1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
'''\
This module implements rational numbers.
The entry point of this module is the function
rat(numerator, denominator)
If either numerator or denominator is of an integral or rational type,
the result is a rational number, else, the result is the simplest of
the types float and complex which can hold numerator/denominator.
If denominator is omitted, it defaults to 1.
Rational numbers can be used in calculations with any other numeric
type. The result of the calculation will be rational if possible.
There is also a test function with calling sequence
test()
The documentation string of the test function contains the expected
output.
'''
# Contributed by Sjoerd Mullender
from types import *
def gcd(a, b):
'''Calculate the Greatest Common Divisor.'''
while b:
a, b = b, a%b
return a
def rat(num, den = 1):
# must check complex before float
if type(num) is ComplexType or type(den) is ComplexType:
# numerator or denominator is complex: return a complex
return complex(num) / complex(den)
if type(num) is FloatType or type(den) is FloatType:
# numerator or denominator is float: return a float
return float(num) / float(den)
# otherwise return a rational
return Rat(num, den)
class Rat:
'''This class implements rational numbers.'''
def __init__(self, num, den = 1):
if den == 0:
raise ZeroDivisionError, 'rat(x, 0)'
# normalize
# must check complex before float
if type(num) is ComplexType or type(den) is ComplexType:
# numerator or denominator is complex:
# normalized form has denominator == 1+0j
self.__num = complex(num) / complex(den)
self.__den = complex(1)
return
if type(num) is FloatType or type(den) is FloatType:
# numerator or denominator is float:
# normalized form has denominator == 1.0
self.__num = float(num) / float(den)
self.__den = 1.0
return
if (type(num) is InstanceType and
num.__class__ is self.__class__) or \
(type(den) is InstanceType and
den.__class__ is self.__class__):
# numerator or denominator is rational
new = num / den
if type(new) is not InstanceType or \
new.__class__ is not self.__class__:
self.__num = new
if type(new) is ComplexType:
self.__den = complex(1)
else:
self.__den = 1.0
else:
self.__num = new.__num
self.__den = new.__den
else:
# make sure numerator and denominator don't
# have common factors
# this also makes sure that denominator > 0
g = gcd(num, den)
self.__num = num / g
self.__den = den / g
# try making numerator and denominator of IntType if they fit
try:
numi = int(self.__num)
deni = int(self.__den)
except (OverflowError, TypeError):
pass
else:
if self.__num == numi and self.__den == deni:
self.__num = numi
self.__den = deni
def __repr__(self):
return 'Rat(%s,%s)' % (self.__num, self.__den)
def __str__(self):
if self.__den == 1:
return str(self.__num)
else:
return '(%s/%s)' % (str(self.__num), str(self.__den))
# a + b
def __add__(a, b):
try:
return rat(a.__num * b.__den + b.__num * a.__den,
a.__den * b.__den)
except OverflowError:
return rat(long(a.__num) * long(b.__den) +
long(b.__num) * long(a.__den),
long(a.__den) * long(b.__den))
def __radd__(b, a):
return Rat(a) + b
# a - b
def __sub__(a, b):
try:
return rat(a.__num * b.__den - b.__num * a.__den,
a.__den * b.__den)
except OverflowError:
return rat(long(a.__num) * long(b.__den) -
long(b.__num) * long(a.__den),
long(a.__den) * long(b.__den))
def __rsub__(b, a):
return Rat(a) - b
# a * b
def __mul__(a, b):
try:
return rat(a.__num * b.__num, a.__den * b.__den)
except OverflowError:
return rat(long(a.__num) * long(b.__num),
long(a.__den) * long(b.__den))
def __rmul__(b, a):
return Rat(a) * b
# a / b
def __div__(a, b):
try:
return rat(a.__num * b.__den, a.__den * b.__num)
except OverflowError:
return rat(long(a.__num) * long(b.__den),
long(a.__den) * long(b.__num))
def __rdiv__(b, a):
return Rat(a) / b
# a % b
def __mod__(a, b):
div = a / b
try:
div = int(div)
except OverflowError:
div = long(div)
return a - b * div
def __rmod__(b, a):
return Rat(a) % b
# a ** b
def __pow__(a, b):
if b.__den != 1:
if type(a.__num) is ComplexType:
a = complex(a)
else:
a = float(a)
if type(b.__num) is ComplexType:
b = complex(b)
else:
b = float(b)
return a ** b
try:
return rat(a.__num ** b.__num, a.__den ** b.__num)
except OverflowError:
return rat(long(a.__num) ** b.__num,
long(a.__den) ** b.__num)
def __rpow__(b, a):
return Rat(a) ** b
# -a
def __neg__(a):
try:
return rat(-a.__num, a.__den)
except OverflowError:
# a.__num == sys.maxint
return rat(-long(a.__num), a.__den)
# abs(a)
def __abs__(a):
return rat(abs(a.__num), a.__den)
# int(a)
def __int__(a):
return int(a.__num / a.__den)
# long(a)
def __long__(a):
return long(a.__num) / long(a.__den)
# float(a)
def __float__(a):
return float(a.__num) / float(a.__den)
# complex(a)
def __complex__(a):
return complex(a.__num) / complex(a.__den)
# cmp(a,b)
def __cmp__(a, b):
diff = Rat(a - b)
if diff.__num < 0:
return -1
elif diff.__num > 0:
return 1
else:
return 0
def __rcmp__(b, a):
return cmp(Rat(a), b)
# a != 0
def __nonzero__(a):
return a.__num != 0
# coercion
def __coerce__(a, b):
return a, Rat(b)
def test():
'''\
Test function for rat module.
The expected output is (module some differences in floating
precission):
-1
-1
0 0L 0.1 (0.1+0j)
[Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)]
[Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)]
0
(11/10)
(11/10)
1.1
OK
2 1.5 (3/2) (1.5+1.5j) (15707963/5000000)
2 2 2.0 (2+0j)
4 0 4 1 4 0
3.5 0.5 3.0 1.33333333333 2.82842712475 1
(7/2) (1/2) 3 (4/3) 2.82842712475 1
(3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1
1.5 1 1.5 (1.5+0j)
3.5 -0.5 3.0 0.75 2.25 -1
3.0 0.0 2.25 1.0 1.83711730709 0
3.0 0.0 2.25 1.0 1.83711730709 1
(3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
(3/2) 1 1.5 (1.5+0j)
(7/2) (-1/2) 3 (3/4) (9/4) -1
3.0 0.0 2.25 1.0 1.83711730709 -1
3 0 (9/4) 1 1.83711730709 0
(3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
(1.5+1.5j) (1.5+1.5j)
(3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1
(3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
(3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
(3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0
'''
print rat(-1L, 1)
print rat(1, -1)
a = rat(1, 10)
print int(a), long(a), float(a), complex(a)
b = rat(2, 5)
l = [a+b, a-b, a*b, a/b]
print l
l.sort()
print l
print rat(0, 1)
print a+1
print a+1L
print a+1.0
try:
print rat(1, 0)
raise SystemError, 'should have been ZeroDivisionError'
except ZeroDivisionError:
print 'OK'
print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000)
list = [2, 1.5, rat(3,2), 1.5+1.5j]
for i in list:
print i,
if type(i) is not ComplexType:
print int(i), float(i),
print complex(i)
print
for j in list:
print i + j, i - j, i * j, i / j, i ** j, cmp(i, j)
if __name__ == '__main__':
test()
|