1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
|
from test.test_support import verify, verbose, TestFailed, fcmp
from string import join
from random import random, randint
# SHIFT should match the value in longintrepr.h for best testing.
SHIFT = 15
BASE = 2 ** SHIFT
MASK = BASE - 1
KARATSUBA_CUTOFF = 70 # from longobject.c
# Max number of base BASE digits to use in test cases. Doubling
# this will more than double the runtime.
MAXDIGITS = 15
# build some special values
special = map(long, [0, 1, 2, BASE, BASE >> 1])
special.append(0x5555555555555555L)
special.append(0xaaaaaaaaaaaaaaaaL)
# some solid strings of one bits
p2 = 4L # 0 and 1 already added
for i in range(2*SHIFT):
special.append(p2 - 1)
p2 = p2 << 1
del p2
# add complements & negations
special = special + map(lambda x: ~x, special) + \
map(lambda x: -x, special)
# ------------------------------------------------------------ utilities
# Use check instead of assert so the test still does something
# under -O.
def check(ok, *args):
if not ok:
raise TestFailed, join(map(str, args), " ")
# Get quasi-random long consisting of ndigits digits (in base BASE).
# quasi == the most-significant digit will not be 0, and the number
# is constructed to contain long strings of 0 and 1 bits. These are
# more likely than random bits to provoke digit-boundary errors.
# The sign of the number is also random.
def getran(ndigits):
verify(ndigits > 0)
nbits_hi = ndigits * SHIFT
nbits_lo = nbits_hi - SHIFT + 1
answer = 0L
nbits = 0
r = int(random() * (SHIFT * 2)) | 1 # force 1 bits to start
while nbits < nbits_lo:
bits = (r >> 1) + 1
bits = min(bits, nbits_hi - nbits)
verify(1 <= bits <= SHIFT)
nbits = nbits + bits
answer = answer << bits
if r & 1:
answer = answer | ((1 << bits) - 1)
r = int(random() * (SHIFT * 2))
verify(nbits_lo <= nbits <= nbits_hi)
if random() < 0.5:
answer = -answer
return answer
# Get random long consisting of ndigits random digits (relative to base
# BASE). The sign bit is also random.
def getran2(ndigits):
answer = 0L
for i in range(ndigits):
answer = (answer << SHIFT) | randint(0, MASK)
if random() < 0.5:
answer = -answer
return answer
# --------------------------------------------------------------- divmod
def test_division_2(x, y):
q, r = divmod(x, y)
q2, r2 = x//y, x%y
pab, pba = x*y, y*x
check(pab == pba, "multiplication does not commute for", x, y)
check(q == q2, "divmod returns different quotient than / for", x, y)
check(r == r2, "divmod returns different mod than % for", x, y)
check(x == q*y + r, "x != q*y + r after divmod on", x, y)
if y > 0:
check(0 <= r < y, "bad mod from divmod on", x, y)
else:
check(y < r <= 0, "bad mod from divmod on", x, y)
def test_division(maxdigits=MAXDIGITS):
if verbose:
print "long / * % divmod"
digits = range(1, maxdigits+1) + range(KARATSUBA_CUTOFF,
KARATSUBA_CUTOFF + 14)
digits.append(KARATSUBA_CUTOFF * 3)
for lenx in digits:
x = getran(lenx)
for leny in digits:
y = getran(leny) or 1L
test_division_2(x, y)
# ------------------------------------------------------------ karatsuba
def test_karatsuba():
if verbose:
print "Karatsuba"
digits = range(1, 5) + range(KARATSUBA_CUTOFF, KARATSUBA_CUTOFF + 10)
digits.extend([KARATSUBA_CUTOFF * 10, KARATSUBA_CUTOFF * 100])
bits = [digit * SHIFT for digit in digits]
# Test products of long strings of 1 bits -- (2**x-1)*(2**y-1) ==
# 2**(x+y) - 2**x - 2**y + 1, so the proper result is easy to check.
for abits in bits:
a = (1L << abits) - 1
for bbits in bits:
if bbits < abits:
continue
b = (1L << bbits) - 1
x = a * b
y = ((1L << (abits + bbits)) -
(1L << abits) -
(1L << bbits) +
1)
check(x == y, "bad result for", a, "*", b, x, y)
# -------------------------------------------------------------- ~ & | ^
def test_bitop_identities_1(x):
check(x & 0 == 0, "x & 0 != 0 for", x)
check(x | 0 == x, "x | 0 != x for", x)
check(x ^ 0 == x, "x ^ 0 != x for", x)
check(x & -1 == x, "x & -1 != x for", x)
check(x | -1 == -1, "x | -1 != -1 for", x)
check(x ^ -1 == ~x, "x ^ -1 != ~x for", x)
check(x == ~~x, "x != ~~x for", x)
check(x & x == x, "x & x != x for", x)
check(x | x == x, "x | x != x for", x)
check(x ^ x == 0, "x ^ x != 0 for", x)
check(x & ~x == 0, "x & ~x != 0 for", x)
check(x | ~x == -1, "x | ~x != -1 for", x)
check(x ^ ~x == -1, "x ^ ~x != -1 for", x)
check(-x == 1 + ~x == ~(x-1), "not -x == 1 + ~x == ~(x-1) for", x)
for n in range(2*SHIFT):
p2 = 2L ** n
check(x << n >> n == x, "x << n >> n != x for", x, n)
check(x // p2 == x >> n, "x // p2 != x >> n for x n p2", x, n, p2)
check(x * p2 == x << n, "x * p2 != x << n for x n p2", x, n, p2)
check(x & -p2 == x >> n << n == x & ~(p2 - 1),
"not x & -p2 == x >> n << n == x & ~(p2 - 1) for x n p2",
x, n, p2)
def test_bitop_identities_2(x, y):
check(x & y == y & x, "x & y != y & x for", x, y)
check(x | y == y | x, "x | y != y | x for", x, y)
check(x ^ y == y ^ x, "x ^ y != y ^ x for", x, y)
check(x ^ y ^ x == y, "x ^ y ^ x != y for", x, y)
check(x & y == ~(~x | ~y), "x & y != ~(~x | ~y) for", x, y)
check(x | y == ~(~x & ~y), "x | y != ~(~x & ~y) for", x, y)
check(x ^ y == (x | y) & ~(x & y),
"x ^ y != (x | y) & ~(x & y) for", x, y)
check(x ^ y == (x & ~y) | (~x & y),
"x ^ y == (x & ~y) | (~x & y) for", x, y)
check(x ^ y == (x | y) & (~x | ~y),
"x ^ y == (x | y) & (~x | ~y) for", x, y)
def test_bitop_identities_3(x, y, z):
check((x & y) & z == x & (y & z),
"(x & y) & z != x & (y & z) for", x, y, z)
check((x | y) | z == x | (y | z),
"(x | y) | z != x | (y | z) for", x, y, z)
check((x ^ y) ^ z == x ^ (y ^ z),
"(x ^ y) ^ z != x ^ (y ^ z) for", x, y, z)
check(x & (y | z) == (x & y) | (x & z),
"x & (y | z) != (x & y) | (x & z) for", x, y, z)
check(x | (y & z) == (x | y) & (x | z),
"x | (y & z) != (x | y) & (x | z) for", x, y, z)
def test_bitop_identities(maxdigits=MAXDIGITS):
if verbose:
print "long bit-operation identities"
for x in special:
test_bitop_identities_1(x)
digits = range(1, maxdigits+1)
for lenx in digits:
x = getran(lenx)
test_bitop_identities_1(x)
for leny in digits:
y = getran(leny)
test_bitop_identities_2(x, y)
test_bitop_identities_3(x, y, getran((lenx + leny)//2))
# ------------------------------------------------- hex oct repr str atol
def slow_format(x, base):
if (x, base) == (0, 8):
# this is an oddball!
return "0L"
digits = []
sign = 0
if x < 0:
sign, x = 1, -x
while x:
x, r = divmod(x, base)
digits.append(int(r))
digits.reverse()
digits = digits or [0]
return '-'[:sign] + \
{8: '0', 10: '', 16: '0x'}[base] + \
join(map(lambda i: "0123456789ABCDEF"[i], digits), '') + \
"L"
def test_format_1(x):
from string import atol
for base, mapper in (8, oct), (10, repr), (16, hex):
got = mapper(x)
expected = slow_format(x, base)
check(got == expected, mapper.__name__, "returned",
got, "but expected", expected, "for", x)
check(atol(got, 0) == x, 'atol("%s", 0) !=' % got, x)
# str() has to be checked a little differently since there's no
# trailing "L"
got = str(x)
expected = slow_format(x, 10)[:-1]
check(got == expected, mapper.__name__, "returned",
got, "but expected", expected, "for", x)
def test_format(maxdigits=MAXDIGITS):
if verbose:
print "long str/hex/oct/atol"
for x in special:
test_format_1(x)
for i in range(10):
for lenx in range(1, maxdigits+1):
x = getran(lenx)
test_format_1(x)
# ----------------------------------------------------------------- misc
def test_misc(maxdigits=MAXDIGITS):
if verbose:
print "long miscellaneous operations"
import sys
# check the extremes in int<->long conversion
hugepos = sys.maxint
hugeneg = -hugepos - 1
hugepos_aslong = long(hugepos)
hugeneg_aslong = long(hugeneg)
check(hugepos == hugepos_aslong, "long(sys.maxint) != sys.maxint")
check(hugeneg == hugeneg_aslong,
"long(-sys.maxint-1) != -sys.maxint-1")
# long -> int should not fail for hugepos_aslong or hugeneg_aslong
x = int(hugepos_aslong)
try:
check(x == hugepos,
"converting sys.maxint to long and back to int fails")
except OverflowError:
raise TestFailed, "int(long(sys.maxint)) overflowed!"
if not isinstance(x, int):
raise TestFailed("int(long(sys.maxint)) should have returned int")
x = int(hugeneg_aslong)
try:
check(x == hugeneg,
"converting -sys.maxint-1 to long and back to int fails")
except OverflowError:
raise TestFailed, "int(long(-sys.maxint-1)) overflowed!"
if not isinstance(x, int):
raise TestFailed("int(long(-sys.maxint-1)) should have returned int")
# but long -> int should overflow for hugepos+1 and hugeneg-1
x = hugepos_aslong + 1
try:
y = int(x)
except OverflowError:
raise TestFailed, "int(long(sys.maxint) + 1) mustn't overflow"
if not isinstance(y, long):
raise TestFailed("int(long(sys.maxint) + 1) should have returned long")
x = hugeneg_aslong - 1
try:
y = int(x)
except OverflowError:
raise TestFailed, "int(long(-sys.maxint-1) - 1) mustn't overflow"
if not isinstance(y, long):
raise TestFailed("int(long(-sys.maxint-1) - 1) should have returned long")
class long2(long):
pass
x = long2(1L<<100)
y = int(x)
if type(y) is not long:
raise TestFailed("overflowing int conversion must return long not long subtype")
# ----------------------------------- tests of auto int->long conversion
def test_auto_overflow():
import math, sys
if verbose:
print "auto-convert int->long on overflow"
special = [0, 1, 2, 3, sys.maxint-1, sys.maxint, sys.maxint+1]
sqrt = int(math.sqrt(sys.maxint))
special.extend([sqrt-1, sqrt, sqrt+1])
special.extend([-i for i in special])
def checkit(*args):
# Heavy use of nested scopes here!
verify(got == expected, "for %r expected %r got %r" %
(args, expected, got))
for x in special:
longx = long(x)
expected = -longx
got = -x
checkit('-', x)
for y in special:
longy = long(y)
expected = longx + longy
got = x + y
checkit(x, '+', y)
expected = longx - longy
got = x - y
checkit(x, '-', y)
expected = longx * longy
got = x * y
checkit(x, '*', y)
if y:
expected = longx / longy
got = x / y
checkit(x, '/', y)
expected = longx // longy
got = x // y
checkit(x, '//', y)
expected = divmod(longx, longy)
got = divmod(longx, longy)
checkit(x, 'divmod', y)
if abs(y) < 5 and not (x == 0 and y < 0):
expected = longx ** longy
got = x ** y
checkit(x, '**', y)
for z in special:
if z != 0 :
if y >= 0:
expected = pow(longx, longy, long(z))
got = pow(x, y, z)
checkit('pow', x, y, '%', z)
else:
try:
pow(longx, longy, long(z))
except TypeError:
pass
else:
raise TestFailed("pow%r should have raised "
"TypeError" % ((longx, longy, long(z)),))
# ---------------------------------------- tests of long->float overflow
def test_float_overflow():
import math
if verbose:
print "long->float overflow"
for x in -2.0, -1.0, 0.0, 1.0, 2.0:
verify(float(long(x)) == x)
shuge = '12345' * 120
huge = 1L << 30000
mhuge = -huge
namespace = {'huge': huge, 'mhuge': mhuge, 'shuge': shuge, 'math': math}
for test in ["float(huge)", "float(mhuge)",
"complex(huge)", "complex(mhuge)",
"complex(huge, 1)", "complex(mhuge, 1)",
"complex(1, huge)", "complex(1, mhuge)",
"1. + huge", "huge + 1.", "1. + mhuge", "mhuge + 1.",
"1. - huge", "huge - 1.", "1. - mhuge", "mhuge - 1.",
"1. * huge", "huge * 1.", "1. * mhuge", "mhuge * 1.",
"1. // huge", "huge // 1.", "1. // mhuge", "mhuge // 1.",
"1. / huge", "huge / 1.", "1. / mhuge", "mhuge / 1.",
"1. ** huge", "huge ** 1.", "1. ** mhuge", "mhuge ** 1.",
"math.sin(huge)", "math.sin(mhuge)",
"math.sqrt(huge)", "math.sqrt(mhuge)", # should do better
"math.floor(huge)", "math.floor(mhuge)"]:
try:
eval(test, namespace)
except OverflowError:
pass
else:
raise TestFailed("expected OverflowError from %s" % test)
# XXX Perhaps float(shuge) can raise OverflowError on some box?
# The comparison should not.
if float(shuge) == int(shuge):
raise TestFailed("float(shuge) should not equal int(shuge)")
# ---------------------------------------------- test huge log and log10
def test_logs():
import math
if verbose:
print "log and log10"
LOG10E = math.log10(math.e)
for exp in range(10) + [100, 1000, 10000]:
value = 10 ** exp
log10 = math.log10(value)
verify(fcmp(log10, exp) == 0)
# log10(value) == exp, so log(value) == log10(value)/log10(e) ==
# exp/LOG10E
expected = exp / LOG10E
log = math.log(value)
verify(fcmp(log, expected) == 0)
for bad in -(1L << 10000), -2L, 0L:
try:
math.log(bad)
raise TestFailed("expected ValueError from log(<= 0)")
except ValueError:
pass
try:
math.log10(bad)
raise TestFailed("expected ValueError from log10(<= 0)")
except ValueError:
pass
# ----------------------------------------------- test mixed comparisons
def test_mixed_compares():
import math
import sys
if verbose:
print "mixed comparisons"
# We're mostly concerned with that mixing floats and longs does the
# right stuff, even when longs are too large to fit in a float.
# The safest way to check the results is to use an entirely different
# method, which we do here via a skeletal rational class (which
# represents all Python ints, longs and floats exactly).
class Rat:
def __init__(self, value):
if isinstance(value, (int, long)):
self.n = value
self.d = 1
elif isinstance(value, float):
# Convert to exact rational equivalent.
f, e = math.frexp(abs(value))
assert f == 0 or 0.5 <= f < 1.0
# |value| = f * 2**e exactly
# Suck up CHUNK bits at a time; 28 is enough so that we suck
# up all bits in 2 iterations for all known binary double-
# precision formats, and small enough to fit in an int.
CHUNK = 28
top = 0
# invariant: |value| = (top + f) * 2**e exactly
while f:
f = math.ldexp(f, CHUNK)
digit = int(f)
assert digit >> CHUNK == 0
top = (top << CHUNK) | digit
f -= digit
assert 0.0 <= f < 1.0
e -= CHUNK
# Now |value| = top * 2**e exactly.
if e >= 0:
n = top << e
d = 1
else:
n = top
d = 1 << -e
if value < 0:
n = -n
self.n = n
self.d = d
assert float(n) / float(d) == value
else:
raise TypeError("can't deal with %r" % val)
def __cmp__(self, other):
if not isinstance(other, Rat):
other = Rat(other)
return cmp(self.n * other.d, self.d * other.n)
cases = [0, 0.001, 0.99, 1.0, 1.5, 1e20, 1e200]
# 2**48 is an important boundary in the internals. 2**53 is an
# important boundary for IEEE double precision.
for t in 2.0**48, 2.0**50, 2.0**53:
cases.extend([t - 1.0, t - 0.3, t, t + 0.3, t + 1.0,
long(t-1), long(t), long(t+1)])
cases.extend([0, 1, 2, sys.maxint, float(sys.maxint)])
# 1L<<20000 should exceed all double formats. long(1e200) is to
# check that we get equality with 1e200 above.
t = long(1e200)
cases.extend([0L, 1L, 2L, 1L << 20000, t-1, t, t+1])
cases.extend([-x for x in cases])
for x in cases:
Rx = Rat(x)
for y in cases:
Ry = Rat(y)
Rcmp = cmp(Rx, Ry)
xycmp = cmp(x, y)
if Rcmp != xycmp:
raise TestFailed('%r %r %d %d' % (x, y, Rcmp, xycmp))
if (x == y) != (Rcmp == 0):
raise TestFailed('%r == %r %d' % (x, y, Rcmp))
if (x != y) != (Rcmp != 0):
raise TestFailed('%r != %r %d' % (x, y, Rcmp))
if (x < y) != (Rcmp < 0):
raise TestFailed('%r < %r %d' % (x, y, Rcmp))
if (x <= y) != (Rcmp <= 0):
raise TestFailed('%r <= %r %d' % (x, y, Rcmp))
if (x > y) != (Rcmp > 0):
raise TestFailed('%r > %r %d' % (x, y, Rcmp))
if (x >= y) != (Rcmp >= 0):
raise TestFailed('%r >= %r %d' % (x, y, Rcmp))
# ---------------------------------------------------------------- do it
test_division()
test_karatsuba()
test_bitop_identities()
test_format()
test_misc()
test_auto_overflow()
test_float_overflow()
test_logs()
test_mixed_compares()
|