1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
|
\section{\module{operator} ---
Standard operators as functions.}
\declaremodule{builtin}{operator}
\sectionauthor{Skip Montanaro}{skip@automatrix.com}
\modulesynopsis{All Python's standard operators as built-in functions.}
The \module{operator} module exports a set of functions implemented in C
corresponding to the intrinsic operators of Python. For example,
\code{operator.add(x, y)} is equivalent to the expression \code{x+y}. The
function names are those used for special class methods; variants without
leading and trailing \samp{__} are also provided for convenience.
The functions fall into categories that perform object comparisons,
logical operations, mathematical operations, sequence operations, and
abstract type tests.
The object comparison functions are useful for all objects, and are
named after the rich comparison operators they support:
\begin{funcdesc}{lt}{a, b}
\funcline{le}{a, b}
\funcline{eq}{a, b}
\funcline{ne}{a, b}
\funcline{ge}{a, b}
\funcline{gt}{a, b}
\funcline{__lt__}{a, b}
\funcline{__le__}{a, b}
\funcline{__eq__}{a, b}
\funcline{__ne__}{a, b}
\funcline{__ge__}{a, b}
\funcline{__gt__}{a, b}
Perform ``rich comparisons'' between \var{a} and \var{b}. Specifically,
\code{lt(\var{a}, \var{b})} is equivalent to \code{\var{a} < \var{b}},
\code{le(\var{a}, \var{b})} is equivalent to \code{\var{a} <= \var{b}},
\code{eq(\var{a}, \var{b})} is equivalent to \code{\var{a} == \var{b}},
\code{ne(\var{a}, \var{b})} is equivalent to \code{\var{a} != \var{b}},
\code{gt(\var{a}, \var{b})} is equivalent to \code{\var{a} > \var{b}}
and
\code{ge(\var{a}, \var{b})} is equivalent to \code{\var{a} >= \var{b}}.
Note that unlike the built-in \function{cmp()}, these functions can
return any value, which may or may not be interpretable as a Boolean
value. See the \citetitle[../ref/ref.html]{Python Reference Manual}
for more information about rich comparisons.
\versionadded{2.2}
\end{funcdesc}
The logical operations are also generally applicable to all objects,
and support truth tests, identity tests, and boolean operations:
\begin{funcdesc}{not_}{o}
\funcline{__not__}{o}
Return the outcome of \keyword{not} \var{o}. (Note that there is no
\method{__not__()} method for object instances; only the interpreter
core defines this operation. The result is affected by the
\method{__nonzero__()} and \method{__len__()} methods.)
\end{funcdesc}
\begin{funcdesc}{truth}{o}
Return \constant{True} if \var{o} is true, and \constant{False}
otherwise. This is equivalent to using the \class{bool}
constructor.
\end{funcdesc}
\begin{funcdesc}{is_}{a, b}
Return \code{\var{a} is \var{b}}. Tests object identity.
\versionadded{2.3}
\end{funcdesc}
\begin{funcdesc}{is_not}{a, b}
Return \code{\var{a} is not \var{b}}. Tests object identity.
\versionadded{2.3}
\end{funcdesc}
The mathematical and bitwise operations are the most numerous:
\begin{funcdesc}{abs}{o}
\funcline{__abs__}{o}
Return the absolute value of \var{o}.
\end{funcdesc}
\begin{funcdesc}{add}{a, b}
\funcline{__add__}{a, b}
Return \var{a} \code{+} \var{b}, for \var{a} and \var{b} numbers.
\end{funcdesc}
\begin{funcdesc}{and_}{a, b}
\funcline{__and__}{a, b}
Return the bitwise and of \var{a} and \var{b}.
\end{funcdesc}
\begin{funcdesc}{div}{a, b}
\funcline{__div__}{a, b}
Return \var{a} \code{/} \var{b} when \code{__future__.division} is not
in effect. This is also known as ``classic'' division.
\end{funcdesc}
\begin{funcdesc}{floordiv}{a, b}
\funcline{__floordiv__}{a, b}
Return \var{a} \code{//} \var{b}.
\versionadded{2.2}
\end{funcdesc}
\begin{funcdesc}{inv}{o}
\funcline{invert}{o}
\funcline{__inv__}{o}
\funcline{__invert__}{o}
Return the bitwise inverse of the number \var{o}. This is equivalent
to \code{\textasciitilde}\var{o}. The names \function{invert()} and
\function{__invert__()} were added in Python 2.0.
\end{funcdesc}
\begin{funcdesc}{lshift}{a, b}
\funcline{__lshift__}{a, b}
Return \var{a} shifted left by \var{b}.
\end{funcdesc}
\begin{funcdesc}{mod}{a, b}
\funcline{__mod__}{a, b}
Return \var{a} \code{\%} \var{b}.
\end{funcdesc}
\begin{funcdesc}{mul}{a, b}
\funcline{__mul__}{a, b}
Return \var{a} \code{*} \var{b}, for \var{a} and \var{b} numbers.
\end{funcdesc}
\begin{funcdesc}{neg}{o}
\funcline{__neg__}{o}
Return \var{o} negated.
\end{funcdesc}
\begin{funcdesc}{or_}{a, b}
\funcline{__or__}{a, b}
Return the bitwise or of \var{a} and \var{b}.
\end{funcdesc}
\begin{funcdesc}{pos}{o}
\funcline{__pos__}{o}
Return \var{o} positive.
\end{funcdesc}
\begin{funcdesc}{pow}{a, b}
\funcline{__pow__}{a, b}
Return \var{a} \code{**} \var{b}, for \var{a} and \var{b} numbers.
\versionadded{2.3}
\end{funcdesc}
\begin{funcdesc}{rshift}{a, b}
\funcline{__rshift__}{a, b}
Return \var{a} shifted right by \var{b}.
\end{funcdesc}
\begin{funcdesc}{sub}{a, b}
\funcline{__sub__}{a, b}
Return \var{a} \code{-} \var{b}.
\end{funcdesc}
\begin{funcdesc}{truediv}{a, b}
\funcline{__truediv__}{a, b}
Return \var{a} \code{/} \var{b} when \code{__future__.division} is in
effect. This is also known as division.
\versionadded{2.2}
\end{funcdesc}
\begin{funcdesc}{xor}{a, b}
\funcline{__xor__}{a, b}
Return the bitwise exclusive or of \var{a} and \var{b}.
\end{funcdesc}
Operations which work with sequences include:
\begin{funcdesc}{concat}{a, b}
\funcline{__concat__}{a, b}
Return \var{a} \code{+} \var{b} for \var{a} and \var{b} sequences.
\end{funcdesc}
\begin{funcdesc}{contains}{a, b}
\funcline{__contains__}{a, b}
Return the outcome of the test \var{b} \code{in} \var{a}.
Note the reversed operands. The name \function{__contains__()} was
added in Python 2.0.
\end{funcdesc}
\begin{funcdesc}{countOf}{a, b}
Return the number of occurrences of \var{b} in \var{a}.
\end{funcdesc}
\begin{funcdesc}{delitem}{a, b}
\funcline{__delitem__}{a, b}
Remove the value of \var{a} at index \var{b}.
\end{funcdesc}
\begin{funcdesc}{delslice}{a, b, c}
\funcline{__delslice__}{a, b, c}
Delete the slice of \var{a} from index \var{b} to index \var{c}\code{-1}.
\end{funcdesc}
\begin{funcdesc}{getitem}{a, b}
\funcline{__getitem__}{a, b}
Return the value of \var{a} at index \var{b}.
\end{funcdesc}
\begin{funcdesc}{getslice}{a, b, c}
\funcline{__getslice__}{a, b, c}
Return the slice of \var{a} from index \var{b} to index \var{c}\code{-1}.
\end{funcdesc}
\begin{funcdesc}{indexOf}{a, b}
Return the index of the first of occurrence of \var{b} in \var{a}.
\end{funcdesc}
\begin{funcdesc}{repeat}{a, b}
\funcline{__repeat__}{a, b}
Return \var{a} \code{*} \var{b} where \var{a} is a sequence and
\var{b} is an integer.
\end{funcdesc}
\begin{funcdesc}{sequenceIncludes}{\unspecified}
\deprecated{2.0}{Use \function{contains()} instead.}
Alias for \function{contains()}.
\end{funcdesc}
\begin{funcdesc}{setitem}{a, b, c}
\funcline{__setitem__}{a, b, c}
Set the value of \var{a} at index \var{b} to \var{c}.
\end{funcdesc}
\begin{funcdesc}{setslice}{a, b, c, v}
\funcline{__setslice__}{a, b, c, v}
Set the slice of \var{a} from index \var{b} to index \var{c}\code{-1} to the
sequence \var{v}.
\end{funcdesc}
The \module{operator} module also defines a few predicates to test the
type of objects. \note{Be careful not to misinterpret the
results of these functions; only \function{isCallable()} has any
measure of reliability with instance objects. For example:}
\begin{verbatim}
>>> class C:
... pass
...
>>> import operator
>>> o = C()
>>> operator.isMappingType(o)
True
\end{verbatim}
\begin{funcdesc}{isCallable}{o}
\deprecated{2.0}{Use the \function{callable()} built-in function instead.}
Returns true if the object \var{o} can be called like a function,
otherwise it returns false. True is returned for functions, bound and
unbound methods, class objects, and instance objects which support the
\method{__call__()} method.
\end{funcdesc}
\begin{funcdesc}{isMappingType}{o}
Returns true if the object \var{o} supports the mapping interface.
This is true for dictionaries and all instance objects defining
\method{__getitem__}.
\warning{There is no reliable way to test if an instance
supports the complete mapping protocol since the interface itself is
ill-defined. This makes this test less useful than it otherwise might
be.}
\end{funcdesc}
\begin{funcdesc}{isNumberType}{o}
Returns true if the object \var{o} represents a number. This is true
for all numeric types implemented in C.
\warning{There is no reliable way to test if an instance
supports the complete numeric interface since the interface itself is
ill-defined. This makes this test less useful than it otherwise might
be.}
\end{funcdesc}
\begin{funcdesc}{isSequenceType}{o}
Returns true if the object \var{o} supports the sequence protocol.
This returns true for all objects which define sequence methods in C,
and for all instance objects defining \method{__getitem__}.
\warning{There is no reliable
way to test if an instance supports the complete sequence interface
since the interface itself is ill-defined. This makes this test less
useful than it otherwise might be.}
\end{funcdesc}
Example: Build a dictionary that maps the ordinals from \code{0} to
\code{255} to their character equivalents.
\begin{verbatim}
>>> import operator
>>> d = {}
>>> keys = range(256)
>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)
\end{verbatim}
The \module{operator} module also defines tools for generalized attribute
and item lookups. These are useful for making fast field extractors
as arguments for \function{map()}, \function{sorted()},
\method{itertools.groupby()}, or other functions that expect a
function argument.
\begin{funcdesc}{attrgetter}{attr}
Return a callable object that fetches \var{attr} from its operand.
After, \samp{f=attrgetter('name')}, the call \samp{f(b)} returns
\samp{b.name}.
\versionadded{2.4}
\end{funcdesc}
\begin{funcdesc}{itemgetter}{item}
Return a callable object that fetches \var{item} from its operand.
After, \samp{f=itemgetter(2)}, the call \samp{f(b)} returns
\samp{b[2]}.
\versionadded{2.4}
\end{funcdesc}
Examples:
\begin{verbatim}
>>> from operator import *
>>> inventory = [('apple', 3), ('banana', 2), ('pear', 5), ('orange', 1)]
>>> getcount = itemgetter(1)
>>> map(getcount, inventory)
[3, 2, 5, 1]
>>> sorted(inventory, key=getcount)
[('orange', 1), ('banana', 2), ('apple', 3), ('pear', 5)]
\end{verbatim}
\subsection{Mapping Operators to Functions \label{operator-map}}
This table shows how abstract operations correspond to operator
symbols in the Python syntax and the functions in the
\refmodule{operator} module.
\begin{tableiii}{l|c|l}{textrm}{Operation}{Syntax}{Function}
\lineiii{Addition}{\code{\var{a} + \var{b}}}
{\code{add(\var{a}, \var{b})}}
\lineiii{Concatenation}{\code{\var{seq1} + \var{seq2}}}
{\code{concat(\var{seq1}, \var{seq2})}}
\lineiii{Containment Test}{\code{\var{o} in \var{seq}}}
{\code{contains(\var{seq}, \var{o})}}
\lineiii{Division}{\code{\var{a} / \var{b}}}
{\code{div(\var{a}, \var{b}) \#} without \code{__future__.division}}
\lineiii{Division}{\code{\var{a} / \var{b}}}
{\code{truediv(\var{a}, \var{b}) \#} with \code{__future__.division}}
\lineiii{Division}{\code{\var{a} // \var{b}}}
{\code{floordiv(\var{a}, \var{b})}}
\lineiii{Bitwise And}{\code{\var{a} \&\ \var{b}}}
{\code{and_(\var{a}, \var{b})}}
\lineiii{Bitwise Exclusive Or}{\code{\var{a} \^\ \var{b}}}
{\code{xor(\var{a}, \var{b})}}
\lineiii{Bitwise Inversion}{\code{\~{} \var{a}}}
{\code{invert(\var{a})}}
\lineiii{Bitwise Or}{\code{\var{a} | \var{b}}}
{\code{or_(\var{a}, \var{b})}}
\lineiii{Exponentiation}{\code{\var{a} ** \var{b}}}
{\code{pow(\var{a}, \var{b})}}
\lineiii{Identity}{\code{\var{a} is \var{b}}}
{\code{is_(\var{a}, \var{b})}}
\lineiii{Identity}{\code{\var{a} is not \var{b}}}
{\code{is_not(\var{a}, \var{b})}}
\lineiii{Indexed Assignment}{\code{\var{o}[\var{k}] = \var{v}}}
{\code{setitem(\var{o}, \var{k}, \var{v})}}
\lineiii{Indexed Deletion}{\code{del \var{o}[\var{k}]}}
{\code{delitem(\var{o}, \var{k})}}
\lineiii{Indexing}{\code{\var{o}[\var{k}]}}
{\code{getitem(\var{o}, \var{k})}}
\lineiii{Left Shift}{\code{\var{a} <\code{<} \var{b}}}
{\code{lshift(\var{a}, \var{b})}}
\lineiii{Modulo}{\code{\var{a} \%\ \var{b}}}
{\code{mod(\var{a}, \var{b})}}
\lineiii{Multiplication}{\code{\var{a} * \var{b}}}
{\code{mul(\var{a}, \var{b})}}
\lineiii{Negation (Arithmetic)}{\code{- \var{a}}}
{\code{neg(\var{a})}}
\lineiii{Negation (Logical)}{\code{not \var{a}}}
{\code{not_(\var{a})}}
\lineiii{Right Shift}{\code{\var{a} >\code{>} \var{b}}}
{\code{rshift(\var{a}, \var{b})}}
\lineiii{Sequence Repitition}{\code{\var{seq} * \var{i}}}
{\code{repeat(\var{seq}, \var{i})}}
\lineiii{Slice Assignment}{\code{\var{seq}[\var{i}:\var{j}]} = \var{values}}
{\code{setslice(\var{seq}, \var{i}, \var{j}, \var{values})}}
\lineiii{Slice Deletion}{\code{del \var{seq}[\var{i}:\var{j}]}}
{\code{delslice(\var{seq}, \var{i}, \var{j})}}
\lineiii{Slicing}{\code{\var{seq}[\var{i}:\var{j}]}}
{\code{getslice(\var{seq}, \var{i}, \var{j})}}
\lineiii{String Formatting}{\code{\var{s} \%\ \var{o}}}
{\code{mod(\var{s}, \var{o})}}
\lineiii{Subtraction}{\code{\var{a} - \var{b}}}
{\code{sub(\var{a}, \var{b})}}
\lineiii{Truth Test}{\code{\var{o}}}
{\code{truth(\var{o})}}
\lineiii{Ordering}{\code{\var{a} < \var{b}}}
{\code{lt(\var{a}, \var{b})}}
\lineiii{Ordering}{\code{\var{a} <= \var{b}}}
{\code{le(\var{a}, \var{b})}}
\lineiii{Equality}{\code{\var{a} == \var{b}}}
{\code{eq(\var{a}, \var{b})}}
\lineiii{Difference}{\code{\var{a} != \var{b}}}
{\code{ne(\var{a}, \var{b})}}
\lineiii{Ordering}{\code{\var{a} >= \var{b}}}
{\code{ge(\var{a}, \var{b})}}
\lineiii{Ordering}{\code{\var{a} > \var{b}}}
{\code{gt(\var{a}, \var{b})}}
\end{tableiii}
|