1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
|
\section{\module{collections} ---
High-performance container datatypes}
\declaremodule{standard}{collections}
\modulesynopsis{High-performance datatypes}
\moduleauthor{Raymond Hettinger}{python@rcn.com}
\sectionauthor{Raymond Hettinger}{python@rcn.com}
\versionadded{2.4}
This module implements high-performance container datatypes. Currently, the
only datatype is a deque. Future additions may include B-trees
and Fibonacci heaps.
\begin{funcdesc}{deque}{\optional{iterable}}
Returns a new deque objected initialized left-to-right (using
\method{append()}) with data from \var{iterable}. If \var{iterable}
is not specified, the new deque is empty.
Deques are a generalization of stacks and queues (the name is pronounced
``deck'' and is short for ``double-ended queue''). Deques support
thread-safe, memory efficient appends and pops from either side of the deque
with approximately the same \code{O(1)} performance in either direction.
Though \class{list} objects support similar operations, they are optimized
for fast fixed-length operations and incur \code{O(n)} memory movement costs
for \samp{pop(0)} and \samp{insert(0, v)} operations which change both the
size and position of the underlying data representation.
\versionadded{2.4}
\end{funcdesc}
Deque objects support the following methods:
\begin{methoddesc}{append}{x}
Add \var{x} to the right side of the deque.
\end{methoddesc}
\begin{methoddesc}{appendleft}{x}
Add \var{x} to the left side of the deque.
\end{methoddesc}
\begin{methoddesc}{clear}{}
Remove all elements from the deque leaving it with length 0.
\end{methoddesc}
\begin{methoddesc}{extend}{iterable}
Extend the right side of the deque by appending elements from
the iterable argument.
\end{methoddesc}
\begin{methoddesc}{extendleft}{iterable}
Extend the left side of the deque by appending elements from
\var{iterable}. Note, the series of left appends results in
reversing the order of elements in the iterable argument.
\end{methoddesc}
\begin{methoddesc}{pop}{}
Remove and return an element from the right side of the deque.
If no elements are present, raises an \exception{IndexError}.
\end{methoddesc}
\begin{methoddesc}{popleft}{}
Remove and return an element from the left side of the deque.
If no elements are present, raises an \exception{IndexError}.
\end{methoddesc}
\begin{methoddesc}{rotate}{n}
Rotate the deque \var{n} steps to the right. If \var{n} is
negative, rotate to the left. Rotating one step to the right
is equivalent to: \samp{d.appendleft(d.pop())}.
\end{methoddesc}
In addition to the above, deques support iteration, pickling, \samp{len(d)},
\samp{reversed(d)}, \samp{copy.copy(d)}, \samp{copy.deepcopy(d)},
membership testing with the \keyword{in} operator, and subscript references
such as \samp{d[-1]}.
Example:
\begin{verbatim}
>>> from collections import deque
>>> d = deque('ghi') # make a new deque with three items
>>> for elem in d: # iterate over the deque's elements
... print elem.upper()
G
H
I
>>> d.append('j') # add a new entry to the right side
>>> d.appendleft('f') # add a new entry to the left side
>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', 'j'])
>>> d.pop() # return and remove the rightmost item
'j'
>>> d.popleft() # return and remove the leftmost item
'f'
>>> list(d) # list the contents of the deque
['g', 'h', 'i']
>>> d[0] # peek at leftmost item
'g'
>>> d[-1] # peek at rightmost item
'i'
>>> list(reversed(d)) # list the contents of a deque in reverse
['i', 'h', 'g']
>>> 'h' in d # search the deque
True
>>> d.extend('jkl') # add multiple elements at once
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> d.rotate(1) # right rotation
>>> d
deque(['l', 'g', 'h', 'i', 'j', 'k'])
>>> d.rotate(-1) # left rotation
>>> d
deque(['g', 'h', 'i', 'j', 'k', 'l'])
>>> deque(reversed(d)) # make a new deque in reverse order
deque(['l', 'k', 'j', 'i', 'h', 'g'])
>>> d.clear() # empty the deque
>>> d.pop() # cannot pop from an empty deque
Traceback (most recent call last):
File "<pyshell#6>", line 1, in -toplevel-
d.pop()
IndexError: pop from an empty deque
>>> d.extendleft('abc') # extendleft() reverses the input order
>>> d
deque(['c', 'b', 'a'])
\end{verbatim}
\subsection{Recipes \label{deque-recipes}}
This section shows various approaches to working with deques.
The \method{rotate()} method provides a way to implement \class{deque}
slicing and deletion. For example, a pure python implementation of
\code{del d[n]} relies on the \method{rotate()} method to position
elements to be popped:
\begin{verbatim}
def delete_nth(d, n):
d.rotate(-n)
d.popleft()
d.rotate(n)
\end{verbatim}
To implement \class{deque} slicing, use a similar approach applying
\method{rotate()} to bring a target element to the left side of the deque.
Remove old entries with \method{popleft()}, add new entries with
\method{extend()}, and then reverse the rotation.
With minor variations on that approach, it is easy to implement Forth style
stack manipulations such as \code{dup}, \code{drop}, \code{swap}, \code{over},
\code{pick}, \code{rot}, and \code{roll}.
A roundrobin task server can be built from a \class{deque} using
\method{popleft()} to select the current task and \method{append()}
to add it back to the tasklist if the input stream is not exhausted:
\begin{verbatim}
def roundrobin(*iterables):
pending = deque(iter(i) for i in iterables)
while pending:
task = pending.popleft()
try:
yield task.next()
except StopIteration:
continue
pending.append(task)
>>> for value in roundrobin('abc', 'd', 'efgh'):
... print value
a
d
e
b
f
c
g
h
\end{verbatim}
Multi-pass data reduction algorithms can be succinctly expressed and
efficiently coded by extracting elements with multiple calls to
\method{popleft()}, applying the reduction function, and calling
\method{append()} to add the result back to the queue.
For example, building a balanced binary tree of nested lists entails
reducing two adjacent nodes into one by grouping them in a list:
\begin{verbatim}
def maketree(iterable):
d = deque(iterable)
while len(d) > 1:
pair = [d.popleft(), d.popleft()]
d.append(pair)
return list(d)
>>> print maketree('abcdefgh')
[[[['a', 'b'], ['c', 'd']], [['e', 'f'], ['g', 'h']]]]
\end{verbatim}
|