seconds < day:
        return str(1 + math.ceil(seconds / hour)) + " hours"
    elif seconds < month:
        return str(1 + math.ceil(seconds / day)) + " days"
    elif seconds < year:
        return str(1 + math.ceil(seconds / month)) + " months"
    elif seconds < century:
        return str(1 + math.ceil(seconds / year)) + " years"
    else:
        return 'centuries'