1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
# R A N D O M V A R I A B L E G E N E R A T O R S
#
# distributions on the real line:
# ------------------------------
# normal (Gaussian)
# lognormal
# negative exponential
# gamma
# beta
#
# distributions on the circle (angles 0 to 2pi)
# ---------------------------------------------
# circular uniform
# von Mises
# Translated from anonymously contributed C/C++ source.
# Multi-threading note: the random number generator used here is not
# thread-safe; it is possible that two calls return the same random
# value. See whrandom.py for more info.
import whrandom
from whrandom import random, uniform, randint, choice, randrange # For export!
from math import log, exp, pi, e, sqrt, acos, cos, sin
# Interfaces to replace remaining needs for importing whrandom
# XXX TO DO: make the distribution functions below into methods.
def makeseed(a=None):
"""Turn a hashable value into three seed values for whrandom.seed().
None or no argument returns (0, 0, 0), to seed from current time.
"""
if a is None:
return (0, 0, 0)
a = hash(a)
a, x = divmod(a, 256)
a, y = divmod(a, 256)
a, z = divmod(a, 256)
x = (x + a) % 256 or 1
y = (y + a) % 256 or 1
z = (z + a) % 256 or 1
return (x, y, z)
def seed(a=None):
"""Seed the default generator from any hashable value.
None or no argument returns (0, 0, 0) to seed from current time.
"""
x, y, z = makeseed(a)
whrandom.seed(x, y, z)
class generator(whrandom.whrandom):
"""Random generator class."""
def __init__(self, a=None):
"""Constructor. Seed from current time or hashable value."""
self.seed(a)
def seed(self, a=None):
"""Seed the generator from current time or hashable value."""
x, y, z = makeseed(a)
whrandom.whrandom.seed(self, x, y, z)
def new_generator(a=None):
"""Return a new random generator instance."""
return generator(a)
# Housekeeping function to verify that magic constants have been
# computed correctly
def verify(name, expected):
computed = eval(name)
if abs(computed - expected) > 1e-7:
raise ValueError, \
'computed value for %s deviates too much (computed %g, expected %g)' % \
(name, computed, expected)
# -------------------- normal distribution --------------------
NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
verify('NV_MAGICCONST', 1.71552776992141)
def normalvariate(mu, sigma):
# mu = mean, sigma = standard deviation
# Uses Kinderman and Monahan method. Reference: Kinderman,
# A.J. and Monahan, J.F., "Computer generation of random
# variables using the ratio of uniform deviates", ACM Trans
# Math Software, 3, (1977), pp257-260.
while 1:
u1 = random()
u2 = random()
z = NV_MAGICCONST*(u1-0.5)/u2
zz = z*z/4.0
if zz <= -log(u2):
break
return mu+z*sigma
# -------------------- lognormal distribution --------------------
def lognormvariate(mu, sigma):
return exp(normalvariate(mu, sigma))
# -------------------- circular uniform --------------------
def cunifvariate(mean, arc):
# mean: mean angle (in radians between 0 and pi)
# arc: range of distribution (in radians between 0 and pi)
return (mean + arc * (random() - 0.5)) % pi
# -------------------- exponential distribution --------------------
def expovariate(lambd):
# lambd: rate lambd = 1/mean
# ('lambda' is a Python reserved word)
u = random()
while u <= 1e-7:
u = random()
return -log(u)/lambd
# -------------------- von Mises distribution --------------------
TWOPI = 2.0*pi
verify('TWOPI', 6.28318530718)
def vonmisesvariate(mu, kappa):
# mu: mean angle (in radians between 0 and 2*pi)
# kappa: concentration parameter kappa (>= 0)
# if kappa = 0 generate uniform random angle
# Based upon an algorithm published in: Fisher, N.I.,
# "Statistical Analysis of Circular Data", Cambridge
# University Press, 1993.
# Thanks to Magnus Kessler for a correction to the
# implementation of step 4.
if kappa <= 1e-6:
return TWOPI * random()
a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
b = (a - sqrt(2.0 * a))/(2.0 * kappa)
r = (1.0 + b * b)/(2.0 * b)
while 1:
u1 = random()
z = cos(pi * u1)
f = (1.0 + r * z)/(r + z)
c = kappa * (r - f)
u2 = random()
if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
break
u3 = random()
if u3 > 0.5:
theta = (mu % TWOPI) + acos(f)
else:
theta = (mu % TWOPI) - acos(f)
return theta
# -------------------- gamma distribution --------------------
LOG4 = log(4.0)
verify('LOG4', 1.38629436111989)
def gammavariate(alpha, beta):
# beta times standard gamma
ainv = sqrt(2.0 * alpha - 1.0)
return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
SG_MAGICCONST = 1.0 + log(4.5)
verify('SG_MAGICCONST', 2.50407739677627)
def stdgamma(alpha, ainv, bbb, ccc):
# ainv = sqrt(2 * alpha - 1)
# bbb = alpha - log(4)
# ccc = alpha + ainv
if alpha <= 0.0:
raise ValueError, 'stdgamma: alpha must be > 0.0'
if alpha > 1.0:
# Uses R.C.H. Cheng, "The generation of Gamma
# variables with non-integral shape parameters",
# Applied Statistics, (1977), 26, No. 1, p71-74
while 1:
u1 = random()
u2 = random()
v = log(u1/(1.0-u1))/ainv
x = alpha*exp(v)
z = u1*u1*u2
r = bbb+ccc*v-x
if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
return x
elif alpha == 1.0:
# expovariate(1)
u = random()
while u <= 1e-7:
u = random()
return -log(u)
else: # alpha is between 0 and 1 (exclusive)
# Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
while 1:
u = random()
b = (e + alpha)/e
p = b*u
if p <= 1.0:
x = pow(p, 1.0/alpha)
else:
# p > 1
x = -log((b-p)/alpha)
u1 = random()
if not (((p <= 1.0) and (u1 > exp(-x))) or
((p > 1) and (u1 > pow(x, alpha - 1.0)))):
break
return x
# -------------------- Gauss (faster alternative) --------------------
gauss_next = None
def gauss(mu, sigma):
# When x and y are two variables from [0, 1), uniformly
# distributed, then
#
# cos(2*pi*x)*sqrt(-2*log(1-y))
# sin(2*pi*x)*sqrt(-2*log(1-y))
#
# are two *independent* variables with normal distribution
# (mu = 0, sigma = 1).
# (Lambert Meertens)
# (corrected version; bug discovered by Mike Miller, fixed by LM)
# Multithreading note: When two threads call this function
# simultaneously, it is possible that they will receive the
# same return value. The window is very small though. To
# avoid this, you have to use a lock around all calls. (I
# didn't want to slow this down in the serial case by using a
# lock here.)
global gauss_next
z = gauss_next
gauss_next = None
if z is None:
x2pi = random() * TWOPI
g2rad = sqrt(-2.0 * log(1.0 - random()))
z = cos(x2pi) * g2rad
gauss_next = sin(x2pi) * g2rad
return mu + z*sigma
# -------------------- beta --------------------
def betavariate(alpha, beta):
# Discrete Event Simulation in C, pp 87-88.
y = expovariate(alpha)
z = expovariate(1.0/beta)
return z/(y+z)
# -------------------- Pareto --------------------
def paretovariate(alpha):
# Jain, pg. 495
u = random()
return 1.0 / pow(u, 1.0/alpha)
# -------------------- Weibull --------------------
def weibullvariate(alpha, beta):
# Jain, pg. 499; bug fix courtesy Bill Arms
u = random()
return alpha * pow(-log(u), 1.0/beta)
# -------------------- test program --------------------
def test(N = 200):
print 'TWOPI =', TWOPI
print 'LOG4 =', LOG4
print 'NV_MAGICCONST =', NV_MAGICCONST
print 'SG_MAGICCONST =', SG_MAGICCONST
test_generator(N, 'random()')
test_generator(N, 'normalvariate(0.0, 1.0)')
test_generator(N, 'lognormvariate(0.0, 1.0)')
test_generator(N, 'cunifvariate(0.0, 1.0)')
test_generator(N, 'expovariate(1.0)')
test_generator(N, 'vonmisesvariate(0.0, 1.0)')
test_generator(N, 'gammavariate(0.5, 1.0)')
test_generator(N, 'gammavariate(0.9, 1.0)')
test_generator(N, 'gammavariate(1.0, 1.0)')
test_generator(N, 'gammavariate(2.0, 1.0)')
test_generator(N, 'gammavariate(20.0, 1.0)')
test_generator(N, 'gammavariate(200.0, 1.0)')
test_generator(N, 'gauss(0.0, 1.0)')
test_generator(N, 'betavariate(3.0, 3.0)')
test_generator(N, 'paretovariate(1.0)')
test_generator(N, 'weibullvariate(1.0, 1.0)')
def test_generator(n, funccall):
import time
print n, 'times', funccall
code = compile(funccall, funccall, 'eval')
sum = 0.0
sqsum = 0.0
smallest = 1e10
largest = -1e10
t0 = time.time()
for i in range(n):
x = eval(code)
sum = sum + x
sqsum = sqsum + x*x
smallest = min(x, smallest)
largest = max(x, largest)
t1 = time.time()
print round(t1-t0, 3), 'sec,',
avg = sum/n
stddev = sqrt(sqsum/n - avg*avg)
print 'avg %g, stddev %g, min %g, max %g' % \
(avg, stddev, smallest, largest)
if __name__ == '__main__':
test()
|