1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410
|
% XXX what order should the types be discussed in?
\section{\module{datetime} ---
Basic date and time types}
\declaremodule{builtin}{datetime}
\modulesynopsis{Basic date and time types.}
\moduleauthor{Tim Peters}{tim@zope.com}
\sectionauthor{Tim Peters}{tim@zope.com}
\sectionauthor{A.M. Kuchling}{amk@amk.ca}
\versionadded{2.3}
The \module{datetime} module supplies classes for manipulating dates
and times in both simple and complex ways. While date and time
arithmetic is supported, the focus of the implementation is on
efficient member extraction for output formatting and manipulation.
There are two kinds of date and time objects: ``naive'' and ``aware''.
This distinction refers to whether the object has any notion of time
zone, daylight saving time, or other kind of algorithmic or political
time adjustment. Whether a naive \class{datetime} object represents
Coordinated Universal Time (UTC), local time, or time in some other
timezone is purely up to the program, just like it's up to the program
whether a particular number represents metres, miles, or mass. Naive
\class{datetime} objects are easy to understand and to work with, at
the cost of ignoring some aspects of reality.
For applications requiring more, \class{datetime} and \class{time}
objects have an optional time zone information member,
\member{tzinfo}, that can contain an instance of a subclass of
the abstract \class{tzinfo} class. These \class{tzinfo} objects
capture information about the offset from UTC time, the time zone
name, and whether Daylight Saving Time is in effect. Note that no
concrete \class{tzinfo} classes are supplied by the \module{datetime}
module. Supporting timezones at whatever level of detail is required
is up to the application. The rules for time adjustment across the
world are more political than rational, and there is no standard
suitable for every application.
The \module{datetime} module exports the following constants:
\begin{datadesc}{MINYEAR}
The smallest year number allowed in a \class{date} or
\class{datetime} object. \constant{MINYEAR}
is \code{1}.
\end{datadesc}
\begin{datadesc}{MAXYEAR}
The largest year number allowed in a \class{date} or \class{datetime}
object. \constant{MAXYEAR} is \code{9999}.
\end{datadesc}
\begin{seealso}
\seemodule{calendar}{General calendar related functions.}
\seemodule{time}{Time access and conversions.}
\end{seealso}
\subsection{Available Types}
\begin{classdesc*}{date}
An idealized naive date, assuming the current Gregorian calendar
always was, and always will be, in effect.
Attributes: \member{year}, \member{month}, and \member{day}.
\end{classdesc*}
\begin{classdesc*}{time}
An idealized time, independent of any particular day, assuming
that every day has exactly 24*60*60 seconds (there is no notion
of "leap seconds" here).
Attributes: \member{hour}, \member{minute}, \member{second},
\member{microsecond}, and \member{tzinfo}.
\end{classdesc*}
\begin{classdesc*}{datetime}
A combination of a date and a time.
Attributes: \member{year}, \member{month}, \member{day},
\member{hour}, \member{minute}, \member{second},
\member{microsecond}, and \member{tzinfo}.
\end{classdesc*}
\begin{classdesc*}{timedelta}
A duration expressing the difference between two \class{date},
\class{time}, or \class{datetime} instances to microsecond
resolution.
\end{classdesc*}
\begin{classdesc*}{tzinfo}
An abstract base class for time zone information objects. These
are used by the \class{datetime} and \class{time} classes to
provide a customizable notion of time adjustment (for example, to
account for time zone and/or daylight saving time).
\end{classdesc*}
Objects of these types are immutable.
Objects of the \class{date} type are always naive.
An object \var{d} of type \class{time} or \class{datetime} may be
naive or aware. \var{d} is aware if \code{\var{d}.tzinfo} is not
\code{None} and \code{\var{d}.tzinfo.utcoffset(\var{d})} does not return
\code{None}. If \code{\var{d}.tzinfo} is \code{None}, or if
\code{\var{d}.tzinfo} is not \code{None} but
\code{\var{d}.tzinfo.utcoffset(\var{d})} returns \code{None}, \var{d}
is naive.
The distinction between naive and aware doesn't apply to
\class{timedelta} objects.
Subclass relationships:
\begin{verbatim}
object
timedelta
tzinfo
time
date
datetime
\end{verbatim}
\subsection{\class{timedelta} Objects \label{datetime-timedelta}}
A \class{timedelta} object represents a duration, the difference
between two dates or times.
\begin{classdesc}{timedelta}{\optional{days\optional{, seconds\optional{,
microseconds\optional{, milliseconds\optional{,
minutes\optional{, hours\optional{, weeks}}}}}}}}
All arguments are optional and default to \code{0}. Arguments may
be ints, longs, or floats, and may be positive or negative.
Only \var{days}, \var{seconds} and \var{microseconds} are stored
internally. Arguments are converted to those units:
\begin{itemize}
\item A millisecond is converted to 1000 microseconds.
\item A minute is converted to 60 seconds.
\item An hour is converted to 3600 seconds.
\item A week is converted to 7 days.
\end{itemize}
and days, seconds and microseconds are then normalized so that the
representation is unique, with
\begin{itemize}
\item \code{0 <= \var{microseconds} < 1000000}
\item \code{0 <= \var{seconds} < 3600*24} (the number of seconds in one day)
\item \code{-999999999 <= \var{days} <= 999999999}
\end{itemize}
If any argument is a float and there are fractional microseconds,
the fractional microseconds left over from all arguments are combined
and their sum is rounded to the nearest microsecond. If no
argument is a float, the conversion and normalization processes
are exact (no information is lost).
If the normalized value of days lies outside the indicated range,
\exception{OverflowError} is raised.
Note that normalization of negative values may be surprising at first.
For example,
\begin{verbatim}
>>> d = timedelta(microseconds=-1)
>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)
\end{verbatim}
\end{classdesc}
Class attributes are:
\begin{memberdesc}{min}
The most negative \class{timedelta} object,
\code{timedelta(-999999999)}.
\end{memberdesc}
\begin{memberdesc}{max}
The most positive \class{timedelta} object,
\code{timedelta(days=999999999, hours=23, minutes=59, seconds=59,
microseconds=999999)}.
\end{memberdesc}
\begin{memberdesc}{resolution}
The smallest possible difference between non-equal
\class{timedelta} objects, \code{timedelta(microseconds=1)}.
\end{memberdesc}
Note that, because of normalization, \code{timedelta.max} \textgreater
\code{-timedelta.min}. \code{-timedelta.max} is not representable as
a \class{timedelta} object.
Instance attributes (read-only):
\begin{tableii}{c|l}{code}{Attribute}{Value}
\lineii{days}{Between -999999999 and 999999999 inclusive}
\lineii{seconds}{Between 0 and 86399 inclusive}
\lineii{microseconds}{Between 0 and 999999 inclusive}
\end{tableii}
Supported operations:
% XXX this table is too wide!
\begin{tableii}{c|l}{code}{Operation}{Result}
\lineii{\var{t1} = \var{t2} + \var{t3}}
{Sum of \var{t2} and \var{t3}.
Afterwards \var{t1}-\var{t2} == \var{t3} and \var{t1}-\var{t3}
== \var{t2} are true.
(1)}
\lineii{\var{t1} = \var{t2} - \var{t3}}
{Difference of \var{t2} and \var{t3}.
Afterwards \var{t1} == \var{t2} - \var{t3} and
\var{t2} == \var{t1} + \var{t3} are true.
(1)}
\lineii{\var{t1} = \var{t2} * \var{i} or \var{t1} = \var{i} * \var{t2}}
{Delta multiplied by an integer or long.
Afterwards \var{t1} // i == \var{t2} is true,
provided \code{i != 0}.}
\lineii{}{In general, \var{t1} * i == \var{t1} * (i-1) + \var{t1} is true.
(1)}
\lineii{\var{t1} = \var{t2} // \var{i}}
{The floor is computed and the remainder (if any) is thrown away.
(3)}
\lineii{+\var{t1}}
{Returns a \class{timedelta} object with the same value.
(2)}
\lineii{-\var{t1}}
{equivalent to \class{timedelta}(-\var{t1.days}, -\var{t1.seconds},
-\var{t1.microseconds}), and to \var{t1}* -1.
(1)(4)}
\lineii{abs(\var{t})}
{equivalent to +\var{t} when \code{t.days >= 0}, and to
-\var{t} when \code{t.days < 0}.
(2)}
\end{tableii}
\noindent
Notes:
\begin{description}
\item[(1)]
This is exact, but may overflow.
\item[(2)]
This is exact, and cannot overflow.
\item[(3)]
Division by 0 raises \exception{ZeroDivisionError}.
\item[(4)]
-\var{timedelta.max} is not representable as a \class{timedelta} object.
\end{description}
In addition to the operations listed above \class{timedelta} objects
support certain additions and subtractions with \class{date} and
\class{datetime} objects (see below).
Comparisons of \class{timedelta} objects are supported with the
\class{timedelta} object representing the smaller duration considered
to be the smaller timedelta.
In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a \class{timedelta} object is
compared to an object of a different type, \exception{TypeError} is
raised unless the comparison is \code{==} or \code{!=}. The latter
cases return \constant{False} or \constant{True}, respectively.
\class{timedelta} objects are hashable (usable as dictionary keys),
support efficient pickling, and in Boolean contexts, a \class{timedelta}
object is considered to be true if and only if it isn't equal to
\code{timedelta(0)}.
\subsection{\class{date} Objects \label{datetime-date}}
A \class{date} object represents a date (year, month and day) in an idealized
calendar, the current Gregorian calendar indefinitely extended in both
directions. January 1 of year 1 is called day number 1, January 2 of year
1 is called day number 2, and so on. This matches the definition of the
"proleptic Gregorian" calendar in Dershowitz and Reingold's book
\citetitle{Calendrical Calculations}, where it's the base calendar for all
computations. See the book for algorithms for converting between
proleptic Gregorian ordinals and many other calendar systems.
\begin{classdesc}{date}{year, month, day}
All arguments are required. Arguments may be ints or longs, in the
following ranges:
\begin{itemize}
\item \code{MINYEAR <= \var{year} <= MAXYEAR}
\item \code{1 <= \var{month} <= 12}
\item \code{1 <= \var{day} <= number of days in the given month and year}
\end{itemize}
If an argument outside those ranges is given, \exception{ValueError}
is raised.
\end{classdesc}
Other constructors, all class methods:
\begin{methoddesc}{today}{}
Return the current local date. This is equivalent to
\code{date.fromtimestamp(time.time())}.
\end{methoddesc}
\begin{methoddesc}{fromtimestamp}{timestamp}
Return the local date corresponding to the POSIX timestamp, such
as is returned by \function{time.time()}. This may raise
\exception{ValueError}, if the timestamp is out of the range of
values supported by the platform C \cfunction{localtime()}
function. It's common for this to be restricted to years from 1970
through 2038. Note that on non-POSIX systems that include leap
seconds in their notion of a timestamp, leap seconds are ignored by
\method{fromtimestamp()}.
\end{methoddesc}
\begin{methoddesc}{fromordinal}{ordinal}
Return the date corresponding to the proleptic Gregorian ordinal,
where January 1 of year 1 has ordinal 1. \exception{ValueError} is
raised unless \code{1 <= \var{ordinal} <= date.max.toordinal()}.
For any date \var{d}, \code{date.fromordinal(\var{d}.toordinal()) ==
\var{d}}.
\end{methoddesc}
Class attributes:
\begin{memberdesc}{min}
The earliest representable date, \code{date(MINYEAR, 1, 1)}.
\end{memberdesc}
\begin{memberdesc}{max}
The latest representable date, \code{date(MAXYEAR, 12, 31)}.
\end{memberdesc}
\begin{memberdesc}{resolution}
The smallest possible difference between non-equal date
objects, \code{timedelta(days=1)}.
\end{memberdesc}
Instance attributes (read-only):
\begin{memberdesc}{year}
Between \constant{MINYEAR} and \constant{MAXYEAR} inclusive.
\end{memberdesc}
\begin{memberdesc}{month}
Between 1 and 12 inclusive.
\end{memberdesc}
\begin{memberdesc}{day}
Between 1 and the number of days in the given month of the given
year.
\end{memberdesc}
Supported operations:
\begin{tableii}{c|l}{code}{Operation}{Result}
\lineii{\var{date2} = \var{date1} + \var{timedelta}}
{\var{date2} is \code{\var{timedelta}.days} days removed from
\var{date1}. (1)}
\lineii{\var{date2} = \var{date1} - \var{timedelta}}
{Computes \var{date2} such that \code{\var{date2} + \var{timedelta}
== \var{date1}}. (2)}
\lineii{\var{timedelta} = \var{date1} - \var{date2}}
{(3)}
\lineii{\var{date1} < \var{date2}}
{\var{date1} is considered less than \var{date2} when \var{date1}
precedes \var{date2} in time. (4)}
\end{tableii}
Notes:
\begin{description}
\item[(1)]
\var{date2} is moved forward in time if \code{\var{timedelta}.days
> 0}, or backward if \code{\var{timedelta}.days < 0}. Afterward
\code{\var{date2} - \var{date1} == \var{timedelta}.days}.
\code{\var{timedelta}.seconds} and
\code{\var{timedelta}.microseconds} are ignored.
\exception{OverflowError} is raised if \code{\var{date2}.year}
would be smaller than \constant{MINYEAR} or larger than
\constant{MAXYEAR}.
\item[(2)]
This isn't quite equivalent to date1 +
(-timedelta), because -timedelta in isolation can overflow in cases
where date1 - timedelta does not. \code{\var{timedelta}.seconds}
and \code{\var{timedelta}.microseconds} are ignored.
\item[(3)]
This is exact, and cannot overflow. timedelta.seconds and
timedelta.microseconds are 0, and date2 + timedelta == date1
after.
\item[(4)]
In other words, \code{date1 < date2}
if and only if \code{\var{date1}.toordinal() <
\var{date2}.toordinal()}.
In order to stop comparison from falling back to the default
scheme of comparing object addresses, date comparison
normally raises \exception{TypeError} if the other comparand
isn't also a \class{date} object. However, \code{NotImplemented}
is returned instead if the other comparand has a
\method{timetuple} attribute. This hook gives other kinds of
date objects a chance at implementing mixed-type comparison.
If not, when a \class{date} object is
compared to an object of a different type, \exception{TypeError} is
raised unless the comparison is \code{==} or \code{!=}. The latter
cases return \constant{False} or \constant{True}, respectively.
\end{description}
Dates can be used as dictionary keys. In Boolean contexts, all
\class{date} objects are considered to be true.
Instance methods:
\begin{methoddesc}{replace}{year, month, day}
Return a date with the same value, except for those members given
new values by whichever keyword arguments are specified. For
example, if \code{d == date(2002, 12, 31)}, then
\code{d.replace(day=26) == date(2002, 12, 26)}.
\end{methoddesc}
\begin{methoddesc}{timetuple}{}
Return a \class{time.struct_time} such as returned by
\function{time.localtime()}. The hours, minutes and seconds are
0, and the DST flag is -1.
\code{\var{d}.timetuple()} is equivalent to
\code{time.struct_time((\var{d}.year, \var{d}.month, \var{d}.day,
0, 0, 0,
\var{d}.weekday(),
\var{d}.toordinal() - date(\var{d}.year, 1, 1).toordinal() + 1,
-1))}
\end{methoddesc}
\begin{methoddesc}{toordinal}{}
Return the proleptic Gregorian ordinal of the date, where January 1
of year 1 has ordinal 1. For any \class{date} object \var{d},
\code{date.fromordinal(\var{d}.toordinal()) == \var{d}}.
\end{methoddesc}
\begin{methoddesc}{weekday}{}
Return the day of the week as an integer, where Monday is 0 and
Sunday is 6. For example, \code{date(2002, 12, 4).weekday() == 2}, a
Wednesday.
See also \method{isoweekday()}.
\end{methoddesc}
\begin{methoddesc}{isoweekday}{}
Return the day of the week as an integer, where Monday is 1 and
Sunday is 7. For example, \code{date(2002, 12, 4).isoweekday() == 3}, a
Wednesday.
See also \method{weekday()}, \method{isocalendar()}.
\end{methoddesc}
\begin{methoddesc}{isocalendar}{}
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).
The ISO calendar is a widely used variant of the Gregorian calendar.
See \url{http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm}
for a good explanation.
The ISO year consists of 52 or 53 full weeks, and where a week starts
on a Monday and ends on a Sunday. The first week of an ISO year is
the first (Gregorian) calendar week of a year containing a Thursday.
This is called week number 1, and the ISO year of that Thursday is
the same as its Gregorian year.
For example, 2004 begins on a Thursday, so the first week of ISO
year 2004 begins on Monday, 29 Dec 2003 and ends on Sunday, 4 Jan
2004, so that
\code{date(2003, 12, 29).isocalendar() == (2004, 1, 1)}
and
\code{date(2004, 1, 4).isocalendar() == (2004, 1, 7)}.
\end{methoddesc}
\begin{methoddesc}{isoformat}{}
Return a string representing the date in ISO 8601 format,
'YYYY-MM-DD'. For example,
\code{date(2002, 12, 4).isoformat() == '2002-12-04'}.
\end{methoddesc}
\begin{methoddesc}{__str__}{}
For a date \var{d}, \code{str(\var{d})} is equivalent to
\code{\var{d}.isoformat()}.
\end{methoddesc}
\begin{methoddesc}{ctime}{}
Return a string representing the date, for example
date(2002, 12, 4).ctime() == 'Wed Dec 4 00:00:00 2002'.
\code{\var{d}.ctime()} is equivalent to
\code{time.ctime(time.mktime(\var{d}.timetuple()))}
on platforms where the native C \cfunction{ctime()} function
(which \function{time.ctime()} invokes, but which
\method{date.ctime()} does not invoke) conforms to the C standard.
\end{methoddesc}
\begin{methoddesc}{strftime}{format}
Return a string representing the date, controlled by an explicit
format string. Format codes referring to hours, minutes or seconds
will see 0 values.
See the section on \method{strftime()} behavior.
\end{methoddesc}
\subsection{\class{datetime} Objects \label{datetime-datetime}}
A \class{datetime} object is a single object containing all the
information from a \class{date} object and a \class{time} object. Like a
\class{date} object, \class{datetime} assumes the current Gregorian
calendar extended in both directions; like a time object,
\class{datetime} assumes there are exactly 3600*24 seconds in every
day.
Constructor:
\begin{classdesc}{datetime}{year, month, day\optional{,
hour\optional{, minute\optional{,
second\optional{, microsecond\optional{,
tzinfo}}}}}}
The year, month and day arguments are required. \var{tzinfo} may
be \code{None}, or an instance of a \class{tzinfo} subclass. The
remaining arguments may be ints or longs, in the following ranges:
\begin{itemize}
\item \code{MINYEAR <= \var{year} <= MAXYEAR}
\item \code{1 <= \var{month} <= 12}
\item \code{1 <= \var{day} <= number of days in the given month and year}
\item \code{0 <= \var{hour} < 24}
\item \code{0 <= \var{minute} < 60}
\item \code{0 <= \var{second} < 60}
\item \code{0 <= \var{microsecond} < 1000000}
\end{itemize}
If an argument outside those ranges is given,
\exception{ValueError} is raised.
\end{classdesc}
Other constructors, all class methods:
\begin{methoddesc}{today}{}
Return the current local datetime, with \member{tzinfo} \code{None}.
This is equivalent to
\code{datetime.fromtimestamp(time.time())}.
See also \method{now()}, \method{fromtimestamp()}.
\end{methoddesc}
\begin{methoddesc}{now}{\optional{tz}}
Return the current local date and time. If optional argument
\var{tz} is \code{None} or not specified, this is like
\method{today()}, but, if possible, supplies more precision than can
be gotten from going through a \function{time.time()} timestamp (for
example, this may be possible on platforms supplying the C
\cfunction{gettimeofday()} function).
Else \var{tz} must be an instance of a class \class{tzinfo} subclass,
and the current date and time are converted to \var{tz}'s time
zone. In this case the result is equivalent to
\code{\var{tz}.fromutc(datetime.utcnow().replace(tzinfo=\var{tz}))}.
See also \method{today()}, \method{utcnow()}.
\end{methoddesc}
\begin{methoddesc}{utcnow}{}
Return the current UTC date and time, with \member{tzinfo} \code{None}.
This is like \method{now()}, but returns the current UTC date and time,
as a naive \class{datetime} object.
See also \method{now()}.
\end{methoddesc}
\begin{methoddesc}{fromtimestamp}{timestamp\optional{, tz}}
Return the local date and time corresponding to the \POSIX{}
timestamp, such as is returned by \function{time.time()}.
If optional argument \var{tz} is \code{None} or not specified, the
timestamp is converted to the platform's local date and time, and
the returned \class{datetime} object is naive.
Else \var{tz} must be an instance of a class \class{tzinfo} subclass,
and the timestamp is converted to \var{tz}'s time zone. In this case
the result is equivalent to
\code{\var{tz}.fromutc(datetime.utcfromtimestamp(\var{timestamp}).replace(tzinfo=\var{tz}))}.
\method{fromtimestamp()} may raise \exception{ValueError}, if the
timestamp is out of the range of values supported by the platform C
\cfunction{localtime()} or \cfunction{gmtime()} functions. It's common
for this to be restricted to years in 1970 through 2038.
Note that on non-POSIX systems that include leap seconds in their
notion of a timestamp, leap seconds are ignored by
\method{fromtimestamp()}, and then it's possible to have two timestamps
differing by a second that yield identical \class{datetime} objects.
See also \method{utcfromtimestamp()}.
\end{methoddesc}
\begin{methoddesc}{utcfromtimestamp}{timestamp}
Return the UTC \class{datetime} corresponding to the \POSIX{}
timestamp, with \member{tzinfo} \code{None}.
This may raise \exception{ValueError}, if the
timestamp is out of the range of values supported by the platform
C \cfunction{gmtime()} function. It's common for this to be
restricted to years in 1970 through 2038.
See also \method{fromtimestamp()}.
\end{methoddesc}
\begin{methoddesc}{fromordinal}{ordinal}
Return the \class{datetime} corresponding to the proleptic
Gregorian ordinal, where January 1 of year 1 has ordinal 1.
\exception{ValueError} is raised unless \code{1 <= ordinal <=
datetime.max.toordinal()}. The hour, minute, second and
microsecond of the result are all 0,
and \member{tzinfo} is \code{None}.
\end{methoddesc}
\begin{methoddesc}{combine}{date, time}
Return a new \class{datetime} object whose date members are
equal to the given \class{date} object's, and whose time
and \member{tzinfo} members are equal to the given \class{time} object's.
For any \class{datetime} object \var{d}, \code{\var{d} ==
datetime.combine(\var{d}.date(), \var{d}.timetz())}. If date is a
\class{datetime} object, its time and \member{tzinfo} members are
ignored.
\end{methoddesc}
Class attributes:
\begin{memberdesc}{min}
The earliest representable \class{datetime},
\code{datetime(MINYEAR, 1, 1, tzinfo=None)}.
\end{memberdesc}
\begin{memberdesc}{max}
The latest representable \class{datetime},
\code{datetime(MAXYEAR, 12, 31, 23, 59, 59, 999999, tzinfo=None)}.
\end{memberdesc}
\begin{memberdesc}{resolution}
The smallest possible difference between non-equal \class{datetime}
objects, \code{timedelta(microseconds=1)}.
\end{memberdesc}
Instance attributes (read-only):
\begin{memberdesc}{year}
Between \constant{MINYEAR} and \constant{MAXYEAR} inclusive.
\end{memberdesc}
\begin{memberdesc}{month}
Between 1 and 12 inclusive.
\end{memberdesc}
\begin{memberdesc}{day}
Between 1 and the number of days in the given month of the given
year.
\end{memberdesc}
\begin{memberdesc}{hour}
In \code{range(24)}.
\end{memberdesc}
\begin{memberdesc}{minute}
In \code{range(60)}.
\end{memberdesc}
\begin{memberdesc}{second}
In \code{range(60)}.
\end{memberdesc}
\begin{memberdesc}{microsecond}
In \code{range(1000000)}.
\end{memberdesc}
\begin{memberdesc}{tzinfo}
The object passed as the \var{tzinfo} argument to the
\class{datetime} constructor, or \code{None} if none was passed.
\end{memberdesc}
Supported operations:
\begin{tableii}{c|l}{code}{Operation}{Result}
\lineii{\var{datetime2} = \var{datetime1} + \var{timedelta}}{(1)}
\lineii{\var{datetime2} = \var{datetime1} - \var{timedelta}}{(2)}
\lineii{\var{timedelta} = \var{datetime1} - \var{datetime2}}{(3)}
\lineii{\var{datetime1} < \var{datetime2}}
{Compares \class{datetime} to \class{datetime}.
(4)}
\end{tableii}
\begin{description}
\item[(1)]
datetime2 is a duration of timedelta removed from datetime1, moving
forward in time if \code{\var{timedelta}.days} > 0, or backward if
\code{\var{timedelta}.days} < 0. The result has the same \member{tzinfo} member
as the input datetime, and datetime2 - datetime1 == timedelta after.
\exception{OverflowError} is raised if datetime2.year would be
smaller than \constant{MINYEAR} or larger than \constant{MAXYEAR}.
Note that no time zone adjustments are done even if the input is an
aware object.
\item[(2)]
Computes the datetime2 such that datetime2 + timedelta == datetime1.
As for addition, the result has the same \member{tzinfo} member
as the input datetime, and no time zone adjustments are done even
if the input is aware.
This isn't quite equivalent to datetime1 + (-timedelta), because
-timedelta in isolation can overflow in cases where
datetime1 - timedelta does not.
\item[(3)]
Subtraction of a \class{datetime} from a
\class{datetime} is defined only if both
operands are naive, or if both are aware. If one is aware and the
other is naive, \exception{TypeError} is raised.
If both are naive, or both are aware and have the same \member{tzinfo}
member, the \member{tzinfo} members are ignored, and the result is
a \class{timedelta} object \var{t} such that
\code{\var{datetime2} + \var{t} == \var{datetime1}}. No time zone
adjustments are done in this case.
If both are aware and have different \member{tzinfo} members,
\code{a-b} acts as if \var{a} and \var{b} were first converted to
naive UTC datetimes first. The result is
\code{(\var{a}.replace(tzinfo=None) - \var{a}.utcoffset()) -
(\var{b}.replace(tzinfo=None) - \var{b}.utcoffset())}
except that the implementation never overflows.
\item[(4)]
\var{datetime1} is considered less than \var{datetime2}
when \var{datetime1} precedes \var{datetime2} in time.
If one comparand is naive and
the other is aware, \exception{TypeError} is raised. If both
comparands are aware, and have the same \member{tzinfo} member,
the common \member{tzinfo} member is ignored and the base datetimes
are compared. If both comparands are aware and have different
\member{tzinfo} members, the comparands are first adjusted by
subtracting their UTC offsets (obtained from \code{self.utcoffset()}).
\note{In order to stop comparison from falling back to the default
scheme of comparing object addresses, datetime comparison
normally raises \exception{TypeError} if the other comparand
isn't also a \class{datetime} object. However,
\code{NotImplemented} is returned instead if the other comparand
has a \method{timetuple} attribute. This hook gives other
kinds of date objects a chance at implementing mixed-type
comparison. If not, when a \class{datetime} object is
compared to an object of a different type, \exception{TypeError}
is raised unless the comparison is \code{==} or \code{!=}. The
latter cases return \constant{False} or \constant{True},
respectively.}
\end{description}
\class{datetime} objects can be used as dictionary keys. In Boolean
contexts, all \class{datetime} objects are considered to be true.
Instance methods:
\begin{methoddesc}{date}{}
Return \class{date} object with same year, month and day.
\end{methoddesc}
\begin{methoddesc}{time}{}
Return \class{time} object with same hour, minute, second and microsecond.
\member{tzinfo} is \code{None}. See also method \method{timetz()}.
\end{methoddesc}
\begin{methoddesc}{timetz}{}
Return \class{time} object with same hour, minute, second, microsecond,
and tzinfo members. See also method \method{time()}.
\end{methoddesc}
\begin{methoddesc}{replace}{\optional{year\optional{, month\optional{,
day\optional{, hour\optional{, minute\optional{,
second\optional{, microsecond\optional{,
tzinfo}}}}}}}}}
Return a datetime with the same members, except for those members given
new values by whichever keyword arguments are specified. Note that
\code{tzinfo=None} can be specified to create a naive datetime from
an aware datetime with no conversion of date and time members.
\end{methoddesc}
\begin{methoddesc}{astimezone}{tz}
Return a \class{datetime} object with new \member{tzinfo} member
\var{tz}, adjusting the date and time members so the result is the
same UTC time as \var{self}, but in \var{tz}'s local time.
\var{tz} must be an instance of a \class{tzinfo} subclass, and its
\method{utcoffset()} and \method{dst()} methods must not return
\code{None}. \var{self} must be aware (\code{\var{self}.tzinfo} must
not be \code{None}, and \code{\var{self}.utcoffset()} must not return
\code{None}).
If \code{\var{self}.tzinfo} is \var{tz},
\code{\var{self}.astimezone(\var{tz})} is equal to \var{self}: no
adjustment of date or time members is performed.
Else the result is local time in time zone \var{tz}, representing the
same UTC time as \var{self}: after \code{\var{astz} =
\var{dt}.astimezone(\var{tz})},
\code{\var{astz} - \var{astz}.utcoffset()} will usually have the same
date and time members as \code{\var{dt} - \var{dt}.utcoffset()}.
The discussion of class \class{tzinfo} explains the cases at Daylight
Saving Time transition boundaries where this cannot be achieved (an issue
only if \var{tz} models both standard and daylight time).
If you merely want to attach a time zone object \var{tz} to a
datetime \var{dt} without adjustment of date and time members,
use \code{\var{dt}.replace(tzinfo=\var{tz})}. If
you merely want to remove the time zone object from an aware datetime
\var{dt} without conversion of date and time members, use
\code{\var{dt}.replace(tzinfo=None)}.
Note that the default \method{tzinfo.fromutc()} method can be overridden
in a \class{tzinfo} subclass to affect the result returned by
\method{astimezone()}. Ignoring error cases, \method{astimezone()}
acts like:
\begin{verbatim}
def astimezone(self, tz):
if self.tzinfo is tz:
return self
# Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
# Convert from UTC to tz's local time.
return tz.fromutc(utc)
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{utcoffset}{}
If \member{tzinfo} is \code{None}, returns \code{None}, else
returns \code{\var{self}.tzinfo.utcoffset(\var{self})}, and
raises an exception if the latter doesn't return \code{None}, or
a \class{timedelta} object representing a whole number of minutes
with magnitude less than one day.
\end{methoddesc}
\begin{methoddesc}{dst}{}
If \member{tzinfo} is \code{None}, returns \code{None}, else
returns \code{\var{self}.tzinfo.dst(\var{self})}, and
raises an exception if the latter doesn't return \code{None}, or
a \class{timedelta} object representing a whole number of minutes
with magnitude less than one day.
\end{methoddesc}
\begin{methoddesc}{tzname}{}
If \member{tzinfo} is \code{None}, returns \code{None}, else
returns \code{\var{self}.tzinfo.tzname(\var{self})},
raises an exception if the latter doesn't return \code{None} or
a string object,
\end{methoddesc}
\begin{methoddesc}{timetuple}{}
Return a \class{time.struct_time} such as returned by
\function{time.localtime()}.
\code{\var{d}.timetuple()} is equivalent to
\code{time.struct_time((\var{d}.year, \var{d}.month, \var{d}.day,
\var{d}.hour, \var{d}.minute, \var{d}.second,
\var{d}.weekday(),
\var{d}.toordinal() - date(\var{d}.year, 1, 1).toordinal() + 1,
dst))}
The \member{tm_isdst} flag of the result is set according to
the \method{dst()} method: \member{tzinfo} is \code{None} or
\method{dst()} returns \code{None},
\member{tm_isdst} is set to \code{-1}; else if \method{dst()} returns
a non-zero value, \member{tm_isdst} is set to \code{1};
else \code{tm_isdst} is set to \code{0}.
\end{methoddesc}
\begin{methoddesc}{utctimetuple}{}
If \class{datetime} instance \var{d} is naive, this is the same as
\code{\var{d}.timetuple()} except that \member{tm_isdst} is forced to 0
regardless of what \code{d.dst()} returns. DST is never in effect
for a UTC time.
If \var{d} is aware, \var{d} is normalized to UTC time, by subtracting
\code{\var{d}.utcoffset()}, and a \class{time.struct_time} for the
normalized time is returned. \member{tm_isdst} is forced to 0.
Note that the result's \member{tm_year} member may be
\constant{MINYEAR}-1 or \constant{MAXYEAR}+1, if \var{d}.year was
\code{MINYEAR} or \code{MAXYEAR} and UTC adjustment spills over a
year boundary.
\end{methoddesc}
\begin{methoddesc}{toordinal}{}
Return the proleptic Gregorian ordinal of the date. The same as
\code{self.date().toordinal()}.
\end{methoddesc}
\begin{methoddesc}{weekday}{}
Return the day of the week as an integer, where Monday is 0 and
Sunday is 6. The same as \code{self.date().weekday()}.
See also \method{isoweekday()}.
\end{methoddesc}
\begin{methoddesc}{isoweekday}{}
Return the day of the week as an integer, where Monday is 1 and
Sunday is 7. The same as \code{self.date().isoweekday()}.
See also \method{weekday()}, \method{isocalendar()}.
\end{methoddesc}
\begin{methoddesc}{isocalendar}{}
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The
same as \code{self.date().isocalendar()}.
\end{methoddesc}
\begin{methoddesc}{isoformat}{\optional{sep}}
Return a string representing the date and time in ISO 8601 format,
YYYY-MM-DDTHH:MM:SS.mmmmmm
or, if \member{microsecond} is 0,
YYYY-MM-DDTHH:MM:SS
If \method{utcoffset()} does not return \code{None}, a 6-character
string is appended, giving the UTC offset in (signed) hours and
minutes:
YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM
or, if \member{microsecond} is 0
YYYY-MM-DDTHH:MM:SS+HH:MM
The optional argument \var{sep} (default \code{'T'}) is a
one-character separator, placed between the date and time portions
of the result. For example,
\begin{verbatim}
>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ(tzinfo):
... def utcoffset(self, dt): return timedelta(minutes=-399)
...
>>> datetime(2002, 12, 25, tzinfo=TZ()).isoformat(' ')
'2002-12-25 00:00:00-06:39'
\end{verbatim}
\end{methoddesc}
\begin{methoddesc}{__str__}{}
For a \class{datetime} instance \var{d}, \code{str(\var{d})} is
equivalent to \code{\var{d}.isoformat(' ')}.
\end{methoddesc}
\begin{methoddesc}{ctime}{}
Return a string representing the date and time, for example
\code{datetime(2002, 12, 4, 20, 30, 40).ctime() ==
'Wed Dec 4 20:30:40 2002'}.
\code{d.ctime()} is equivalent to
\code{time.ctime(time.mktime(d.timetuple()))} on platforms where
the native C \cfunction{ctime()} function (which
\function{time.ctime()} invokes, but which
\method{datetime.ctime()} does not invoke) conforms to the C
standard.
\end{methoddesc}
\begin{methoddesc}{strftime}{format}
Return a string representing the date and time, controlled by an
explicit format string. See the section on \method{strftime()}
behavior.
\end{methoddesc}
\subsection{\class{time} Objects \label{datetime-time}}
A time object represents a (local) time of day, independent of any
particular day, and subject to adjustment via a \class{tzinfo} object.
\begin{classdesc}{time}{hour\optional{, minute\optional{, second\optional{,
microsecond\optional{, tzinfo}}}}}
All arguments are optional. \var{tzinfo} may be \code{None}, or
an instance of a \class{tzinfo} subclass. The remaining arguments
may be ints or longs, in the following ranges:
\begin{itemize}
\item \code{0 <= \var{hour} < 24}
\item \code{0 <= \var{minute} < 60}
\item \code{0 <= \var{second} < 60}
\item \code{0 <= \var{microsecond} < 1000000}.
\end{itemize}
If an argument outside those ranges is given,
\exception{ValueError} is raised. All default to \code{0} except
\var{tzinfo}, which defaults to \constant{None}.
\end{classdesc}
Class attributes:
\begin{memberdesc}{min}
The earliest representable \class{time}, \code{time(0, 0, 0, 0)}.
\end{memberdesc}
\begin{memberdesc}{max}
The latest representable \class{time}, \code{time(23, 59, 59, 999999)}.
\end{memberdesc}
\begin{memberdesc}{resolution}
The smallest possible difference between non-equal \class{time}
objects, \code{timedelta(microseconds=1)}, although note that
arithmetic on \class{time} objects is not supported.
\end{memberdesc}
Instance attributes (read-only):
\begin{memberdesc}{hour}
In \code{range(24)}.
\end{memberdesc}
\begin{memberdesc}{minute}
In \code{range(60)}.
\end{memberdesc}
\begin{memberdesc}{second}
In \code{range(60)}.
\end{memberdesc}
\begin{memberdesc}{microsecond}
In \code{range(1000000)}.
\end{memberdesc}
\begin{memberdesc}{tzinfo}
The object passed as the tzinfo argument to the \class{time}
constructor, or \code{None} if none was passed.
\end{memberdesc}
Supported operations:
\begin{itemize}
\item
comparison of \class{time} to \class{time},
where \var{a} is considered less than \var{b} when \var{a} precedes
\var{b} in time. If one comparand is naive and the other is aware,
\exception{TypeError} is raised. If both comparands are aware, and
have the same \member{tzinfo} member, the common \member{tzinfo}
member is ignored and the base times are compared. If both
comparands are aware and have different \member{tzinfo} members,
the comparands are first adjusted by subtracting their UTC offsets
(obtained from \code{self.utcoffset()}).
In order to stop mixed-type comparisons from falling back to the
default comparison by object address, when a \class{time} object is
compared to an object of a different type, \exception{TypeError} is
raised unless the comparison is \code{==} or \code{!=}. The latter
cases return \constant{False} or \constant{True}, respectively.
\item
hash, use as dict key
\item
efficient pickling
\item
in Boolean contexts, a \class{time} object is considered to be
true if and only if, after converting it to minutes and
subtracting \method{utcoffset()} (or \code{0} if that's
\code{None}), the result is non-zero.
\end{itemize}
Instance methods:
\begin{methoddesc}{replace}{\optional{hour\optional{, minute\optional{,
second\optional{, microsecond\optional{,
tzinfo}}}}}}
Return a \class{time} with the same value, except for those members given
new values by whichever keyword arguments are specified. Note that
\code{tzinfo=None} can be specified to create a naive \class{time} from
an aware \class{time}, without conversion of the time members.
\end{methoddesc}
\begin{methoddesc}{isoformat}{}
Return a string representing the time in ISO 8601 format,
HH:MM:SS.mmmmmm
or, if self.microsecond is 0,
HH:MM:SS
If \method{utcoffset()} does not return \code{None}, a 6-character
string is appended, giving the UTC offset in (signed) hours and
minutes:
HH:MM:SS.mmmmmm+HH:MM
or, if self.microsecond is 0,
HH:MM:SS+HH:MM
\end{methoddesc}
\begin{methoddesc}{__str__}{}
For a time \var{t}, \code{str(\var{t})} is equivalent to
\code{\var{t}.isoformat()}.
\end{methoddesc}
\begin{methoddesc}{strftime}{format}
Return a string representing the time, controlled by an explicit
format string. See the section on \method{strftime()} behavior.
\end{methoddesc}
\begin{methoddesc}{utcoffset}{}
If \member{tzinfo} is \code{None}, returns \code{None}, else
returns \code{\var{self}.tzinfo.utcoffset(None)}, and
raises an exception if the latter doesn't return \code{None} or
a \class{timedelta} object representing a whole number of minutes
with magnitude less than one day.
\end{methoddesc}
\begin{methoddesc}{dst}{}
If \member{tzinfo} is \code{None}, returns \code{None}, else
returns \code{\var{self}.tzinfo.dst(None)}, and
raises an exception if the latter doesn't return \code{None}, or
a \class{timedelta} object representing a whole number of minutes
with magnitude less than one day.
\end{methoddesc}
\begin{methoddesc}{tzname}{}
If \member{tzinfo} is \code{None}, returns \code{None}, else
returns \code{\var{self}.tzinfo.tzname(None)}, or
raises an exception if the latter doesn't return \code{None} or
a string object.
\end{methoddesc}
\subsection{\class{tzinfo} Objects \label{datetime-tzinfo}}
\class{tzinfo} is an abstract base clase, meaning that this class
should not be instantiated directly. You need to derive a concrete
subclass, and (at least) supply implementations of the standard
\class{tzinfo} methods needed by the \class{datetime} methods you
use. The \module{datetime} module does not supply any concrete
subclasses of \class{tzinfo}.
An instance of (a concrete subclass of) \class{tzinfo} can be passed
to the constructors for \class{datetime} and \class{time} objects.
The latter objects view their members as being in local time, and the
\class{tzinfo} object supports methods revealing offset of local time
from UTC, the name of the time zone, and DST offset, all relative to a
date or time object passed to them.
Special requirement for pickling: A \class{tzinfo} subclass must have an
\method{__init__} method that can be called with no arguments, else it
can be pickled but possibly not unpickled again. This is a technical
requirement that may be relaxed in the future.
A concrete subclass of \class{tzinfo} may need to implement the
following methods. Exactly which methods are needed depends on the
uses made of aware \module{datetime} objects. If in doubt, simply
implement all of them.
\begin{methoddesc}{utcoffset}{self, dt}
Return offset of local time from UTC, in minutes east of UTC. If
local time is west of UTC, this should be negative. Note that this
is intended to be the total offset from UTC; for example, if a
\class{tzinfo} object represents both time zone and DST adjustments,
\method{utcoffset()} should return their sum. If the UTC offset
isn't known, return \code{None}. Else the value returned must be
a \class{timedelta} object specifying a whole number of minutes in the
range -1439 to 1439 inclusive (1440 = 24*60; the magnitude of the offset
must be less than one day). Most implementations of
\method{utcoffset()} will probably look like one of these two:
\begin{verbatim}
return CONSTANT # fixed-offset class
return CONSTANT + self.dst(dt) # daylight-aware class
\end{verbatim}
If \method{utcoffset()} does not return \code{None},
\method{dst()} should not return \code{None} either.
The default implementation of \method{utcoffset()} raises
\exception{NotImplementedError}.
\end{methoddesc}
\begin{methoddesc}{dst}{self, dt}
Return the daylight saving time (DST) adjustment, in minutes east of
UTC, or \code{None} if DST information isn't known. Return
\code{timedelta(0)} if DST is not in effect.
If DST is in effect, return the offset as a
\class{timedelta} object (see \method{utcoffset()} for details).
Note that DST offset, if applicable, has
already been added to the UTC offset returned by
\method{utcoffset()}, so there's no need to consult \method{dst()}
unless you're interested in obtaining DST info separately. For
example, \method{datetime.timetuple()} calls its \member{tzinfo}
member's \method{dst()} method to determine how the
\member{tm_isdst} flag should be set, and
\method{tzinfo.fromutc()} calls \method{dst()} to account for
DST changes when crossing time zones.
An instance \var{tz} of a \class{tzinfo} subclass that models both
standard and daylight times must be consistent in this sense:
\code{\var{tz}.utcoffset(\var{dt}) - \var{tz}.dst(\var{dt})}
must return the same result for every \class{datetime} \var{dt}
with \code{\var{dt}.tzinfo == \var{tz}} For sane \class{tzinfo}
subclasses, this expression yields the time zone's "standard offset",
which should not depend on the date or the time, but only on geographic
location. The implementation of \method{datetime.astimezone()} relies
on this, but cannot detect violations; it's the programmer's
responsibility to ensure it. If a \class{tzinfo} subclass cannot
guarantee this, it may be able to override the default implementation
of \method{tzinfo.fromutc()} to work correctly with \method{astimezone()}
regardless.
Most implementations of \method{dst()} will probably look like one
of these two:
\begin{verbatim}
def dst(self):
# a fixed-offset class: doesn't account for DST
return timedelta(0)
\end{verbatim}
or
\begin{verbatim}
def dst(self):
# Code to set dston and dstoff to the time zone's DST
# transition times based on the input dt.year, and expressed
# in standard local time. Then
if dston <= dt.replace(tzinfo=None) < dstoff:
return timedelta(hours=1)
else:
return timedelta(0)
\end{verbatim}
The default implementation of \method{dst()} raises
\exception{NotImplementedError}.
\end{methoddesc}
\begin{methoddesc}{tzname}{self, dt}
Return the time zone name corresponding to the \class{datetime}
object \var{dt}, as a string.
Nothing about string names is defined by the
\module{datetime} module, and there's no requirement that it mean
anything in particular. For example, "GMT", "UTC", "-500", "-5:00",
"EDT", "US/Eastern", "America/New York" are all valid replies. Return
\code{None} if a string name isn't known. Note that this is a method
rather than a fixed string primarily because some \class{tzinfo}
subclasses will wish to return different names depending on the specific
value of \var{dt} passed, especially if the \class{tzinfo} class is
accounting for daylight time.
The default implementation of \method{tzname()} raises
\exception{NotImplementedError}.
\end{methoddesc}
These methods are called by a \class{datetime} or \class{time} object,
in response to their methods of the same names. A \class{datetime}
object passes itself as the argument, and a \class{time} object passes
\code{None} as the argument. A \class{tzinfo} subclass's methods should
therefore be prepared to accept a \var{dt} argument of \code{None}, or of
class \class{datetime}.
When \code{None} is passed, it's up to the class designer to decide the
best response. For example, returning \code{None} is appropriate if the
class wishes to say that time objects don't participate in the
\class{tzinfo} protocols. It may be more useful for \code{utcoffset(None)}
to return the standard UTC offset, as there is no other convention for
discovering the standard offset.
When a \class{datetime} object is passed in response to a
\class{datetime} method, \code{dt.tzinfo} is the same object as
\var{self}. \class{tzinfo} methods can rely on this, unless
user code calls \class{tzinfo} methods directly. The intent is that
the \class{tzinfo} methods interpret \var{dt} as being in local time,
and not need worry about objects in other timezones.
There is one more \class{tzinfo} method that a subclass may wish to
override:
\begin{methoddesc}{fromutc}{self, dt}
This is called from the default \class{datetime.astimezone()}
implementation. When called from that, \code{\var{dt}.tzinfo} is
\var{self}, and \var{dt}'s date and time members are to be viewed as
expressing a UTC time. The purpose of \method{fromutc()} is to
adjust the date and time members, returning an equivalent datetime in
\var{self}'s local time.
Most \class{tzinfo} subclasses should be able to inherit the default
\method{fromutc()} implementation without problems. It's strong enough
to handle fixed-offset time zones, and time zones accounting for both
standard and daylight time, and the latter even if the DST transition
times differ in different years. An example of a time zone the default
\method{fromutc()} implementation may not handle correctly in all cases
is one where the standard offset (from UTC) depends on the specific date
and time passed, which can happen for political reasons.
The default implementations of \method{astimezone()} and
\method{fromutc()} may not produce the result you want if the result is
one of the hours straddling the moment the standard offset changes.
Skipping code for error cases, the default \method{fromutc()}
implementation acts like:
\begin{verbatim}
def fromutc(self, dt):
# raise ValueError error if dt.tzinfo is not self
dtoff = dt.utcoffset()
dtdst = dt.dst()
# raise ValueError if dtoff is None or dtdst is None
delta = dtoff - dtdst # this is self's standard offset
if delta:
dt += delta # convert to standard local time
dtdst = dt.dst()
# raise ValueError if dtdst is None
if dtdst:
return dt + dtdst
else:
return dt
\end{verbatim}
\end{methoddesc}
Example \class{tzinfo} classes:
\verbatiminput{tzinfo-examples.py}
Note that there are unavoidable subtleties twice per year in a
\class{tzinfo}
subclass accounting for both standard and daylight time, at the DST
transition points. For concreteness, consider US Eastern (UTC -0500),
where EDT begins the minute after 1:59 (EST) on the first Sunday in
April, and ends the minute after 1:59 (EDT) on the last Sunday in October:
\begin{verbatim}
UTC 3:MM 4:MM 5:MM 6:MM 7:MM 8:MM
EST 22:MM 23:MM 0:MM 1:MM 2:MM 3:MM
EDT 23:MM 0:MM 1:MM 2:MM 3:MM 4:MM
start 22:MM 23:MM 0:MM 1:MM 3:MM 4:MM
end 23:MM 0:MM 1:MM 1:MM 2:MM 3:MM
\end{verbatim}
When DST starts (the "start" line), the local wall clock leaps from 1:59
to 3:00. A wall time of the form 2:MM doesn't really make sense on that
day, so \code{astimezone(Eastern)} won't deliver a result with
\code{hour == 2} on the
day DST begins. In order for \method{astimezone()} to make this
guarantee, the \method{rzinfo.dst()} method must consider times
in the "missing hour" (2:MM for Eastern) to be in daylight time.
When DST ends (the "end" line), there's a potentially worse problem:
there's an hour that can't be spelled unambiguously in local wall time:
the last hour of daylight time. In Eastern, that's times of
the form 5:MM UTC on the day daylight time ends. The local wall clock
leaps from 1:59 (daylight time) back to 1:00 (standard time) again.
Local times of the form 1:MM are ambiguous. \method{astimezone()} mimics
the local clock's behavior by mapping two adjacent UTC hours into the
same local hour then. In the Eastern example, UTC times of the form
5:MM and 6:MM both map to 1:MM when converted to Eastern. In order for
\method{astimezone()} to make this guarantee, the \method{tzinfo.dst()}
method must consider times in the "repeated hour" to be in
standard time. This is easily arranged, as in the example, by expressing
DST switch times in the time zone's standard local time.
Applications that can't bear such ambiguities should avoid using hybrid
\class{tzinfo} subclasses; there are no ambiguities when using UTC, or
any other fixed-offset \class{tzinfo} subclass (such as a class
representing only EST (fixed offset -5 hours), or only EDT (fixed offset
-4 hours)).
\subsection{\method{strftime()} Behavior}
\class{date}, \class{datetime}, and \class{time}
objects all support a \code{strftime(\var{format})}
method, to create a string representing the time under the control of
an explicit format string. Broadly speaking,
\code{d.strftime(fmt)}
acts like the \refmodule{time} module's
\code{time.strftime(fmt, d.timetuple())}
although not all objects support a \method{timetuple()} method.
For \class{time} objects, the format codes for
year, month, and day should not be used, as time objects have no such
values. If they're used anyway, \code{1900} is substituted for the
year, and \code{0} for the month and day.
For \class{date} objects, the format codes for hours, minutes, and
seconds should not be used, as \class{date} objects have no such
values. If they're used anyway, \code{0} is substituted for them.
For a naive object, the \code{\%z} and \code{\%Z} format codes are
replaced by empty strings.
For an aware object:
\begin{itemize}
\item[\code{\%z}]
\method{utcoffset()} is transformed into a 5-character string of
the form +HHMM or -HHMM, where HH is a 2-digit string giving the
number of UTC offset hours, and MM is a 2-digit string giving the
number of UTC offset minutes. For example, if
\method{utcoffset()} returns \code{timedelta(hours=-3, minutes=-30)},
\code{\%z} is replaced with the string \code{'-0330'}.
\item[\code{\%Z}]
If \method{tzname()} returns \code{None}, \code{\%Z} is replaced
by an empty string. Otherwise \code{\%Z} is replaced by the returned
value, which must be a string.
\end{itemize}
The full set of format codes supported varies across platforms,
because Python calls the platform C library's \function{strftime()}
function, and platform variations are common. The documentation for
Python's \refmodule{time} module lists the format codes that the C
standard (1989 version) requires, and those work on all platforms
with a standard C implementation. Note that the 1999 version of the
C standard added additional format codes.
The exact range of years for which \method{strftime()} works also
varies across platforms. Regardless of platform, years before 1900
cannot be used.
|