1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755
|
\documentclass{manual}
\usepackage[T1]{fontenc}
\usepackage{textcomp}
% Things to do:
% Should really move the Python startup file info to an appendix
\title{Python Tutorial}
\input{boilerplate}
\makeindex
\begin{document}
\maketitle
\ifhtml
\chapter*{Front Matter\label{front}}
\fi
\input{copyright}
\begin{abstract}
\noindent
Python is an easy to learn, powerful programming language. It has
efficient high-level data structures and a simple but effective
approach to object-oriented programming. Python's elegant syntax and
dynamic typing, together with its interpreted nature, make it an ideal
language for scripting and rapid application development in many areas
on most platforms.
The Python interpreter and the extensive standard library are freely
available in source or binary form for all major platforms from the
Python Web site, \url{http://www.python.org/}, and may be freely
distributed. The same site also contains distributions of and
pointers to many free third party Python modules, programs and tools,
and additional documentation.
The Python interpreter is easily extended with new functions and data
types implemented in C or \Cpp{} (or other languages callable from C).
Python is also suitable as an extension language for customizable
applications.
This tutorial introduces the reader informally to the basic concepts
and features of the Python language and system. It helps to have a
Python interpreter handy for hands-on experience, but all examples are
self-contained, so the tutorial can be read off-line as well.
For a description of standard objects and modules, see the
\citetitle[../lib/lib.html]{Python Library Reference} document. The
\citetitle[../ref/ref.html]{Python Reference Manual} gives a more
formal definition of the language. To write extensions in C or
\Cpp, read \citetitle[../ext/ext.html]{Extending and Embedding the
Python Interpreter} and \citetitle[../api/api.html]{Python/C API
Reference}. There are also several books covering Python in depth.
This tutorial does not attempt to be comprehensive and cover every
single feature, or even every commonly used feature. Instead, it
introduces many of Python's most noteworthy features, and will give
you a good idea of the language's flavor and style. After reading it,
you will be able to read and write Python modules and programs, and
you will be ready to learn more about the various Python library
modules described in the \citetitle[../lib/lib.html]{Python Library
Reference}.
\end{abstract}
\tableofcontents
\chapter{Whetting Your Appetite \label{intro}}
If you ever wrote a large shell script, you probably know this
feeling: you'd love to add yet another feature, but it's already so
slow, and so big, and so complicated; or the feature involves a system
call or other function that is only accessible from C \ldots Usually
the problem at hand isn't serious enough to warrant rewriting the
script in C; perhaps the problem requires variable-length strings or
other data types (like sorted lists of file names) that are easy in
the shell but lots of work to implement in C, or perhaps you're not
sufficiently familiar with C.
Another situation: perhaps you have to work with several C libraries,
and the usual C write/compile/test/re-compile cycle is too slow. You
need to develop software more quickly. Possibly you've
written a program that could use an extension language, and you don't
want to design a language, write and debug an interpreter for it, then
tie it into your application.
In such cases, Python may be just the language for you. Python is
simple to use, but it is a real programming language, offering much
more structure and support for large programs than the shell has. On
the other hand, it also offers much more error checking than C, and,
being a \emph{very-high-level language}, it has high-level data types
built in, such as flexible arrays and dictionaries that would cost you
days to implement efficiently in C. Because of its more general data
types Python is applicable to a much larger problem domain than
\emph{Awk} or even \emph{Perl}, yet many things are at least as easy
in Python as in those languages.
Python allows you to split your program in modules that can be
reused in other Python programs. It comes with a large collection of
standard modules that you can use as the basis of your programs --- or
as examples to start learning to program in Python. Some of these
modules provide things like file I/O, system calls,
sockets, and even interfaces to graphical user interface toolkits like Tk.
Python is an interpreted language, which can save you considerable time
during program development because no compilation and linking is
necessary. The interpreter can be used interactively, which makes it
easy to experiment with features of the language, to write throw-away
programs, or to test functions during bottom-up program development.
It is also a handy desk calculator.
Python enables programs to be written compactly and readably. Programs
written in Python are typically much shorter than equivalent C or
\Cpp{} programs, for several reasons:
\begin{itemize}
\item
the high-level data types allow you to express complex operations in a
single statement;
\item
statement grouping is done by indentation instead of beginning and ending
brackets;
\item
no variable or argument declarations are necessary.
\end{itemize}
Python is \emph{extensible}: if you know how to program in C it is easy
to add a new built-in function or module to the interpreter, either to
perform critical operations at maximum speed, or to link Python
programs to libraries that may only be available in binary form (such
as a vendor-specific graphics library). Once you are really hooked,
you can link the Python interpreter into an application written in C
and use it as an extension or command language for that application.
By the way, the language is named after the BBC show ``Monty Python's
Flying Circus'' and has nothing to do with nasty reptiles. Making
references to Monty Python skits in documentation is not only allowed,
it is encouraged!
%\section{Where From Here \label{where}}
Now that you are all excited about Python, you'll want to examine it
in some more detail. Since the best way to learn a language is
to use it, you are invited to do so with this tutorial.
In the next chapter, the mechanics of using the interpreter are
explained. This is rather mundane information, but essential for
trying out the examples shown later.
The rest of the tutorial introduces various features of the Python
language and system through examples, beginning with simple
expressions, statements and data types, through functions and modules,
and finally touching upon advanced concepts like exceptions
and user-defined classes.
\chapter{Using the Python Interpreter \label{using}}
\section{Invoking the Interpreter \label{invoking}}
The Python interpreter is usually installed as
\file{/usr/local/bin/python} on those machines where it is available;
putting \file{/usr/local/bin} in your \UNIX{} shell's search path
makes it possible to start it by typing the command
\begin{verbatim}
python
\end{verbatim}
to the shell. Since the choice of the directory where the interpreter
lives is an installation option, other places are possible; check with
your local Python guru or system administrator. (E.g.,
\file{/usr/local/python} is a popular alternative location.)
Typing an end-of-file character (\kbd{Control-D} on \UNIX,
\kbd{Control-Z} on Windows) at the primary prompt causes the
interpreter to exit with a zero exit status. If that doesn't work,
you can exit the interpreter by typing the following commands:
\samp{import sys; sys.exit()}.
The interpreter's line-editing features usually aren't very
sophisticated. On \UNIX, whoever installed the interpreter may have
enabled support for the GNU readline library, which adds more
elaborate interactive editing and history features. Perhaps the
quickest check to see whether command line editing is supported is
typing Control-P to the first Python prompt you get. If it beeps, you
have command line editing; see Appendix \ref{interacting} for an
introduction to the keys. If nothing appears to happen, or if
\code{\^P} is echoed, command line editing isn't available; you'll
only be able to use backspace to remove characters from the current
line.
The interpreter operates somewhat like the \UNIX{} shell: when called
with standard input connected to a tty device, it reads and executes
commands interactively; when called with a file name argument or with
a file as standard input, it reads and executes a \emph{script} from
that file.
A second way of starting the interpreter is
\samp{\program{python} \programopt{-c} \var{command} [arg] ...}, which
executes the statement(s) in \var{command}, analogous to the shell's
\programopt{-c} option. Since Python statements often contain spaces
or other characters that are special to the shell, it is best to quote
\var{command} in its entirety with double quotes.
Some Python modules are also useful as scripts. These can be invoked using
\samp{\program{python} \programopt{-m} \var{module} [arg] ...}, which
executes the source file for \var{module} as if you had spelled out its
full name on the command line.
Note that there is a difference between \samp{python file} and
\samp{python <file}. In the latter case, input requests from the
program, such as calls to \function{input()} and \function{raw_input()}, are
satisfied from \emph{file}. Since this file has already been read
until the end by the parser before the program starts executing, the
program will encounter end-of-file immediately. In the former case
(which is usually what you want) they are satisfied from whatever file
or device is connected to standard input of the Python interpreter.
When a script file is used, it is sometimes useful to be able to run
the script and enter interactive mode afterwards. This can be done by
passing \programopt{-i} before the script. (This does not work if the
script is read from standard input, for the same reason as explained
in the previous paragraph.)
\subsection{Argument Passing \label{argPassing}}
When known to the interpreter, the script name and additional
arguments thereafter are passed to the script in the variable
\code{sys.argv}, which is a list of strings. Its length is at least
one; when no script and no arguments are given, \code{sys.argv[0]} is
an empty string. When the script name is given as \code{'-'} (meaning
standard input), \code{sys.argv[0]} is set to \code{'-'}. When
\programopt{-c} \var{command} is used, \code{sys.argv[0]} is set to
\code{'-c'}. When \programopt{-m} \var{module} is used, \code{sys.argv[0]}
is set to the full name of the located module. Options found after
\programopt{-c} \var{command} or \programopt{-m} \var{module} are not consumed
by the Python interpreter's option processing but left in \code{sys.argv} for
the command or module to handle.
\subsection{Interactive Mode \label{interactive}}
When commands are read from a tty, the interpreter is said to be in
\emph{interactive mode}. In this mode it prompts for the next command
with the \emph{primary prompt}, usually three greater-than signs
(\samp{>\code{>}>~}); for continuation lines it prompts with the
\emph{secondary prompt}, by default three dots (\samp{...~}).
The interpreter prints a welcome message stating its version number
and a copyright notice before printing the first prompt:
\begin{verbatim}
python
Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam
>>>
\end{verbatim}
Continuation lines are needed when entering a multi-line construct.
As an example, take a look at this \keyword{if} statement:
\begin{verbatim}
>>> the_world_is_flat = 1
>>> if the_world_is_flat:
... print "Be careful not to fall off!"
...
Be careful not to fall off!
\end{verbatim}
\section{The Interpreter and Its Environment \label{interp}}
\subsection{Error Handling \label{error}}
When an error occurs, the interpreter prints an error
message and a stack trace. In interactive mode, it then returns to
the primary prompt; when input came from a file, it exits with a
nonzero exit status after printing
the stack trace. (Exceptions handled by an \keyword{except} clause in a
\keyword{try} statement are not errors in this context.) Some errors are
unconditionally fatal and cause an exit with a nonzero exit; this
applies to internal inconsistencies and some cases of running out of
memory. All error messages are written to the standard error stream;
normal output from executed commands is written to standard
output.
Typing the interrupt character (usually Control-C or DEL) to the
primary or secondary prompt cancels the input and returns to the
primary prompt.\footnote{
A problem with the GNU Readline package may prevent this.
}
Typing an interrupt while a command is executing raises the
\exception{KeyboardInterrupt} exception, which may be handled by a
\keyword{try} statement.
\subsection{Executable Python Scripts \label{scripts}}
On BSD'ish \UNIX{} systems, Python scripts can be made directly
executable, like shell scripts, by putting the line
\begin{verbatim}
#! /usr/bin/env python
\end{verbatim}
(assuming that the interpreter is on the user's \envvar{PATH}) at the
beginning of the script and giving the file an executable mode. The
\samp{\#!} must be the first two characters of the file. On some
platforms, this first line must end with a \UNIX-style line ending
(\character{\e n}), not a Mac OS (\character{\e r}) or Windows
(\character{\e r\e n}) line ending. Note that
the hash, or pound, character, \character{\#}, is used to start a
comment in Python.
The script can be given a executable mode, or permission, using the
\program{chmod} command:
\begin{verbatim}
$ chmod +x myscript.py
\end{verbatim} % $ <-- bow to font-lock
\subsection{Source Code Encoding}
It is possible to use encodings different than \ASCII{} in Python source
files. The best way to do it is to put one more special comment line
right after the \code{\#!} line to define the source file encoding:
\begin{alltt}
# -*- coding: \var{encoding} -*-
\end{alltt}
With that declaration, all characters in the source file will be treated as
having the encoding \var{encoding}, and it will be
possible to directly write Unicode string literals in the selected
encoding. The list of possible encodings can be found in the
\citetitle[../lib/lib.html]{Python Library Reference}, in the section
on \ulink{\module{codecs}}{../lib/module-codecs.html}.
For example, to write Unicode literals including the Euro currency
symbol, the ISO-8859-15 encoding can be used, with the Euro symbol
having the ordinal value 164. This script will print the value 8364
(the Unicode codepoint corresponding to the Euro symbol) and then
exit:
\begin{alltt}
# -*- coding: iso-8859-15 -*-
currency = u"\texteuro"
print ord(currency)
\end{alltt}
If your editor supports saving files as \code{UTF-8} with a UTF-8
\emph{byte order mark} (aka BOM), you can use that instead of an
encoding declaration. IDLE supports this capability if
\code{Options/General/Default Source Encoding/UTF-8} is set. Notice
that this signature is not understood in older Python releases (2.2
and earlier), and also not understood by the operating system for
script files with \code{\#!} lines (only used on \UNIX{} systems).
By using UTF-8 (either through the signature or an encoding
declaration), characters of most languages in the world can be used
simultaneously in string literals and comments. Using non-\ASCII{}
characters in identifiers is not supported. To display all these
characters properly, your editor must recognize that the file is
UTF-8, and it must use a font that supports all the characters in the
file.
\subsection{The Interactive Startup File \label{startup}}
% XXX This should probably be dumped in an appendix, since most people
% don't use Python interactively in non-trivial ways.
When you use Python interactively, it is frequently handy to have some
standard commands executed every time the interpreter is started. You
can do this by setting an environment variable named
\envvar{PYTHONSTARTUP} to the name of a file containing your start-up
commands. This is similar to the \file{.profile} feature of the
\UNIX{} shells.
This file is only read in interactive sessions, not when Python reads
commands from a script, and not when \file{/dev/tty} is given as the
explicit source of commands (which otherwise behaves like an
interactive session). It is executed in the same namespace where
interactive commands are executed, so that objects that it defines or
imports can be used without qualification in the interactive session.
You can also change the prompts \code{sys.ps1} and \code{sys.ps2} in
this file.
If you want to read an additional start-up file from the current
directory, you can program this in the global start-up file using code
like \samp{if os.path.isfile('.pythonrc.py'):
execfile('.pythonrc.py')}. If you want to use the startup file in a
script, you must do this explicitly in the script:
\begin{verbatim}
import os
filename = os.environ.get('PYTHONSTARTUP')
if filename and os.path.isfile(filename):
execfile(filename)
\end{verbatim}
\chapter{An Informal Introduction to Python \label{informal}}
In the following examples, input and output are distinguished by the
presence or absence of prompts (\samp{>\code{>}>~} and \samp{...~}): to repeat
the example, you must type everything after the prompt, when the
prompt appears; lines that do not begin with a prompt are output from
the interpreter. %
%\footnote{
% I'd prefer to use different fonts to distinguish input
% from output, but the amount of LaTeX hacking that would require
% is currently beyond my ability.
%}
Note that a secondary prompt on a line by itself in an example means
you must type a blank line; this is used to end a multi-line command.
Many of the examples in this manual, even those entered at the
interactive prompt, include comments. Comments in Python start with
the hash character, \character{\#}, and extend to the end of the
physical line. A comment may appear at the start of a line or
following whitespace or code, but not within a string literal. A hash
character within a string literal is just a hash character.
Some examples:
\begin{verbatim}
# this is the first comment
SPAM = 1 # and this is the second comment
# ... and now a third!
STRING = "# This is not a comment."
\end{verbatim}
\section{Using Python as a Calculator \label{calculator}}
Let's try some simple Python commands. Start the interpreter and wait
for the primary prompt, \samp{>\code{>}>~}. (It shouldn't take long.)
\subsection{Numbers \label{numbers}}
The interpreter acts as a simple calculator: you can type an
expression at it and it will write the value. Expression syntax is
straightforward: the operators \code{+}, \code{-}, \code{*} and
\code{/} work just like in most other languages (for example, Pascal
or C); parentheses can be used for grouping. For example:
\begin{verbatim}
>>> 2+2
4
>>> # This is a comment
... 2+2
4
>>> 2+2 # and a comment on the same line as code
4
>>> (50-5*6)/4
5
>>> # Integer division returns the floor:
... 7/3
2
>>> 7/-3
-3
\end{verbatim}
The equal sign (\character{=}) is used to assign a value to a variable.
Afterwards, no result is displayed before the next interactive prompt:
\begin{verbatim}
>>> width = 20
>>> height = 5*9
>>> width * height
900
\end{verbatim}
A value can be assigned to several variables simultaneously:
\begin{verbatim}
>>> x = y = z = 0 # Zero x, y and z
>>> x
0
>>> y
0
>>> z
0
\end{verbatim}
There is full support for floating point; operators with mixed type
operands convert the integer operand to floating point:
\begin{verbatim}
>>> 3 * 3.75 / 1.5
7.5
>>> 7.0 / 2
3.5
\end{verbatim}
Complex numbers are also supported; imaginary numbers are written with
a suffix of \samp{j} or \samp{J}. Complex numbers with a nonzero
real component are written as \samp{(\var{real}+\var{imag}j)}, or can
be created with the \samp{complex(\var{real}, \var{imag})} function.
\begin{verbatim}
>>> 1j * 1J
(-1+0j)
>>> 1j * complex(0,1)
(-1+0j)
>>> 3+1j*3
(3+3j)
>>> (3+1j)*3
(9+3j)
>>> (1+2j)/(1+1j)
(1.5+0.5j)
\end{verbatim}
Complex numbers are always represented as two floating point numbers,
the real and imaginary part. To extract these parts from a complex
number \var{z}, use \code{\var{z}.real} and \code{\var{z}.imag}.
\begin{verbatim}
>>> a=1.5+0.5j
>>> a.real
1.5
>>> a.imag
0.5
\end{verbatim}
The conversion functions to floating point and integer
(\function{float()}, \function{int()} and \function{long()}) don't
work for complex numbers --- there is no one correct way to convert a
complex number to a real number. Use \code{abs(\var{z})} to get its
magnitude (as a float) or \code{z.real} to get its real part.
\begin{verbatim}
>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: can't convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>>
\end{verbatim}
In interactive mode, the last printed expression is assigned to the
variable \code{_}. This means that when you are using Python as a
desk calculator, it is somewhat easier to continue calculations, for
example:
\begin{verbatim}
>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625
>>> price + _
113.0625
>>> round(_, 2)
113.06
>>>
\end{verbatim}
This variable should be treated as read-only by the user. Don't
explicitly assign a value to it --- you would create an independent
local variable with the same name masking the built-in variable with
its magic behavior.
\subsection{Strings \label{strings}}
Besides numbers, Python can also manipulate strings, which can be
expressed in several ways. They can be enclosed in single quotes or
double quotes:
\begin{verbatim}
>>> 'spam eggs'
'spam eggs'
>>> 'doesn\'t'
"doesn't"
>>> "doesn't"
"doesn't"
>>> '"Yes," he said.'
'"Yes," he said.'
>>> "\"Yes,\" he said."
'"Yes," he said.'
>>> '"Isn\'t," she said.'
'"Isn\'t," she said.'
\end{verbatim}
String literals can span multiple lines in several ways. Continuation
lines can be used, with a backslash as the last character on the line
indicating that the next line is a logical continuation of the line:
\begin{verbatim}
hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\
Note that whitespace at the beginning of the line is\
significant."
print hello
\end{verbatim}
Note that newlines still need to be embedded in the string using
\code{\e n}; the newline following the trailing backslash is
discarded. This example would print the following:
\begin{verbatim}
This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant.
\end{verbatim}
If we make the string literal a ``raw'' string, however, the
\code{\e n} sequences are not converted to newlines, but the backslash
at the end of the line, and the newline character in the source, are
both included in the string as data. Thus, the example:
\begin{verbatim}
hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."
print hello
\end{verbatim}
would print:
\begin{verbatim}
This is a rather long string containing\n\
several lines of text much as you would do in C.
\end{verbatim}
Or, strings can be surrounded in a pair of matching triple-quotes:
\code{"""} or \code{'\code{'}'}. End of lines do not need to be escaped
when using triple-quotes, but they will be included in the string.
\begin{verbatim}
print """
Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to
"""
\end{verbatim}
produces the following output:
\begin{verbatim}
Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to
\end{verbatim}
The interpreter prints the result of string operations in the same way
as they are typed for input: inside quotes, and with quotes and other
funny characters escaped by backslashes, to show the precise
value. The string is enclosed in double quotes if the string contains
a single quote and no double quotes, else it's enclosed in single
quotes. (The \keyword{print} statement, described later, can be used
to write strings without quotes or escapes.)
Strings can be concatenated (glued together) with the
\code{+} operator, and repeated with \code{*}:
\begin{verbatim}
>>> word = 'Help' + 'A'
>>> word
'HelpA'
>>> '<' + word*5 + '>'
'<HelpAHelpAHelpAHelpAHelpA>'
\end{verbatim}
Two string literals next to each other are automatically concatenated;
the first line above could also have been written \samp{word = 'Help'
'A'}; this only works with two literals, not with arbitrary string
expressions:
\begin{verbatim}
>>> 'str' 'ing' # <- This is ok
'string'
>>> 'str'.strip() + 'ing' # <- This is ok
'string'
>>> 'str'.strip() 'ing' # <- This is invalid
File "<stdin>", line 1, in ?
'str'.strip() 'ing'
^
SyntaxError: invalid syntax
\end{verbatim}
Strings can be subscripted (indexed); like in C, the first character
of a string has subscript (index) 0. There is no separate character
type; a character is simply a string of size one. Like in Icon,
substrings can be specified with the \emph{slice notation}: two indices
separated by a colon.
\begin{verbatim}
>>> word[4]
'A'
>>> word[0:2]
'He'
>>> word[2:4]
'lp'
\end{verbatim}
Slice indices have useful defaults; an omitted first index defaults to
zero, an omitted second index defaults to the size of the string being
sliced.
\begin{verbatim}
>>> word[:2] # The first two characters
'He'
>>> word[2:] # Everything except the first two characters
'lpA'
\end{verbatim}
Unlike a C string, Python strings cannot be changed. Assigning to an
indexed position in the string results in an error:
\begin{verbatim}
>>> word[0] = 'x'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment
>>> word[:1] = 'Splat'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support slice assignment
\end{verbatim}
However, creating a new string with the combined content is easy and
efficient:
\begin{verbatim}
>>> 'x' + word[1:]
'xelpA'
>>> 'Splat' + word[4]
'SplatA'
\end{verbatim}
Here's a useful invariant of slice operations:
\code{s[:i] + s[i:]} equals \code{s}.
\begin{verbatim}
>>> word[:2] + word[2:]
'HelpA'
>>> word[:3] + word[3:]
'HelpA'
\end{verbatim}
Degenerate slice indices are handled gracefully: an index that is too
large is replaced by the string size, an upper bound smaller than the
lower bound returns an empty string.
\begin{verbatim}
>>> word[1:100]
'elpA'
>>> word[10:]
''
>>> word[2:1]
''
\end{verbatim}
Indices may be negative numbers, to start counting from the right.
For example:
\begin{verbatim}
>>> word[-1] # The last character
'A'
>>> word[-2] # The last-but-one character
'p'
>>> word[-2:] # The last two characters
'pA'
>>> word[:-2] # Everything except the last two characters
'Hel'
\end{verbatim}
But note that -0 is really the same as 0, so it does not count from
the right!
\begin{verbatim}
>>> word[-0] # (since -0 equals 0)
'H'
\end{verbatim}
Out-of-range negative slice indices are truncated, but don't try this
for single-element (non-slice) indices:
\begin{verbatim}
>>> word[-100:]
'HelpA'
>>> word[-10] # error
Traceback (most recent call last):
File "<stdin>", line 1, in ?
IndexError: string index out of range
\end{verbatim}
The best way to remember how slices work is to think of the indices as
pointing \emph{between} characters, with the left edge of the first
character numbered 0. Then the right edge of the last character of a
string of \var{n} characters has index \var{n}, for example:
\begin{verbatim}
+---+---+---+---+---+
| H | e | l | p | A |
+---+---+---+---+---+
0 1 2 3 4 5
-5 -4 -3 -2 -1
\end{verbatim}
The first row of numbers gives the position of the indices 0...5 in
the string; the second row gives the corresponding negative indices.
The slice from \var{i} to \var{j} consists of all characters between
the edges labeled \var{i} and \var{j}, respectively.
For non-negative indices, the length of a slice is the difference of
the indices, if both are within bounds. For example, the length of
\code{word[1:3]} is 2.
The built-in function \function{len()} returns the length of a string:
\begin{verbatim}
>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34
\end{verbatim}
\begin{seealso}
\seetitle[../lib/typesseq.html]{Sequence Types}%
{Strings, and the Unicode strings described in the next
section, are examples of \emph{sequence types}, and
support the common operations supported by such types.}
\seetitle[../lib/string-methods.html]{String Methods}%
{Both strings and Unicode strings support a large number of
methods for basic transformations and searching.}
\seetitle[../lib/typesseq-strings.html]{String Formatting Operations}%
{The formatting operations invoked when strings and Unicode
strings are the left operand of the \code{\%} operator are
described in more detail here.}
\end{seealso}
\subsection{Unicode Strings \label{unicodeStrings}}
\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
Starting with Python 2.0 a new data type for storing text data is
available to the programmer: the Unicode object. It can be used to
store and manipulate Unicode data (see \url{http://www.unicode.org/})
and integrates well with the existing string objects, providing
auto-conversions where necessary.
Unicode has the advantage of providing one ordinal for every character
in every script used in modern and ancient texts. Previously, there
were only 256 possible ordinals for script characters and texts were
typically bound to a code page which mapped the ordinals to script
characters. This lead to very much confusion especially with respect
to internationalization (usually written as \samp{i18n} ---
\character{i} + 18 characters + \character{n}) of software. Unicode
solves these problems by defining one code page for all scripts.
Creating Unicode strings in Python is just as simple as creating
normal strings:
\begin{verbatim}
>>> u'Hello World !'
u'Hello World !'
\end{verbatim}
The small \character{u} in front of the quote indicates that an
Unicode string is supposed to be created. If you want to include
special characters in the string, you can do so by using the Python
\emph{Unicode-Escape} encoding. The following example shows how:
\begin{verbatim}
>>> u'Hello\u0020World !'
u'Hello World !'
\end{verbatim}
The escape sequence \code{\e u0020} indicates to insert the Unicode
character with the ordinal value 0x0020 (the space character) at the
given position.
Other characters are interpreted by using their respective ordinal
values directly as Unicode ordinals. If you have literal strings
in the standard Latin-1 encoding that is used in many Western countries,
you will find it convenient that the lower 256 characters
of Unicode are the same as the 256 characters of Latin-1.
For experts, there is also a raw mode just like the one for normal
strings. You have to prefix the opening quote with 'ur' to have
Python use the \emph{Raw-Unicode-Escape} encoding. It will only apply
the above \code{\e uXXXX} conversion if there is an uneven number of
backslashes in front of the small 'u'.
\begin{verbatim}
>>> ur'Hello\u0020World !'
u'Hello World !'
>>> ur'Hello\\u0020World !'
u'Hello\\\\u0020World !'
\end{verbatim}
The raw mode is most useful when you have to enter lots of
backslashes, as can be necessary in regular expressions.
Apart from these standard encodings, Python provides a whole set of
other ways of creating Unicode strings on the basis of a known
encoding.
The built-in function \function{unicode()}\bifuncindex{unicode} provides
access to all registered Unicode codecs (COders and DECoders). Some of
the more well known encodings which these codecs can convert are
\emph{Latin-1}, \emph{ASCII}, \emph{UTF-8}, and \emph{UTF-16}.
The latter two are variable-length encodings that store each Unicode
character in one or more bytes. The default encoding is
normally set to \ASCII, which passes through characters in the range
0 to 127 and rejects any other characters with an error.
When a Unicode string is printed, written to a file, or converted
with \function{str()}, conversion takes place using this default encoding.
\begin{verbatim}
>>> u"abc"
u'abc'
>>> str(u"abc")
'abc'
>>> u""
u'\xe4\xf6\xfc'
>>> str(u"")
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode characters in position 0-2: ordinal not in range(128)
\end{verbatim}
To convert a Unicode string into an 8-bit string using a specific
encoding, Unicode objects provide an \function{encode()} method
that takes one argument, the name of the encoding. Lowercase names
for encodings are preferred.
\begin{verbatim}
>>> u"".encode('utf-8')
'\xc3\xa4\xc3\xb6\xc3\xbc'
\end{verbatim}
If you have data in a specific encoding and want to produce a
corresponding Unicode string from it, you can use the
\function{unicode()} function with the encoding name as the second
argument.
\begin{verbatim}
>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
u'\xe4\xf6\xfc'
\end{verbatim}
\subsection{Lists \label{lists}}
Python knows a number of \emph{compound} data types, used to group
together other values. The most versatile is the \emph{list}, which
can be written as a list of comma-separated values (items) between
square brackets. List items need not all have the same type.
\begin{verbatim}
>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]
\end{verbatim}
Like string indices, list indices start at 0, and lists can be sliced,
concatenated and so on:
\begin{verbatim}
>>> a[0]
'spam'
>>> a[3]
1234
>>> a[-2]
100
>>> a[1:-1]
['eggs', 100]
>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boo!']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boo!']
\end{verbatim}
Unlike strings, which are \emph{immutable}, it is possible to change
individual elements of a list:
\begin{verbatim}
>>> a
['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23
>>> a
['spam', 'eggs', 123, 1234]
\end{verbatim}
Assignment to slices is also possible, and this can even change the size
of the list:
\begin{verbatim}
>>> # Replace some items:
... a[0:2] = [1, 12]
>>> a
[1, 12, 123, 1234]
>>> # Remove some:
... a[0:2] = []
>>> a
[123, 1234]
>>> # Insert some:
... a[1:1] = ['bletch', 'xyzzy']
>>> a
[123, 'bletch', 'xyzzy', 1234]
>>> a[:0] = a # Insert (a copy of) itself at the beginning
>>> a
[123, 'bletch', 'xyzzy', 1234, 123, 'bletch', 'xyzzy', 1234]
\end{verbatim}
The built-in function \function{len()} also applies to lists:
\begin{verbatim}
>>> len(a)
8
\end{verbatim}
It is possible to nest lists (create lists containing other lists),
for example:
\begin{verbatim}
>>> q = [2, 3]
>>> p = [1, q, 4]
>>> len(p)
3
>>> p[1]
[2, 3]
>>> p[1][0]
2
>>> p[1].append('xtra') # See section 5.1
>>> p
[1, [2, 3, 'xtra'], 4]
>>> q
[2, 3, 'xtra']
\end{verbatim}
Note that in the last example, \code{p[1]} and \code{q} really refer to
the same object! We'll come back to \emph{object semantics} later.
\section{First Steps Towards Programming \label{firstSteps}}
Of course, we can use Python for more complicated tasks than adding
two and two together. For instance, we can write an initial
sub-sequence of the \emph{Fibonacci} series as follows:
\begin{verbatim}
>>> # Fibonacci series:
... # the sum of two elements defines the next
... a, b = 0, 1
>>> while b < 10:
... print b
... a, b = b, a+b
...
1
1
2
3
5
8
\end{verbatim}
This example introduces several new features.
\begin{itemize}
\item
The first line contains a \emph{multiple assignment}: the variables
\code{a} and \code{b} simultaneously get the new values 0 and 1. On the
last line this is used again, demonstrating that the expressions on
the right-hand side are all evaluated first before any of the
assignments take place. The right-hand side expressions are evaluated
from the left to the right.
\item
The \keyword{while} loop executes as long as the condition (here:
\code{b < 10}) remains true. In Python, like in C, any non-zero
integer value is true; zero is false. The condition may also be a
string or list value, in fact any sequence; anything with a non-zero
length is true, empty sequences are false. The test used in the
example is a simple comparison. The standard comparison operators are
written the same as in C: \code{<} (less than), \code{>} (greater than),
\code{==} (equal to), \code{<=} (less than or equal to),
\code{>=} (greater than or equal to) and \code{!=} (not equal to).
\item
The \emph{body} of the loop is \emph{indented}: indentation is Python's
way of grouping statements. Python does not (yet!) provide an
intelligent input line editing facility, so you have to type a tab or
space(s) for each indented line. In practice you will prepare more
complicated input for Python with a text editor; most text editors have
an auto-indent facility. When a compound statement is entered
interactively, it must be followed by a blank line to indicate
completion (since the parser cannot guess when you have typed the last
line). Note that each line within a basic block must be indented by
the same amount.
\item
The \keyword{print} statement writes the value of the expression(s) it is
given. It differs from just writing the expression you want to write
(as we did earlier in the calculator examples) in the way it handles
multiple expressions and strings. Strings are printed without quotes,
and a space is inserted between items, so you can format things nicely,
like this:
\begin{verbatim}
>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536
\end{verbatim}
A trailing comma avoids the newline after the output:
\begin{verbatim}
>>> a, b = 0, 1
>>> while b < 1000:
... print b,
... a, b = b, a+b
...
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
\end{verbatim}
Note that the interpreter inserts a newline before it prints the next
prompt if the last line was not completed.
\end{itemize}
\chapter{More Control Flow Tools \label{moreControl}}
Besides the \keyword{while} statement just introduced, Python knows
the usual control flow statements known from other languages, with
some twists.
\section{\keyword{if} Statements \label{if}}
Perhaps the most well-known statement type is the
\keyword{if} statement. For example:
\begin{verbatim}
>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:
... x = 0
... print 'Negative changed to zero'
... elif x == 0:
... print 'Zero'
... elif x == 1:
... print 'Single'
... else:
... print 'More'
...
\end{verbatim}
There can be zero or more \keyword{elif} parts, and the
\keyword{else} part is optional. The keyword `\keyword{elif}' is
short for `else if', and is useful to avoid excessive indentation. An
\keyword{if} \ldots\ \keyword{elif} \ldots\ \keyword{elif} \ldots\ sequence
% Weird spacings happen here if the wrapping of the source text
% gets changed in the wrong way.
is a substitute for the \keyword{switch} or
\keyword{case} statements found in other languages.
\section{\keyword{for} Statements \label{for}}
The \keyword{for}\stindex{for} statement in Python differs a bit from
what you may be used to in C or Pascal. Rather than always
iterating over an arithmetic progression of numbers (like in Pascal),
or giving the user the ability to define both the iteration step and
halting condition (as C), Python's
\keyword{for}\stindex{for} statement iterates over the items of any
sequence (a list or a string), in the order that they appear in
the sequence. For example (no pun intended):
% One suggestion was to give a real C example here, but that may only
% serve to confuse non-C programmers.
\begin{verbatim}
>>> # Measure some strings:
... a = ['cat', 'window', 'defenestrate']
>>> for x in a:
... print x, len(x)
...
cat 3
window 6
defenestrate 12
\end{verbatim}
It is not safe to modify the sequence being iterated over in the loop
(this can only happen for mutable sequence types, such as lists). If
you need to modify the list you are iterating over (for example, to
duplicate selected items) you must iterate over a copy. The slice
notation makes this particularly convenient:
\begin{verbatim}
>>> for x in a[:]: # make a slice copy of the entire list
... if len(x) > 6: a.insert(0, x)
...
>>> a
['defenestrate', 'cat', 'window', 'defenestrate']
\end{verbatim}
\section{The \function{range()} Function \label{range}}
If you do need to iterate over a sequence of numbers, the built-in
function \function{range()} comes in handy. It generates lists
containing arithmetic progressions:
\begin{verbatim}
>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
\end{verbatim}
The given end point is never part of the generated list;
\code{range(10)} generates a list of 10 values, the legal
indices for items of a sequence of length 10. It is possible to let
the range start at another number, or to specify a different increment
(even negative; sometimes this is called the `step'):
\begin{verbatim}
>>> range(5, 10)
[5, 6, 7, 8, 9]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(-10, -100, -30)
[-10, -40, -70]
\end{verbatim}
To iterate over the indices of a sequence, combine
\function{range()} and \function{len()} as follows:
\begin{verbatim}
>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for i in range(len(a)):
... print i, a[i]
...
0 Mary
1 had
2 a
3 little
4 lamb
\end{verbatim}
\section{\keyword{break} and \keyword{continue} Statements, and
\keyword{else} Clauses on Loops
\label{break}}
The \keyword{break} statement, like in C, breaks out of the smallest
enclosing \keyword{for} or \keyword{while} loop.
The \keyword{continue} statement, also borrowed from C, continues
with the next iteration of the loop.
Loop statements may have an \code{else} clause; it is executed when
the loop terminates through exhaustion of the list (with
\keyword{for}) or when the condition becomes false (with
\keyword{while}), but not when the loop is terminated by a
\keyword{break} statement. This is exemplified by the following loop,
which searches for prime numbers:
\begin{verbatim}
>>> for n in range(2, 10):
... for x in range(2, n):
... if n % x == 0:
... print n, 'equals', x, '*', n/x
... break
... else:
... # loop fell through without finding a factor
... print n, 'is a prime number'
...
2 is a prime number
3 is a prime number
4 equals 2 * 2
5 is a prime number
6 equals 2 * 3
7 is a prime number
8 equals 2 * 4
9 equals 3 * 3
\end{verbatim}
\section{\keyword{pass} Statements \label{pass}}
The \keyword{pass} statement does nothing.
It can be used when a statement is required syntactically but the
program requires no action.
For example:
\begin{verbatim}
>>> while True:
... pass # Busy-wait for keyboard interrupt
...
\end{verbatim}
\section{Defining Functions \label{functions}}
We can create a function that writes the Fibonacci series to an
arbitrary boundary:
\begin{verbatim}
>>> def fib(n): # write Fibonacci series up to n
... """Print a Fibonacci series up to n."""
... a, b = 0, 1
... while b < n:
... print b,
... a, b = b, a+b
...
>>> # Now call the function we just defined:
... fib(2000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
\end{verbatim}
The keyword \keyword{def} introduces a function \emph{definition}. It
must be followed by the function name and the parenthesized list of
formal parameters. The statements that form the body of the function
start at the next line, and must be indented. The first statement of
the function body can optionally be a string literal; this string
literal is the function's \index{documentation strings}documentation
string, or \dfn{docstring}.\index{docstrings}\index{strings, documentation}
There are tools which use docstrings to automatically produce online
or printed documentation, or to let the user interactively browse
through code; it's good practice to include docstrings in code that
you write, so try to make a habit of it.
The \emph{execution} of a function introduces a new symbol table used
for the local variables of the function. More precisely, all variable
assignments in a function store the value in the local symbol table;
whereas variable references first look in the local symbol table, then
in the global symbol table, and then in the table of built-in names.
Thus, global variables cannot be directly assigned a value within a
function (unless named in a \keyword{global} statement), although
they may be referenced.
The actual parameters (arguments) to a function call are introduced in
the local symbol table of the called function when it is called; thus,
arguments are passed using \emph{call by value} (where the
\emph{value} is always an object \emph{reference}, not the value of
the object).\footnote{
Actually, \emph{call by object reference} would be a better
description, since if a mutable object is passed, the caller
will see any changes the callee makes to it (items
inserted into a list).
} When a function calls another function, a new local symbol table is
created for that call.
A function definition introduces the function name in the current
symbol table. The value of the function name
has a type that is recognized by the interpreter as a user-defined
function. This value can be assigned to another name which can then
also be used as a function. This serves as a general renaming
mechanism:
\begin{verbatim}
>>> fib
<function fib at 10042ed0>
>>> f = fib
>>> f(100)
1 1 2 3 5 8 13 21 34 55 89
\end{verbatim}
You might object that \code{fib} is not a function but a procedure. In
Python, like in C, procedures are just functions that don't return a
value. In fact, technically speaking, procedures do return a value,
albeit a rather boring one. This value is called \code{None} (it's a
built-in name). Writing the value \code{None} is normally suppressed by
the interpreter if it would be the only value written. You can see it
if you really want to:
\begin{verbatim}
>>> print fib(0)
None
\end{verbatim}
It is simple to write a function that returns a list of the numbers of
the Fibonacci series, instead of printing it:
\begin{verbatim}
>>> def fib2(n): # return Fibonacci series up to n
... """Return a list containing the Fibonacci series up to n."""
... result = []
... a, b = 0, 1
... while b < n:
... result.append(b) # see below
... a, b = b, a+b
... return result
...
>>> f100 = fib2(100) # call it
>>> f100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
\end{verbatim}
This example, as usual, demonstrates some new Python features:
\begin{itemize}
\item
The \keyword{return} statement returns with a value from a function.
\keyword{return} without an expression argument returns \code{None}.
Falling off the end of a procedure also returns \code{None}.
\item
The statement \code{result.append(b)} calls a \emph{method} of the list
object \code{result}. A method is a function that `belongs' to an
object and is named \code{obj.methodname}, where \code{obj} is some
object (this may be an expression), and \code{methodname} is the name
of a method that is defined by the object's type. Different types
define different methods. Methods of different types may have the
same name without causing ambiguity. (It is possible to define your
own object types and methods, using \emph{classes}, as discussed later
in this tutorial.)
The method \method{append()} shown in the example is defined for
list objects; it adds a new element at the end of the list. In this
example it is equivalent to \samp{result = result + [b]}, but more
efficient.
\end{itemize}
\section{More on Defining Functions \label{defining}}
It is also possible to define functions with a variable number of
arguments. There are three forms, which can be combined.
\subsection{Default Argument Values \label{defaultArgs}}
The most useful form is to specify a default value for one or more
arguments. This creates a function that can be called with fewer
arguments than it is defined to allow. For example:
\begin{verbatim}
def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
while True:
ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'): return True
if ok in ('n', 'no', 'nop', 'nope'): return False
retries = retries - 1
if retries < 0: raise IOError, 'refusenik user'
print complaint
\end{verbatim}
This function can be called either like this:
\code{ask_ok('Do you really want to quit?')} or like this:
\code{ask_ok('OK to overwrite the file?', 2)}.
This example also introduces the \keyword{in} keyword. This tests
whether or not a sequence contains a certain value.
The default values are evaluated at the point of function definition
in the \emph{defining} scope, so that
\begin{verbatim}
i = 5
def f(arg=i):
print arg
i = 6
f()
\end{verbatim}
will print \code{5}.
\strong{Important warning:} The default value is evaluated only once.
This makes a difference when the default is a mutable object such as a
list, dictionary, or instances of most classes. For example, the
following function accumulates the arguments passed to it on
subsequent calls:
\begin{verbatim}
def f(a, L=[]):
L.append(a)
return L
print f(1)
print f(2)
print f(3)
\end{verbatim}
This will print
\begin{verbatim}
[1]
[1, 2]
[1, 2, 3]
\end{verbatim}
If you don't want the default to be shared between subsequent calls,
you can write the function like this instead:
\begin{verbatim}
def f(a, L=None):
if L is None:
L = []
L.append(a)
return L
\end{verbatim}
\subsection{Keyword Arguments \label{keywordArgs}}
Functions can also be called using
keyword arguments of the form \samp{\var{keyword} = \var{value}}. For
instance, the following function:
\begin{verbatim}
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, "volts through it."
print "-- Lovely plumage, the", type
print "-- It's", state, "!"
\end{verbatim}
could be called in any of the following ways:
\begin{verbatim}
parrot(1000)
parrot(action = 'VOOOOOM', voltage = 1000000)
parrot('a thousand', state = 'pushing up the daisies')
parrot('a million', 'bereft of life', 'jump')
\end{verbatim}
but the following calls would all be invalid:
\begin{verbatim}
parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument following keyword
parrot(110, voltage=220) # duplicate value for argument
parrot(actor='John Cleese') # unknown keyword
\end{verbatim}
In general, an argument list must have any positional arguments
followed by any keyword arguments, where the keywords must be chosen
from the formal parameter names. It's not important whether a formal
parameter has a default value or not. No argument may receive a
value more than once --- formal parameter names corresponding to
positional arguments cannot be used as keywords in the same calls.
Here's an example that fails due to this restriction:
\begin{verbatim}
>>> def function(a):
... pass
...
>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'
\end{verbatim}
When a final formal parameter of the form \code{**\var{name}} is
present, it receives a \ulink{dictionary}{../lib/typesmapping.html}
containing all keyword arguments except for those corresponding to
a formal parameter. This may be
combined with a formal parameter of the form
\code{*\var{name}} (described in the next subsection) which receives a
tuple containing the positional arguments beyond the formal parameter
list. (\code{*\var{name}} must occur before \code{**\var{name}}.)
For example, if we define a function like this:
\begin{verbatim}
def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, '?'
print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg
print '-'*40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ':', keywords[kw]
\end{verbatim}
It could be called like this:
\begin{verbatim}
cheeseshop('Limburger', "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client='John Cleese',
shopkeeper='Michael Palin',
sketch='Cheese Shop Sketch')
\end{verbatim}
and of course it would print:
\begin{verbatim}
-- Do you have any Limburger ?
-- I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
----------------------------------------
client : John Cleese
shopkeeper : Michael Palin
sketch : Cheese Shop Sketch
\end{verbatim}
Note that the \method{sort()} method of the list of keyword argument
names is called before printing the contents of the \code{keywords}
dictionary; if this is not done, the order in which the arguments are
printed is undefined.
\subsection{Arbitrary Argument Lists \label{arbitraryArgs}}
Finally, the least frequently used option is to specify that a
function can be called with an arbitrary number of arguments. These
arguments will be wrapped up in a tuple. Before the variable number
of arguments, zero or more normal arguments may occur.
\begin{verbatim}
def fprintf(file, format, *args):
file.write(format % args)
\end{verbatim}
\subsection{Unpacking Argument Lists \label{unpacking-arguments}}
The reverse situation occurs when the arguments are already in a list
or tuple but need to be unpacked for a function call requiring separate
positional arguments. For instance, the built-in \function{range()}
function expects separate \var{start} and \var{stop} arguments. If they
are not available separately, write the function call with the
\code{*}-operator to unpack the arguments out of a list or tuple:
\begin{verbatim}
>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]
>>> args = [3, 6]
>>> range(*args) # call with arguments unpacked from a list
[3, 4, 5]
\end{verbatim}
In the same fashion, dictionaries can deliver keyword arguments with the
\code{**}-operator:
\begin{verbatim}
>>> def parrot(voltage, state='a stiff', action='voom'):
... print "-- This parrot wouldn't", action,
... print "if you put", voltage, "volts through it.",
... print "E's", state, "!"
...
>>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"}
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
\end{verbatim}
\subsection{Lambda Forms \label{lambda}}
By popular demand, a few features commonly found in functional
programming languages like Lisp have been added to Python. With the
\keyword{lambda} keyword, small anonymous functions can be created.
Here's a function that returns the sum of its two arguments:
\samp{lambda a, b: a+b}. Lambda forms can be used wherever function
objects are required. They are syntactically restricted to a single
expression. Semantically, they are just syntactic sugar for a normal
function definition. Like nested function definitions, lambda forms
can reference variables from the containing scope:
\begin{verbatim}
>>> def make_incrementor(n):
... return lambda x: x + n
...
>>> f = make_incrementor(42)
>>> f(0)
42
>>> f(1)
43
\end{verbatim}
\subsection{Documentation Strings \label{docstrings}}
There are emerging conventions about the content and formatting of
documentation strings.
\index{docstrings}\index{documentation strings}
\index{strings, documentation}
The first line should always be a short, concise summary of the
object's purpose. For brevity, it should not explicitly state the
object's name or type, since these are available by other means
(except if the name happens to be a verb describing a function's
operation). This line should begin with a capital letter and end with
a period.
If there are more lines in the documentation string, the second line
should be blank, visually separating the summary from the rest of the
description. The following lines should be one or more paragraphs
describing the object's calling conventions, its side effects, etc.
The Python parser does not strip indentation from multi-line string
literals in Python, so tools that process documentation have to strip
indentation if desired. This is done using the following convention.
The first non-blank line \emph{after} the first line of the string
determines the amount of indentation for the entire documentation
string. (We can't use the first line since it is generally adjacent
to the string's opening quotes so its indentation is not apparent in
the string literal.) Whitespace ``equivalent'' to this indentation is
then stripped from the start of all lines of the string. Lines that
are indented less should not occur, but if they occur all their
leading whitespace should be stripped. Equivalence of whitespace
should be tested after expansion of tabs (to 8 spaces, normally).
Here is an example of a multi-line docstring:
\begin{verbatim}
>>> def my_function():
... """Do nothing, but document it.
...
... No, really, it doesn't do anything.
... """
... pass
...
>>> print my_function.__doc__
Do nothing, but document it.
No, really, it doesn't do anything.
\end{verbatim}
\chapter{Data Structures \label{structures}}
This chapter describes some things you've learned about already in
more detail, and adds some new things as well.
\section{More on Lists \label{moreLists}}
The list data type has some more methods. Here are all of the methods
of list objects:
\begin{methoddesc}[list]{append}{x}
Add an item to the end of the list;
equivalent to \code{a[len(a):] = [\var{x}]}.
\end{methoddesc}
\begin{methoddesc}[list]{extend}{L}
Extend the list by appending all the items in the given list;
equivalent to \code{a[len(a):] = \var{L}}.
\end{methoddesc}
\begin{methoddesc}[list]{insert}{i, x}
Insert an item at a given position. The first argument is the index
of the element before which to insert, so \code{a.insert(0, \var{x})}
inserts at the front of the list, and \code{a.insert(len(a), \var{x})}
is equivalent to \code{a.append(\var{x})}.
\end{methoddesc}
\begin{methoddesc}[list]{remove}{x}
Remove the first item from the list whose value is \var{x}.
It is an error if there is no such item.
\end{methoddesc}
\begin{methoddesc}[list]{pop}{\optional{i}}
Remove the item at the given position in the list, and return it. If
no index is specified, \code{a.pop()} removes and returns the last item
in the list. The item is also removed from the list. (The square brackets
around the \var{i} in the method signature denote that the parameter
is optional, not that you should type square brackets at that
position. You will see this notation frequently in the
\citetitle[../lib/lib.html]{Python Library Reference}.)
\end{methoddesc}
\begin{methoddesc}[list]{index}{x}
Return the index in the list of the first item whose value is \var{x}.
It is an error if there is no such item.
\end{methoddesc}
\begin{methoddesc}[list]{count}{x}
Return the number of times \var{x} appears in the list.
\end{methoddesc}
\begin{methoddesc}[list]{sort}{}
Sort the items of the list, in place.
\end{methoddesc}
\begin{methoddesc}[list]{reverse}{}
Reverse the elements of the list, in place.
\end{methoddesc}
An example that uses most of the list methods:
\begin{verbatim}
>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count('x')
2 1 0
>>> a.insert(2, -1)
>>> a.append(333)
>>> a
[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)
1
>>> a.remove(333)
>>> a
[66.25, -1, 333, 1, 1234.5, 333]
>>> a.reverse()
>>> a
[333, 1234.5, 1, 333, -1, 66.25]
>>> a.sort()
>>> a
[-1, 1, 66.25, 333, 333, 1234.5]
\end{verbatim}
\subsection{Using Lists as Stacks \label{lists-as-stacks}}
\sectionauthor{Ka-Ping Yee}{ping@lfw.org}
The list methods make it very easy to use a list as a stack, where the
last element added is the first element retrieved (``last-in,
first-out''). To add an item to the top of the stack, use
\method{append()}. To retrieve an item from the top of the stack, use
\method{pop()} without an explicit index. For example:
\begin{verbatim}
>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack
[3, 4, 5, 6, 7]
>>> stack.pop()
7
>>> stack
[3, 4, 5, 6]
>>> stack.pop()
6
>>> stack.pop()
5
>>> stack
[3, 4]
\end{verbatim}
\subsection{Using Lists as Queues \label{lists-as-queues}}
\sectionauthor{Ka-Ping Yee}{ping@lfw.org}
You can also use a list conveniently as a queue, where the first
element added is the first element retrieved (``first-in,
first-out''). To add an item to the back of the queue, use
\method{append()}. To retrieve an item from the front of the queue,
use \method{pop()} with \code{0} as the index. For example:
\begin{verbatim}
>>> queue = ["Eric", "John", "Michael"]
>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)
'Eric'
>>> queue.pop(0)
'John'
>>> queue
['Michael', 'Terry', 'Graham']
\end{verbatim}
\subsection{Functional Programming Tools \label{functional}}
There are three built-in functions that are very useful when used with
lists: \function{filter()}, \function{map()}, and \function{reduce()}.
\samp{filter(\var{function}, \var{sequence})} returns a sequence
consisting of those items from the
sequence for which \code{\var{function}(\var{item})} is true.
If \var{sequence} is a \class{string} or \class{tuple}, the result will
be of the same type; otherwise, it is always a \class{list}.
For example, to compute some primes:
\begin{verbatim}
>>> def f(x): return x % 2 != 0 and x % 3 != 0
...
>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]
\end{verbatim}
\samp{map(\var{function}, \var{sequence})} calls
\code{\var{function}(\var{item})} for each of the sequence's items and
returns a list of the return values. For example, to compute some
cubes:
\begin{verbatim}
>>> def cube(x): return x*x*x
...
>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]
\end{verbatim}
More than one sequence may be passed; the function must then have as
many arguments as there are sequences and is called with the
corresponding item from each sequence (or \code{None} if some sequence
is shorter than another). For example:
\begin{verbatim}
>>> seq = range(8)
>>> def add(x, y): return x+y
...
>>> map(add, seq, seq)
[0, 2, 4, 6, 8, 10, 12, 14]
\end{verbatim}
\samp{reduce(\var{function}, \var{sequence})} returns a single value
constructed by calling the binary function \var{function} on the first two
items of the sequence, then on the result and the next item, and so
on. For example, to compute the sum of the numbers 1 through 10:
\begin{verbatim}
>>> def add(x,y): return x+y
...
>>> reduce(add, range(1, 11))
55
\end{verbatim}
If there's only one item in the sequence, its value is returned; if
the sequence is empty, an exception is raised.
A third argument can be passed to indicate the starting value. In this
case the starting value is returned for an empty sequence, and the
function is first applied to the starting value and the first sequence
item, then to the result and the next item, and so on. For example,
\begin{verbatim}
>>> def sum(seq):
... def add(x,y): return x+y
... return reduce(add, seq, 0)
...
>>> sum(range(1, 11))
55
>>> sum([])
0
\end{verbatim}
Don't use this example's definition of \function{sum()}: since summing
numbers is such a common need, a built-in function
\code{sum(\var{sequence})} is already provided, and works exactly like
this.
\versionadded{2.3}
\subsection{List Comprehensions}
List comprehensions provide a concise way to create lists without resorting
to use of \function{map()}, \function{filter()} and/or \keyword{lambda}.
The resulting list definition tends often to be clearer than lists built
using those constructs. Each list comprehension consists of an expression
followed by a \keyword{for} clause, then zero or more \keyword{for} or
\keyword{if} clauses. The result will be a list resulting from evaluating
the expression in the context of the \keyword{for} and \keyword{if} clauses
which follow it. If the expression would evaluate to a tuple, it must be
parenthesized.
\begin{verbatim}
>>> freshfruit = [' banana', ' loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples
File "<stdin>", line 1, in ?
[x, x**2 for x in vec]
^
SyntaxError: invalid syntax
>>> [(x, x**2) for x in vec]
[(2, 4), (4, 16), (6, 36)]
>>> vec1 = [2, 4, 6]
>>> vec2 = [4, 3, -9]
>>> [x*y for x in vec1 for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vec1 for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]
>>> [vec1[i]*vec2[i] for i in range(len(vec1))]
[8, 12, -54]
\end{verbatim}
List comprehensions are much more flexible than \function{map()} and can be
applied to complex expressions and nested functions:
\begin{verbatim}
>>> [str(round(355/113.0, i)) for i in range(1,6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']
\end{verbatim}
\section{The \keyword{del} statement \label{del}}
There is a way to remove an item from a list given its index instead
of its value: the \keyword{del} statement. Unlike the \method{pop()})
method which returns a value, the \keyword{del} keyword is a statement
and can also be used to
remove slices from a list (which we did earlier by assignment of an
empty list to the slice). For example:
\begin{verbatim}
>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a
[1, 66.25, 333, 333, 1234.5]
>>> del a[2:4]
>>> a
[1, 66.25, 1234.5]
\end{verbatim}
\keyword{del} can also be used to delete entire variables:
\begin{verbatim}
>>> del a
\end{verbatim}
Referencing the name \code{a} hereafter is an error (at least until
another value is assigned to it). We'll find other uses for
\keyword{del} later.
\section{Tuples and Sequences \label{tuples}}
We saw that lists and strings have many common properties, such as
indexing and slicing operations. They are two examples of
\ulink{\emph{sequence} data types}{../lib/typesseq.html}. Since
Python is an evolving language, other sequence data types may be
added. There is also another standard sequence data type: the
\emph{tuple}.
A tuple consists of a number of values separated by commas, for
instance:
\begin{verbatim}
>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
... u = t, (1, 2, 3, 4, 5)
>>> u
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))
\end{verbatim}
As you see, on output tuples are always enclosed in parentheses, so
that nested tuples are interpreted correctly; they may be input with
or without surrounding parentheses, although often parentheses are
necessary anyway (if the tuple is part of a larger expression).
Tuples have many uses. For example: (x, y) coordinate pairs, employee
records from a database, etc. Tuples, like strings, are immutable: it
is not possible to assign to the individual items of a tuple (you can
simulate much of the same effect with slicing and concatenation,
though). It is also possible to create tuples which contain mutable
objects, such as lists.
A special problem is the construction of tuples containing 0 or 1
items: the syntax has some extra quirks to accommodate these. Empty
tuples are constructed by an empty pair of parentheses; a tuple with
one item is constructed by following a value with a comma
(it is not sufficient to enclose a single value in parentheses).
Ugly, but effective. For example:
\begin{verbatim}
>>> empty = ()
>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)
0
>>> len(singleton)
1
>>> singleton
('hello',)
\end{verbatim}
The statement \code{t = 12345, 54321, 'hello!'} is an example of
\emph{tuple packing}: the values \code{12345}, \code{54321} and
\code{'hello!'} are packed together in a tuple. The reverse operation
is also possible:
\begin{verbatim}
>>> x, y, z = t
\end{verbatim}
This is called, appropriately enough, \emph{sequence unpacking}.
Sequence unpacking requires the list of variables on the left to
have the same number of elements as the length of the sequence. Note
that multiple assignment is really just a combination of tuple packing
and sequence unpacking!
There is a small bit of asymmetry here: packing multiple values
always creates a tuple, and unpacking works for any sequence.
% XXX Add a bit on the difference between tuples and lists.
\section{Sets \label{sets}}
Python also includes a data type for \emph{sets}. A set is an unordered
collection with no duplicate elements. Basic uses include membership
testing and eliminating duplicate entries. Set objects also support
mathematical operations like union, intersection, difference, and
symmetric difference.
Here is a brief demonstration:
\begin{verbatim}
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> fruit = set(basket) # create a set without duplicates
>>> fruit
set(['orange', 'pear', 'apple', 'banana'])
>>> 'orange' in fruit # fast membership testing
True
>>> 'crabgrass' in fruit
False
>>> # Demonstrate set operations on unique letters from two words
...
>>> a = set('abracadabra')
>>> b = set('alacazam')
>>> a # unique letters in a
set(['a', 'r', 'b', 'c', 'd'])
>>> a - b # letters in a but not in b
set(['r', 'd', 'b'])
>>> a | b # letters in either a or b
set(['a', 'c', 'r', 'd', 'b', 'm', 'z', 'l'])
>>> a & b # letters in both a and b
set(['a', 'c'])
>>> a ^ b # letters in a or b but not both
set(['r', 'd', 'b', 'm', 'z', 'l'])
\end{verbatim}
\section{Dictionaries \label{dictionaries}}
Another useful data type built into Python is the
\ulink{\emph{dictionary}}{../lib/typesmapping.html}.
Dictionaries are sometimes found in other languages as ``associative
memories'' or ``associative arrays''. Unlike sequences, which are
indexed by a range of numbers, dictionaries are indexed by \emph{keys},
which can be any immutable type; strings and numbers can always be
keys. Tuples can be used as keys if they contain only strings,
numbers, or tuples; if a tuple contains any mutable object either
directly or indirectly, it cannot be used as a key. You can't use
lists as keys, since lists can be modified in place using methods like
\method{append()} and \method{extend()} or modified with slice and
indexed assignments.
It is best to think of a dictionary as an unordered set of
\emph{key: value} pairs, with the requirement that the keys are unique
(within one dictionary).
A pair of braces creates an empty dictionary: \code{\{\}}.
Placing a comma-separated list of key:value pairs within the
braces adds initial key:value pairs to the dictionary; this is also the
way dictionaries are written on output.
The main operations on a dictionary are storing a value with some key
and extracting the value given the key. It is also possible to delete
a key:value pair
with \code{del}.
If you store using a key that is already in use, the old value
associated with that key is forgotten. It is an error to extract a
value using a non-existent key.
The \method{keys()} method of a dictionary object returns a list of all
the keys used in the dictionary, in arbitrary order (if you want it
sorted, just apply the \method{sort()} method to the list of keys). To
check whether a single key is in the dictionary, either use the dictionary's
\method{has_key()} method or the \keyword{in} keyword.
Here is a small example using a dictionary:
\begin{verbatim}
>>> tel = {'jack': 4098, 'sape': 4139}
>>> tel['guido'] = 4127
>>> tel
{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']
4098
>>> del tel['sape']
>>> tel['irv'] = 4127
>>> tel
{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()
['guido', 'irv', 'jack']
>>> tel.has_key('guido')
True
>>> 'guido' in tel
True
\end{verbatim}
The \function{dict()} constructor builds dictionaries directly from
lists of key-value pairs stored as tuples. When the pairs form a
pattern, list comprehensions can compactly specify the key-value list.
\begin{verbatim}
>>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
{'sape': 4139, 'jack': 4098, 'guido': 4127}
>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehension
{2: 4, 4: 16, 6: 36}
\end{verbatim}
Later in the tutorial, we will learn about Generator Expressions
which are even better suited for the task of supplying key-values pairs to
the \function{dict()} constructor.
When the keys are simple strings, it is sometimes easier to specify
pairs using keyword arguments:
\begin{verbatim}
>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}
\end{verbatim}
\section{Looping Techniques \label{loopidioms}}
When looping through dictionaries, the key and corresponding value can
be retrieved at the same time using the \method{iteritems()} method.
\begin{verbatim}
>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
... print k, v
...
gallahad the pure
robin the brave
\end{verbatim}
When looping through a sequence, the position index and corresponding
value can be retrieved at the same time using the
\function{enumerate()} function.
\begin{verbatim}
>>> for i, v in enumerate(['tic', 'tac', 'toe']):
... print i, v
...
0 tic
1 tac
2 toe
\end{verbatim}
To loop over two or more sequences at the same time, the entries
can be paired with the \function{zip()} function.
\begin{verbatim}
>>> questions = ['name', 'quest', 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for q, a in zip(questions, answers):
... print 'What is your %s? It is %s.' % (q, a)
...
What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.
\end{verbatim}
To loop over a sequence in reverse, first specify the sequence
in a forward direction and then call the \function{reversed()}
function.
\begin{verbatim}
>>> for i in reversed(xrange(1,10,2)):
... print i
...
9
7
5
3
1
\end{verbatim}
To loop over a sequence in sorted order, use the \function{sorted()}
function which returns a new sorted list while leaving the source
unaltered.
\begin{verbatim}
>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana']
>>> for f in sorted(set(basket)):
... print f
...
apple
banana
orange
pear
\end{verbatim}
\section{More on Conditions \label{conditions}}
The conditions used in \code{while} and \code{if} statements can
contain any operators, not just comparisons.
The comparison operators \code{in} and \code{not in} check whether a value
occurs (does not occur) in a sequence. The operators \code{is} and
\code{is not} compare whether two objects are really the same object; this
only matters for mutable objects like lists. All comparison operators
have the same priority, which is lower than that of all numerical
operators.
Comparisons can be chained. For example, \code{a < b == c} tests
whether \code{a} is less than \code{b} and moreover \code{b} equals
\code{c}.
Comparisons may be combined using the Boolean operators \code{and} and
\code{or}, and the outcome of a comparison (or of any other Boolean
expression) may be negated with \code{not}. These have lower
priorities than comparison operators; between them, \code{not} has
the highest priority and \code{or} the lowest, so that
\code{A and not B or C} is equivalent to \code{(A and (not B)) or C}.
As always, parentheses can be used to express the desired composition.
The Boolean operators \code{and} and \code{or} are so-called
\emph{short-circuit} operators: their arguments are evaluated from
left to right, and evaluation stops as soon as the outcome is
determined. For example, if \code{A} and \code{C} are true but
\code{B} is false, \code{A and B and C} does not evaluate the
expression \code{C}. When used as a general value and not as a
Boolean, the return value of a short-circuit operator is the last
evaluated argument.
It is possible to assign the result of a comparison or other Boolean
expression to a variable. For example,
\begin{verbatim}
>>> string1, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = string1 or string2 or string3
>>> non_null
'Trondheim'
\end{verbatim}
Note that in Python, unlike C, assignment cannot occur inside expressions.
C programmers may grumble about this, but it avoids a common class of
problems encountered in C programs: typing \code{=} in an expression when
\code{==} was intended.
\section{Comparing Sequences and Other Types \label{comparing}}
Sequence objects may be compared to other objects with the same
sequence type. The comparison uses \emph{lexicographical} ordering:
first the first two items are compared, and if they differ this
determines the outcome of the comparison; if they are equal, the next
two items are compared, and so on, until either sequence is exhausted.
If two items to be compared are themselves sequences of the same type,
the lexicographical comparison is carried out recursively. If all
items of two sequences compare equal, the sequences are considered
equal. If one sequence is an initial sub-sequence of the other, the
shorter sequence is the smaller (lesser) one. Lexicographical
ordering for strings uses the \ASCII{} ordering for individual
characters. Some examples of comparisons between sequences of the
same type:
\begin{verbatim}
(1, 2, 3) < (1, 2, 4)
[1, 2, 3] < [1, 2, 4]
'ABC' < 'C' < 'Pascal' < 'Python'
(1, 2, 3, 4) < (1, 2, 4)
(1, 2) < (1, 2, -1)
(1, 2, 3) == (1.0, 2.0, 3.0)
(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)
\end{verbatim}
Note that comparing objects of different types is legal. The outcome
is deterministic but arbitrary: the types are ordered by their name.
Thus, a list is always smaller than a string, a string is always
smaller than a tuple, etc. \footnote{
The rules for comparing objects of different types should
not be relied upon; they may change in a future version of
the language.
} Mixed numeric types are compared according to their numeric value, so
0 equals 0.0, etc.
\chapter{Modules \label{modules}}
If you quit from the Python interpreter and enter it again, the
definitions you have made (functions and variables) are lost.
Therefore, if you want to write a somewhat longer program, you are
better off using a text editor to prepare the input for the interpreter
and running it with that file as input instead. This is known as creating a
\emph{script}. As your program gets longer, you may want to split it
into several files for easier maintenance. You may also want to use a
handy function that you've written in several programs without copying
its definition into each program.
To support this, Python has a way to put definitions in a file and use
them in a script or in an interactive instance of the interpreter.
Such a file is called a \emph{module}; definitions from a module can be
\emph{imported} into other modules or into the \emph{main} module (the
collection of variables that you have access to in a script
executed at the top level
and in calculator mode).
A module is a file containing Python definitions and statements. The
file name is the module name with the suffix \file{.py} appended. Within
a module, the module's name (as a string) is available as the value of
the global variable \code{__name__}. For instance, use your favorite text
editor to create a file called \file{fibo.py} in the current directory
with the following contents:
\begin{verbatim}
# Fibonacci numbers module
def fib(n): # write Fibonacci series up to n
a, b = 0, 1
while b < n:
print b,
a, b = b, a+b
def fib2(n): # return Fibonacci series up to n
result = []
a, b = 0, 1
while b < n:
result.append(b)
a, b = b, a+b
return result
\end{verbatim}
Now enter the Python interpreter and import this module with the
following command:
\begin{verbatim}
>>> import fibo
\end{verbatim}
This does not enter the names of the functions defined in \code{fibo}
directly in the current symbol table; it only enters the module name
\code{fibo} there.
Using the module name you can access the functions:
\begin{verbatim}
>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'
\end{verbatim}
If you intend to use a function often you can assign it to a local name:
\begin{verbatim}
>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
\end{verbatim}
\section{More on Modules \label{moreModules}}
A module can contain executable statements as well as function
definitions.
These statements are intended to initialize the module.
They are executed only the
\emph{first} time the module is imported somewhere.\footnote{
In fact function definitions are also `statements' that are
`executed'; the execution enters the function name in the
module's global symbol table.
}
Each module has its own private symbol table, which is used as the
global symbol table by all functions defined in the module.
Thus, the author of a module can use global variables in the module
without worrying about accidental clashes with a user's global
variables.
On the other hand, if you know what you are doing you can touch a
module's global variables with the same notation used to refer to its
functions,
\code{modname.itemname}.
Modules can import other modules. It is customary but not required to
place all \keyword{import} statements at the beginning of a module (or
script, for that matter). The imported module names are placed in the
importing module's global symbol table.
There is a variant of the \keyword{import} statement that imports
names from a module directly into the importing module's symbol
table. For example:
\begin{verbatim}
>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
\end{verbatim}
This does not introduce the module name from which the imports are taken
in the local symbol table (so in the example, \code{fibo} is not
defined).
There is even a variant to import all names that a module defines:
\begin{verbatim}
>>> from fibo import *
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
\end{verbatim}
This imports all names except those beginning with an underscore
(\code{_}).
\subsection{The Module Search Path \label{searchPath}}
\indexiii{module}{search}{path}
When a module named \module{spam} is imported, the interpreter searches
for a file named \file{spam.py} in the current directory,
and then in the list of directories specified by
the environment variable \envvar{PYTHONPATH}. This has the same syntax as
the shell variable \envvar{PATH}, that is, a list of
directory names. When \envvar{PYTHONPATH} is not set, or when the file
is not found there, the search continues in an installation-dependent
default path; on \UNIX, this is usually \file{.:/usr/local/lib/python}.
Actually, modules are searched in the list of directories given by the
variable \code{sys.path} which is initialized from the directory
containing the input script (or the current directory),
\envvar{PYTHONPATH} and the installation-dependent default. This allows
Python programs that know what they're doing to modify or replace the
module search path. Note that because the directory containing the
script being run is on the search path, it is important that the
script not have the same name as a standard module, or Python will
attempt to load the script as a module when that module is imported.
This will generally be an error. See section~\ref{standardModules},
``Standard Modules,'' for more information.
\subsection{``Compiled'' Python files}
As an important speed-up of the start-up time for short programs that
use a lot of standard modules, if a file called \file{spam.pyc} exists
in the directory where \file{spam.py} is found, this is assumed to
contain an already-``byte-compiled'' version of the module \module{spam}.
The modification time of the version of \file{spam.py} used to create
\file{spam.pyc} is recorded in \file{spam.pyc}, and the
\file{.pyc} file is ignored if these don't match.
Normally, you don't need to do anything to create the
\file{spam.pyc} file. Whenever \file{spam.py} is successfully
compiled, an attempt is made to write the compiled version to
\file{spam.pyc}. It is not an error if this attempt fails; if for any
reason the file is not written completely, the resulting
\file{spam.pyc} file will be recognized as invalid and thus ignored
later. The contents of the \file{spam.pyc} file are platform
independent, so a Python module directory can be shared by machines of
different architectures.
Some tips for experts:
\begin{itemize}
\item
When the Python interpreter is invoked with the \programopt{-O} flag,
optimized code is generated and stored in \file{.pyo} files. The
optimizer currently doesn't help much; it only removes
\keyword{assert} statements. When \programopt{-O} is used, \emph{all}
bytecode is optimized; \code{.pyc} files are ignored and \code{.py}
files are compiled to optimized bytecode.
\item
Passing two \programopt{-O} flags to the Python interpreter
(\programopt{-OO}) will cause the bytecode compiler to perform
optimizations that could in some rare cases result in malfunctioning
programs. Currently only \code{__doc__} strings are removed from the
bytecode, resulting in more compact \file{.pyo} files. Since some
programs may rely on having these available, you should only use this
option if you know what you're doing.
\item
A program doesn't run any faster when it is read from a \file{.pyc} or
\file{.pyo} file than when it is read from a \file{.py} file; the only
thing that's faster about \file{.pyc} or \file{.pyo} files is the
speed with which they are loaded.
\item
When a script is run by giving its name on the command line, the
bytecode for the script is never written to a \file{.pyc} or
\file{.pyo} file. Thus, the startup time of a script may be reduced
by moving most of its code to a module and having a small bootstrap
script that imports that module. It is also possible to name a
\file{.pyc} or \file{.pyo} file directly on the command line.
\item
It is possible to have a file called \file{spam.pyc} (or
\file{spam.pyo} when \programopt{-O} is used) without a file
\file{spam.py} for the same module. This can be used to distribute a
library of Python code in a form that is moderately hard to reverse
engineer.
\item
The module \ulink{\module{compileall}}{../lib/module-compileall.html}%
{} \refstmodindex{compileall} can create \file{.pyc} files (or
\file{.pyo} files when \programopt{-O} is used) for all modules in a
directory.
\end{itemize}
\section{Standard Modules \label{standardModules}}
Python comes with a library of standard modules, described in a separate
document, the \citetitle[../lib/lib.html]{Python Library Reference}
(``Library Reference'' hereafter). Some modules are built into the
interpreter; these provide access to operations that are not part of
the core of the language but are nevertheless built in, either for
efficiency or to provide access to operating system primitives such as
system calls. The set of such modules is a configuration option which
also depends on the underlying platform For example,
the \module{amoeba} module is only provided on systems that somehow
support Amoeba primitives. One particular module deserves some
attention: \ulink{\module{sys}}{../lib/module-sys.html}%
\refstmodindex{sys}, which is built into every
Python interpreter. The variables \code{sys.ps1} and
\code{sys.ps2} define the strings used as primary and secondary
prompts:
\begin{verbatim}
>>> import sys
>>> sys.ps1
'>>> '
>>> sys.ps2
'... '
>>> sys.ps1 = 'C> '
C> print 'Yuck!'
Yuck!
C>
\end{verbatim}
These two variables are only defined if the interpreter is in
interactive mode.
The variable \code{sys.path} is a list of strings that determines the
interpreter's search path for modules. It is initialized to a default
path taken from the environment variable \envvar{PYTHONPATH}, or from
a built-in default if \envvar{PYTHONPATH} is not set. You can modify
it using standard list operations:
\begin{verbatim}
>>> import sys
>>> sys.path.append('/ufs/guido/lib/python')
\end{verbatim}
\section{The \function{dir()} Function \label{dir}}
The built-in function \function{dir()} is used to find out which names
a module defines. It returns a sorted list of strings:
\begin{verbatim}
>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__name__', '__stderr__',
'__stdin__', '__stdout__', '_getframe', 'api_version', 'argv',
'builtin_module_names', 'byteorder', 'callstats', 'copyright',
'displayhook', 'exc_clear', 'exc_info', 'exc_type', 'excepthook',
'exec_prefix', 'executable', 'exit', 'getdefaultencoding', 'getdlopenflags',
'getrecursionlimit', 'getrefcount', 'hexversion', 'maxint', 'maxunicode',
'meta_path', 'modules', 'path', 'path_hooks', 'path_importer_cache',
'platform', 'prefix', 'ps1', 'ps2', 'setcheckinterval', 'setdlopenflags',
'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout',
'version', 'version_info', 'warnoptions']
\end{verbatim}
Without arguments, \function{dir()} lists the names you have defined
currently:
\begin{verbatim}
>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir()
['__builtins__', '__doc__', '__file__', '__name__', 'a', 'fib', 'fibo', 'sys']
\end{verbatim}
Note that it lists all types of names: variables, modules, functions, etc.
\function{dir()} does not list the names of built-in functions and
variables. If you want a list of those, they are defined in the
standard module \module{__builtin__}\refbimodindex{__builtin__}:
\begin{verbatim}
>>> import __builtin__
>>> dir(__builtin__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FloatingPointError', 'FutureWarning', 'IOError', 'ImportError',
'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented',
'NotImplementedError', 'OSError', 'OverflowError', 'OverflowWarning',
'PendingDeprecationWarning', 'ReferenceError', 'RuntimeError',
'RuntimeWarning', 'StandardError', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UserWarning', 'ValueError', 'Warning', 'WindowsError',
'ZeroDivisionError', '_', '__debug__', '__doc__', '__import__',
'__name__', 'abs', 'apply', 'basestring', 'bool', 'buffer',
'callable', 'chr', 'classmethod', 'cmp', 'coerce', 'compile',
'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', 'divmod',
'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter', 'float',
'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex',
'id', 'input', 'int', 'intern', 'isinstance', 'issubclass', 'iter',
'len', 'license', 'list', 'locals', 'long', 'map', 'max', 'min',
'object', 'oct', 'open', 'ord', 'pow', 'property', 'quit', 'range',
'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round', 'set',
'setattr', 'slice', 'sorted', 'staticmethod', 'str', 'sum', 'super',
'tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']
\end{verbatim}
\section{Packages \label{packages}}
Packages are a way of structuring Python's module namespace
by using ``dotted module names''. For example, the module name
\module{A.B} designates a submodule named \samp{B} in a package named
\samp{A}. Just like the use of modules saves the authors of different
modules from having to worry about each other's global variable names,
the use of dotted module names saves the authors of multi-module
packages like NumPy or the Python Imaging Library from having to worry
about each other's module names.
Suppose you want to design a collection of modules (a ``package'') for
the uniform handling of sound files and sound data. There are many
different sound file formats (usually recognized by their extension,
for example: \file{.wav}, \file{.aiff}, \file{.au}), so you may need
to create and maintain a growing collection of modules for the
conversion between the various file formats. There are also many
different operations you might want to perform on sound data (such as
mixing, adding echo, applying an equalizer function, creating an
artificial stereo effect), so in addition you will be writing a
never-ending stream of modules to perform these operations. Here's a
possible structure for your package (expressed in terms of a
hierarchical filesystem):
\begin{verbatim}
Sound/ Top-level package
__init__.py Initialize the sound package
Formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...
Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...
Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...
\end{verbatim}
When importing the package, Python searches through the directories
on \code{sys.path} looking for the package subdirectory.
The \file{__init__.py} files are required to make Python treat the
directories as containing packages; this is done to prevent
directories with a common name, such as \samp{string}, from
unintentionally hiding valid modules that occur later on the module
search path. In the simplest case, \file{__init__.py} can just be an
empty file, but it can also execute initialization code for the
package or set the \code{__all__} variable, described later.
Users of the package can import individual modules from the
package, for example:
\begin{verbatim}
import Sound.Effects.echo
\end{verbatim}
This loads the submodule \module{Sound.Effects.echo}. It must be referenced
with its full name.
\begin{verbatim}
Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)
\end{verbatim}
An alternative way of importing the submodule is:
\begin{verbatim}
from Sound.Effects import echo
\end{verbatim}
This also loads the submodule \module{echo}, and makes it available without
its package prefix, so it can be used as follows:
\begin{verbatim}
echo.echofilter(input, output, delay=0.7, atten=4)
\end{verbatim}
Yet another variation is to import the desired function or variable directly:
\begin{verbatim}
from Sound.Effects.echo import echofilter
\end{verbatim}
Again, this loads the submodule \module{echo}, but this makes its function
\function{echofilter()} directly available:
\begin{verbatim}
echofilter(input, output, delay=0.7, atten=4)
\end{verbatim}
Note that when using \code{from \var{package} import \var{item}}, the
item can be either a submodule (or subpackage) of the package, or some
other name defined in the package, like a function, class or
variable. The \code{import} statement first tests whether the item is
defined in the package; if not, it assumes it is a module and attempts
to load it. If it fails to find it, an
\exception{ImportError} exception is raised.
Contrarily, when using syntax like \code{import
\var{item.subitem.subsubitem}}, each item except for the last must be
a package; the last item can be a module or a package but can't be a
class or function or variable defined in the previous item.
\subsection{Importing * From a Package \label{pkg-import-star}}
%The \code{__all__} Attribute
\ttindex{__all__}
Now what happens when the user writes \code{from Sound.Effects import
*}? Ideally, one would hope that this somehow goes out to the
filesystem, finds which submodules are present in the package, and
imports them all. Unfortunately, this operation does not work very
well on Mac and Windows platforms, where the filesystem does not
always have accurate information about the case of a filename! On
these platforms, there is no guaranteed way to know whether a file
\file{ECHO.PY} should be imported as a module \module{echo},
\module{Echo} or \module{ECHO}. (For example, Windows 95 has the
annoying practice of showing all file names with a capitalized first
letter.) The DOS 8+3 filename restriction adds another interesting
problem for long module names.
The only solution is for the package author to provide an explicit
index of the package. The import statement uses the following
convention: if a package's \file{__init__.py} code defines a list
named \code{__all__}, it is taken to be the list of module names that
should be imported when \code{from \var{package} import *} is
encountered. It is up to the package author to keep this list
up-to-date when a new version of the package is released. Package
authors may also decide not to support it, if they don't see a use for
importing * from their package. For example, the file
\file{Sounds/Effects/__init__.py} could contain the following code:
\begin{verbatim}
__all__ = ["echo", "surround", "reverse"]
\end{verbatim}
This would mean that \code{from Sound.Effects import *} would
import the three named submodules of the \module{Sound} package.
If \code{__all__} is not defined, the statement \code{from Sound.Effects
import *} does \emph{not} import all submodules from the package
\module{Sound.Effects} into the current namespace; it only ensures that the
package \module{Sound.Effects} has been imported (possibly running any
initialization code in \file{__init__.py}) and then imports whatever names are
defined in the package. This includes any names defined (and
submodules explicitly loaded) by \file{__init__.py}. It also includes any
submodules of the package that were explicitly loaded by previous
import statements. Consider this code:
\begin{verbatim}
import Sound.Effects.echo
import Sound.Effects.surround
from Sound.Effects import *
\end{verbatim}
In this example, the echo and surround modules are imported in the
current namespace because they are defined in the
\module{Sound.Effects} package when the \code{from...import} statement
is executed. (This also works when \code{__all__} is defined.)
Note that in general the practice of importing \code{*} from a module or
package is frowned upon, since it often causes poorly readable code.
However, it is okay to use it to save typing in interactive sessions,
and certain modules are designed to export only names that follow
certain patterns.
Remember, there is nothing wrong with using \code{from Package
import specific_submodule}! In fact, this is the
recommended notation unless the importing module needs to use
submodules with the same name from different packages.
\subsection{Intra-package References}
The submodules often need to refer to each other. For example, the
\module{surround} module might use the \module{echo} module. In fact,
such references
are so common that the \keyword{import} statement first looks in the
containing package before looking in the standard module search path.
Thus, the surround module can simply use \code{import echo} or
\code{from echo import echofilter}. If the imported module is not
found in the current package (the package of which the current module
is a submodule), the \keyword{import} statement looks for a top-level
module with the given name.
When packages are structured into subpackages (as with the
\module{Sound} package in the example), there's no shortcut to refer
to submodules of sibling packages - the full name of the subpackage
must be used. For example, if the module
\module{Sound.Filters.vocoder} needs to use the \module{echo} module
in the \module{Sound.Effects} package, it can use \code{from
Sound.Effects import echo}.
\subsection{Packages in Multiple Directories}
Packages support one more special attribute, \member{__path__}. This
is initialized to be a list containing the name of the directory
holding the package's \file{__init__.py} before the code in that file
is executed. This variable can be modified; doing so affects future
searches for modules and subpackages contained in the package.
While this feature is not often needed, it can be used to extend the
set of modules found in a package.
\chapter{Input and Output \label{io}}
There are several ways to present the output of a program; data can be
printed in a human-readable form, or written to a file for future use.
This chapter will discuss some of the possibilities.
\section{Fancier Output Formatting \label{formatting}}
So far we've encountered two ways of writing values: \emph{expression
statements} and the \keyword{print} statement. (A third way is using
the \method{write()} method of file objects; the standard output file
can be referenced as \code{sys.stdout}. See the Library Reference for
more information on this.)
Often you'll want more control over the formatting of your output than
simply printing space-separated values. There are two ways to format
your output; the first way is to do all the string handling yourself;
using string slicing and concatenation operations you can create any
layout you can imagine. The standard module
\module{string}\refstmodindex{string} contains some useful operations
for padding strings to a given column width; these will be discussed
shortly. The second way is to use the \code{\%} operator with a
string as the left argument. The \code{\%} operator interprets the
left argument much like a \cfunction{sprintf()}-style format
string to be applied to the right argument, and returns the string
resulting from this formatting operation.
One question remains, of course: how do you convert values to strings?
Luckily, Python has ways to convert any value to a string: pass it to
the \function{repr()} or \function{str()} functions. Reverse quotes
(\code{``}) are equivalent to \function{repr()}, but they are no
longer used in modern Python code and will likely not be in future
versions of the language.
The \function{str()} function is meant to return representations of
values which are fairly human-readable, while \function{repr()} is
meant to generate representations which can be read by the interpreter
(or will force a \exception{SyntaxError} if there is not equivalent
syntax). For objects which don't have a particular representation for
human consumption, \function{str()} will return the same value as
\function{repr()}. Many values, such as numbers or structures like
lists and dictionaries, have the same representation using either
function. Strings and floating point numbers, in particular, have two
distinct representations.
Some examples:
\begin{verbatim}
>>> s = 'Hello, world.'
>>> str(s)
'Hello, world.'
>>> repr(s)
"'Hello, world.'"
>>> str(0.1)
'0.1'
>>> repr(0.1)
'0.10000000000000001'
>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '...'
>>> print s
The value of x is 32.5, and y is 40000...
>>> # The repr() of a string adds string quotes and backslashes:
... hello = 'hello, world\n'
>>> hellos = repr(hello)
>>> print hellos
'hello, world\n'
>>> # The argument to repr() may be any Python object:
... repr((x, y, ('spam', 'eggs')))
"(32.5, 40000, ('spam', 'eggs'))"
>>> # reverse quotes are convenient in interactive sessions:
... `x, y, ('spam', 'eggs')`
"(32.5, 40000, ('spam', 'eggs'))"
\end{verbatim}
Here are two ways to write a table of squares and cubes:
\begin{verbatim}
>>> for x in range(1, 11):
... print repr(x).rjust(2), repr(x*x).rjust(3),
... # Note trailing comma on previous line
... print repr(x*x*x).rjust(4)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
>>> for x in range(1,11):
... print '%2d %3d %4d' % (x, x*x, x*x*x)
...
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
6 36 216
7 49 343
8 64 512
9 81 729
10 100 1000
\end{verbatim}
(Note that in the first example, one space between each column was
added by the way \keyword{print} works: it always adds spaces between
its arguments.)
This example demonstrates the \method{rjust()} method of string objects,
which right-justifies a string in a field of a given width by padding
it with spaces on the left. There are similar methods
\method{ljust()} and \method{center()}. These
methods do not write anything, they just return a new string. If
the input string is too long, they don't truncate it, but return it
unchanged; this will mess up your column lay-out but that's usually
better than the alternative, which would be lying about a value. (If
you really want truncation you can always add a slice operation, as in
\samp{x.ljust(n)[:n]}.)
There is another method, \method{zfill()}, which pads a
numeric string on the left with zeros. It understands about plus and
minus signs:
\begin{verbatim}
>>> '12'.zfill(5)
'00012'
>>> '-3.14'.zfill(7)
'-003.14'
>>> '3.14159265359'.zfill(5)
'3.14159265359'
\end{verbatim}
Using the \code{\%} operator looks like this:
\begin{verbatim}
>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.
\end{verbatim}
If there is more than one format in the string, you need to pass a
tuple as right operand, as in this example:
\begin{verbatim}
>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
... print '%-10s ==> %10d' % (name, phone)
...
Jack ==> 4098
Dcab ==> 7678
Sjoerd ==> 4127
\end{verbatim}
Most formats work exactly as in C and require that you pass the proper
type; however, if you don't you get an exception, not a core dump.
The \code{\%s} format is more relaxed: if the corresponding argument is
not a string object, it is converted to string using the
\function{str()} built-in function. Using \code{*} to pass the width
or precision in as a separate (integer) argument is supported. The
C formats \code{\%n} and \code{\%p} are not supported.
If you have a really long format string that you don't want to split
up, it would be nice if you could reference the variables to be
formatted by name instead of by position. This can be done by using
form \code{\%(name)format}, as shown here:
\begin{verbatim}
>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % table
Jack: 4098; Sjoerd: 4127; Dcab: 8637678
\end{verbatim}
This is particularly useful in combination with the new built-in
\function{vars()} function, which returns a dictionary containing all
local variables.
\section{Reading and Writing Files \label{files}}
% Opening files
\function{open()}\bifuncindex{open} returns a file
object\obindex{file}, and is most commonly used with two arguments:
\samp{open(\var{filename}, \var{mode})}.
\begin{verbatim}
>>> f=open('/tmp/workfile', 'w')
>>> print f
<open file '/tmp/workfile', mode 'w' at 80a0960>
\end{verbatim}
The first argument is a string containing the filename. The second
argument is another string containing a few characters describing the
way in which the file will be used. \var{mode} can be \code{'r'} when
the file will only be read, \code{'w'} for only writing (an existing
file with the same name will be erased), and \code{'a'} opens the file
for appending; any data written to the file is automatically added to
the end. \code{'r+'} opens the file for both reading and writing.
The \var{mode} argument is optional; \code{'r'} will be assumed if
it's omitted.
On Windows and the Macintosh, \code{'b'} appended to the
mode opens the file in binary mode, so there are also modes like
\code{'rb'}, \code{'wb'}, and \code{'r+b'}. Windows makes a
distinction between text and binary files; the end-of-line characters
in text files are automatically altered slightly when data is read or
written. This behind-the-scenes modification to file data is fine for
\ASCII{} text files, but it'll corrupt binary data like that in \file{JPEG} or
\file{EXE} files. Be very careful to use binary mode when reading and
writing such files.
\subsection{Methods of File Objects \label{fileMethods}}
The rest of the examples in this section will assume that a file
object called \code{f} has already been created.
To read a file's contents, call \code{f.read(\var{size})}, which reads
some quantity of data and returns it as a string. \var{size} is an
optional numeric argument. When \var{size} is omitted or negative,
the entire contents of the file will be read and returned; it's your
problem if the file is twice as large as your machine's memory.
Otherwise, at most \var{size} bytes are read and returned. If the end
of the file has been reached, \code{f.read()} will return an empty
string (\code {""}).
\begin{verbatim}
>>> f.read()
'This is the entire file.\n'
>>> f.read()
''
\end{verbatim}
\code{f.readline()} reads a single line from the file; a newline
character (\code{\e n}) is left at the end of the string, and is only
omitted on the last line of the file if the file doesn't end in a
newline. This makes the return value unambiguous; if
\code{f.readline()} returns an empty string, the end of the file has
been reached, while a blank line is represented by \code{'\e n'}, a
string containing only a single newline.
\begin{verbatim}
>>> f.readline()
'This is the first line of the file.\n'
>>> f.readline()
'Second line of the file\n'
>>> f.readline()
''
\end{verbatim}
\code{f.readlines()} returns a list containing all the lines of data
in the file. If given an optional parameter \var{sizehint}, it reads
that many bytes from the file and enough more to complete a line, and
returns the lines from that. This is often used to allow efficient
reading of a large file by lines, but without having to load the
entire file in memory. Only complete lines will be returned.
\begin{verbatim}
>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n']
\end{verbatim}
An alternate approach to reading lines is to loop over the file object.
This is memory efficient, fast, and leads to simpler code:
\begin{verbatim}
>>> for line in f:
print line,
This is the first line of the file.
Second line of the file
\end{verbatim}
The alternative approach is simpler but does not provide as fine-grained
control. Since the two approaches manage line buffering differently,
they should not be mixed.
\code{f.write(\var{string})} writes the contents of \var{string} to
the file, returning \code{None}.
\begin{verbatim}
>>> f.write('This is a test\n')
\end{verbatim}
To write something other than a string, it needs to be converted to a
string first:
\begin{verbatim}
>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)
\end{verbatim}
\code{f.tell()} returns an integer giving the file object's current
position in the file, measured in bytes from the beginning of the
file. To change the file object's position, use
\samp{f.seek(\var{offset}, \var{from_what})}. The position is
computed from adding \var{offset} to a reference point; the reference
point is selected by the \var{from_what} argument. A
\var{from_what} value of 0 measures from the beginning of the file, 1
uses the current file position, and 2 uses the end of the file as the
reference point. \var{from_what} can be omitted and defaults to 0,
using the beginning of the file as the reference point.
\begin{verbatim}
>>> f = open('/tmp/workfile', 'r+')
>>> f.write('0123456789abcdef')
>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)
'5'
>>> f.seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)
'd'
\end{verbatim}
When you're done with a file, call \code{f.close()} to close it and
free up any system resources taken up by the open file. After calling
\code{f.close()}, attempts to use the file object will automatically fail.
\begin{verbatim}
>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: I/O operation on closed file
\end{verbatim}
File objects have some additional methods, such as
\method{isatty()} and \method{truncate()} which are less frequently
used; consult the Library Reference for a complete guide to file
objects.
\subsection{The \module{pickle} Module \label{pickle}}
\refstmodindex{pickle}
Strings can easily be written to and read from a file. Numbers take a
bit more effort, since the \method{read()} method only returns
strings, which will have to be passed to a function like
\function{int()}, which takes a string like \code{'123'} and
returns its numeric value 123. However, when you want to save more
complex data types like lists, dictionaries, or class instances,
things get a lot more complicated.
Rather than have users be constantly writing and debugging code to
save complicated data types, Python provides a standard module called
\ulink{\module{pickle}}{../lib/module-pickle.html}. This is an
amazing module that can take almost
any Python object (even some forms of Python code!), and convert it to
a string representation; this process is called \dfn{pickling}.
Reconstructing the object from the string representation is called
\dfn{unpickling}. Between pickling and unpickling, the string
representing the object may have been stored in a file or data, or
sent over a network connection to some distant machine.
If you have an object \code{x}, and a file object \code{f} that's been
opened for writing, the simplest way to pickle the object takes only
one line of code:
\begin{verbatim}
pickle.dump(x, f)
\end{verbatim}
To unpickle the object again, if \code{f} is a file object which has
been opened for reading:
\begin{verbatim}
x = pickle.load(f)
\end{verbatim}
(There are other variants of this, used when pickling many objects or
when you don't want to write the pickled data to a file; consult the
complete documentation for
\ulink{\module{pickle}}{../lib/module-pickle.html} in the
\citetitle[../lib/]{Python Library Reference}.)
\ulink{\module{pickle}}{../lib/module-pickle.html} is the standard way
to make Python objects which can be stored and reused by other
programs or by a future invocation of the same program; the technical
term for this is a \dfn{persistent} object. Because
\ulink{\module{pickle}}{../lib/module-pickle.html} is so widely used,
many authors who write Python extensions take care to ensure that new
data types such as matrices can be properly pickled and unpickled.
\chapter{Errors and Exceptions \label{errors}}
Until now error messages haven't been more than mentioned, but if you
have tried out the examples you have probably seen some. There are
(at least) two distinguishable kinds of errors:
\emph{syntax errors} and \emph{exceptions}.
\section{Syntax Errors \label{syntaxErrors}}
Syntax errors, also known as parsing errors, are perhaps the most common
kind of complaint you get while you are still learning Python:
\begin{verbatim}
>>> while True print 'Hello world'
File "<stdin>", line 1, in ?
while True print 'Hello world'
^
SyntaxError: invalid syntax
\end{verbatim}
The parser repeats the offending line and displays a little `arrow'
pointing at the earliest point in the line where the error was
detected. The error is caused by (or at least detected at) the token
\emph{preceding} the arrow: in the example, the error is detected at
the keyword \keyword{print}, since a colon (\character{:}) is missing
before it. File name and line number are printed so you know where to
look in case the input came from a script.
\section{Exceptions \label{exceptions}}
Even if a statement or expression is syntactically correct, it may
cause an error when an attempt is made to execute it.
Errors detected during execution are called \emph{exceptions} and are
not unconditionally fatal: you will soon learn how to handle them in
Python programs. Most exceptions are not handled by programs,
however, and result in error messages as shown here:
\begin{verbatim}
>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects
\end{verbatim}
The last line of the error message indicates what happened.
Exceptions come in different types, and the type is printed as part of
the message: the types in the example are
\exception{ZeroDivisionError}, \exception{NameError} and
\exception{TypeError}.
The string printed as the exception type is the name of the built-in
exception that occurred. This is true for all built-in
exceptions, but need not be true for user-defined exceptions (although
it is a useful convention).
Standard exception names are built-in identifiers (not reserved
keywords).
The rest of the line provides detail based on the type of exception
and what caused it.
The preceding part of the error message shows the context where the
exception happened, in the form of a stack traceback.
In general it contains a stack traceback listing source lines; however,
it will not display lines read from standard input.
The \citetitle[../lib/module-exceptions.html]{Python Library
Reference} lists the built-in exceptions and their meanings.
\section{Handling Exceptions \label{handling}}
It is possible to write programs that handle selected exceptions.
Look at the following example, which asks the user for input until a
valid integer has been entered, but allows the user to interrupt the
program (using \kbd{Control-C} or whatever the operating system
supports); note that a user-generated interruption is signalled by
raising the \exception{KeyboardInterrupt} exception.
\begin{verbatim}
>>> while True:
... try:
... x = int(raw_input("Please enter a number: "))
... break
... except ValueError:
... print "Oops! That was no valid number. Try again..."
...
\end{verbatim}
The \keyword{try} statement works as follows.
\begin{itemize}
\item
First, the \emph{try clause} (the statement(s) between the
\keyword{try} and \keyword{except} keywords) is executed.
\item
If no exception occurs, the \emph{except\ clause} is skipped and
execution of the \keyword{try} statement is finished.
\item
If an exception occurs during execution of the try clause, the rest of
the clause is skipped. Then if its type matches the exception named
after the \keyword{except} keyword, the except clause is executed, and
then execution continues after the \keyword{try} statement.
\item
If an exception occurs which does not match the exception named in the
except clause, it is passed on to outer \keyword{try} statements; if
no handler is found, it is an \emph{unhandled exception} and execution
stops with a message as shown above.
\end{itemize}
A \keyword{try} statement may have more than one except clause, to
specify handlers for different exceptions. At most one handler will
be executed. Handlers only handle exceptions that occur in the
corresponding try clause, not in other handlers of the same
\keyword{try} statement. An except clause may name multiple exceptions
as a parenthesized tuple, for example:
\begin{verbatim}
... except (RuntimeError, TypeError, NameError):
... pass
\end{verbatim}
The last except clause may omit the exception name(s), to serve as a
wildcard. Use this with extreme caution, since it is easy to mask a
real programming error in this way! It can also be used to print an
error message and then re-raise the exception (allowing a caller to
handle the exception as well):
\begin{verbatim}
import sys
try:
f = open('myfile.txt')
s = f.readline()
i = int(s.strip())
except IOError, (errno, strerror):
print "I/O error(%s): %s" % (errno, strerror)
except ValueError:
print "Could not convert data to an integer."
except:
print "Unexpected error:", sys.exc_info()[0]
raise
\end{verbatim}
The \keyword{try} \ldots\ \keyword{except} statement has an optional
\emph{else clause}, which, when present, must follow all except
clauses. It is useful for code that must be executed if the try
clause does not raise an exception. For example:
\begin{verbatim}
for arg in sys.argv[1:]:
try:
f = open(arg, 'r')
except IOError:
print 'cannot open', arg
else:
print arg, 'has', len(f.readlines()), 'lines'
f.close()
\end{verbatim}
The use of the \keyword{else} clause is better than adding additional
code to the \keyword{try} clause because it avoids accidentally
catching an exception that wasn't raised by the code being protected
by the \keyword{try} \ldots\ \keyword{except} statement.
When an exception occurs, it may have an associated value, also known as
the exception's \emph{argument}.
The presence and type of the argument depend on the exception type.
The except clause may specify a variable after the exception name (or tuple).
The variable is bound to an exception instance with the arguments stored
in \code{instance.args}. For convenience, the exception instance
defines \method{__getitem__} and \method{__str__} so the arguments can
be accessed or printed directly without having to reference \code{.args}.
\begin{verbatim}
>>> try:
... raise Exception('spam', 'eggs')
... except Exception, inst:
... print type(inst) # the exception instance
... print inst.args # arguments stored in .args
... print inst # __str__ allows args to printed directly
... x, y = inst # __getitem__ allows args to be unpacked directly
... print 'x =', x
... print 'y =', y
...
<type 'instance'>
('spam', 'eggs')
('spam', 'eggs')
x = spam
y = eggs
\end{verbatim}
If an exception has an argument, it is printed as the last part
(`detail') of the message for unhandled exceptions.
Exception handlers don't just handle exceptions if they occur
immediately in the try clause, but also if they occur inside functions
that are called (even indirectly) in the try clause.
For example:
\begin{verbatim}
>>> def this_fails():
... x = 1/0
...
>>> try:
... this_fails()
... except ZeroDivisionError, detail:
... print 'Handling run-time error:', detail
...
Handling run-time error: integer division or modulo by zero
\end{verbatim}
\section{Raising Exceptions \label{raising}}
The \keyword{raise} statement allows the programmer to force a
specified exception to occur.
For example:
\begin{verbatim}
>>> raise NameError, 'HiThere'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: HiThere
\end{verbatim}
The first argument to \keyword{raise} names the exception to be
raised. The optional second argument specifies the exception's
argument. Alternatively, the above could be written as
\code{raise NameError('HiThere')}. Either form works fine, but there
seems to be a growing stylistic preference for the latter.
If you need to determine whether an exception was raised but don't
intend to handle it, a simpler form of the \keyword{raise} statement
allows you to re-raise the exception:
\begin{verbatim}
>>> try:
... raise NameError, 'HiThere'
... except NameError:
... print 'An exception flew by!'
... raise
...
An exception flew by!
Traceback (most recent call last):
File "<stdin>", line 2, in ?
NameError: HiThere
\end{verbatim}
\section{User-defined Exceptions \label{userExceptions}}
Programs may name their own exceptions by creating a new exception
class. Exceptions should typically be derived from the
\exception{Exception} class, either directly or indirectly. For
example:
\begin{verbatim}
>>> class MyError(Exception):
... def __init__(self, value):
... self.value = value
... def __str__(self):
... return repr(self.value)
...
>>> try:
... raise MyError(2*2)
... except MyError, e:
... print 'My exception occurred, value:', e.value
...
My exception occurred, value: 4
>>> raise MyError, 'oops!'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
__main__.MyError: 'oops!'
\end{verbatim}
In this example, the default \method{__init__} of \class{Exception}
has been overridden. The new behavior simply creates the \var{value}
attribute. This replaces the default behavior of creating the
\var{args} attribute.
Exception classes can be defined which do anything any other class can
do, but are usually kept simple, often only offering a number of
attributes that allow information about the error to be extracted by
handlers for the exception. When creating a module that can raise
several distinct errors, a common practice is to create a base class
for exceptions defined by that module, and subclass that to create
specific exception classes for different error conditions:
\begin{verbatim}
class Error(Exception):
"""Base class for exceptions in this module."""
pass
class InputError(Error):
"""Exception raised for errors in the input.
Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error
"""
def __init__(self, expression, message):
self.expression = expression
self.message = message
class TransitionError(Error):
"""Raised when an operation attempts a state transition that's not
allowed.
Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not allowed
"""
def __init__(self, previous, next, message):
self.previous = previous
self.next = next
self.message = message
\end{verbatim}
Most exceptions are defined with names that end in ``Error,'' similar
to the naming of the standard exceptions.
Many standard modules define their own exceptions to report errors
that may occur in functions they define. More information on classes
is presented in chapter \ref{classes}, ``Classes.''
\section{Defining Clean-up Actions \label{cleanup}}
The \keyword{try} statement has another optional clause which is
intended to define clean-up actions that must be executed under all
circumstances. For example:
\begin{verbatim}
>>> try:
... raise KeyboardInterrupt
... finally:
... print 'Goodbye, world!'
...
Goodbye, world!
Traceback (most recent call last):
File "<stdin>", line 2, in ?
KeyboardInterrupt
\end{verbatim}
A \emph{finally clause} is executed whether or not an exception has
occurred in the try clause. When an exception has occurred, it is
re-raised after the finally clause is executed. The finally clause is
also executed ``on the way out'' when the \keyword{try} statement is
left via a \keyword{break} or \keyword{return} statement.
The code in the finally clause is useful for releasing external
resources (such as files or network connections), regardless of
whether the use of the resource was successful.
A \keyword{try} statement must either have one or more except clauses
or one finally clause, but not both (because it would be unclear which
clause should be executed first).
\chapter{Classes \label{classes}}
Python's class mechanism adds classes to the language with a minimum
of new syntax and semantics. It is a mixture of the class mechanisms
found in \Cpp{} and Modula-3. As is true for modules, classes in Python
do not put an absolute barrier between definition and user, but rather
rely on the politeness of the user not to ``break into the
definition.'' The most important features of classes are retained
with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its
base class or classes, and a method can call the method of a base class with the
same name. Objects can contain an arbitrary amount of private data.
In \Cpp{} terminology, all class members (including the data members) are
\emph{public}, and all member functions are \emph{virtual}. There are
no special constructors or destructors. As in Modula-3, there are no
shorthands for referencing the object's members from its methods: the
method function is declared with an explicit first argument
representing the object, which is provided implicitly by the call. As
in Smalltalk, classes themselves are objects, albeit in the wider
sense of the word: in Python, all data types are objects. This
provides semantics for importing and renaming. Unlike
\Cpp{} and Modula-3, built-in types can be used as base classes for
extension by the user. Also, like in \Cpp{} but unlike in Modula-3, most
built-in operators with special syntax (arithmetic operators,
subscripting etc.) can be redefined for class instances.
\section{A Word About Terminology \label{terminology}}
Lacking universally accepted terminology to talk about classes, I will
make occasional use of Smalltalk and \Cpp{} terms. (I would use Modula-3
terms, since its object-oriented semantics are closer to those of
Python than \Cpp, but I expect that few readers have heard of it.)
Objects have individuality, and multiple names (in multiple scopes)
can be bound to the same object. This is known as aliasing in other
languages. This is usually not appreciated on a first glance at
Python, and can be safely ignored when dealing with immutable basic
types (numbers, strings, tuples). However, aliasing has an
(intended!) effect on the semantics of Python code involving mutable
objects such as lists, dictionaries, and most types representing
entities outside the program (files, windows, etc.). This is usually
used to the benefit of the program, since aliases behave like pointers
in some respects. For example, passing an object is cheap since only
a pointer is passed by the implementation; and if a function modifies
an object passed as an argument, the caller will see the change --- this
eliminates the need for two different argument passing mechanisms as in
Pascal.
\section{Python Scopes and Name Spaces \label{scopes}}
Before introducing classes, I first have to tell you something about
Python's scope rules. Class definitions play some neat tricks with
namespaces, and you need to know how scopes and namespaces work to
fully understand what's going on. Incidentally, knowledge about this
subject is useful for any advanced Python programmer.
Let's begin with some definitions.
A \emph{namespace} is a mapping from names to objects. Most
namespaces are currently implemented as Python dictionaries, but
that's normally not noticeable in any way (except for performance),
and it may change in the future. Examples of namespaces are: the set
of built-in names (functions such as \function{abs()}, and built-in
exception names); the global names in a module; and the local names in
a function invocation. In a sense the set of attributes of an object
also form a namespace. The important thing to know about namespaces
is that there is absolutely no relation between names in different
namespaces; for instance, two different modules may both define a
function ``maximize'' without confusion --- users of the modules must
prefix it with the module name.
By the way, I use the word \emph{attribute} for any name following a
dot --- for example, in the expression \code{z.real}, \code{real} is
an attribute of the object \code{z}. Strictly speaking, references to
names in modules are attribute references: in the expression
\code{modname.funcname}, \code{modname} is a module object and
\code{funcname} is an attribute of it. In this case there happens to
be a straightforward mapping between the module's attributes and the
global names defined in the module: they share the same namespace!
\footnote{
Except for one thing. Module objects have a secret read-only
attribute called \member{__dict__} which returns the dictionary
used to implement the module's namespace; the name
\member{__dict__} is an attribute but not a global name.
Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like
post-mortem debuggers.
}
Attributes may be read-only or writable. In the latter case,
assignment to attributes is possible. Module attributes are writable:
you can write \samp{modname.the_answer = 42}. Writable attributes may
also be deleted with the \keyword{del} statement. For example,
\samp{del modname.the_answer} will remove the attribute
\member{the_answer} from the object named by \code{modname}.
Name spaces are created at different moments and have different
lifetimes. The namespace containing the built-in names is created
when the Python interpreter starts up, and is never deleted. The
global namespace for a module is created when the module definition
is read in; normally, module namespaces also last until the
interpreter quits. The statements executed by the top-level
invocation of the interpreter, either read from a script file or
interactively, are considered part of a module called
\module{__main__}, so they have their own global namespace. (The
built-in names actually also live in a module; this is called
\module{__builtin__}.)
The local namespace for a function is created when the function is
called, and deleted when the function returns or raises an exception
that is not handled within the function. (Actually, forgetting would
be a better way to describe what actually happens.) Of course,
recursive invocations each have their own local namespace.
A \emph{scope} is a textual region of a Python program where a
namespace is directly accessible. ``Directly accessible'' here means
that an unqualified reference to a name attempts to find the name in
the namespace.
Although scopes are determined statically, they are used dynamically.
At any time during execution, there are at least three nested scopes whose
namespaces are directly accessible: the innermost scope, which is searched
first, contains the local names; the namespaces of any enclosing
functions, which are searched starting with the nearest enclosing scope;
the middle scope, searched next, contains the current module's global names;
and the outermost scope (searched last) is the namespace containing built-in
names.
If a name is declared global, then all references and assignments go
directly to the middle scope containing the module's global names.
Otherwise, all variables found outside of the innermost scope are read-only
(an attempt to write to such a variable will simply create a \emph{new}
local variable in the innermost scope, leaving the identically named
outer variable unchanged).
Usually, the local scope references the local names of the (textually)
current function. Outside functions, the local scope references
the same namespace as the global scope: the module's namespace.
Class definitions place yet another namespace in the local scope.
It is important to realize that scopes are determined textually: the
global scope of a function defined in a module is that module's
namespace, no matter from where or by what alias the function is
called. On the other hand, the actual search for names is done
dynamically, at run time --- however, the language definition is
evolving towards static name resolution, at ``compile'' time, so don't
rely on dynamic name resolution! (In fact, local variables are
already determined statically.)
A special quirk of Python is that assignments always go into the
innermost scope. Assignments do not copy data --- they just
bind names to objects. The same is true for deletions: the statement
\samp{del x} removes the binding of \code{x} from the namespace
referenced by the local scope. In fact, all operations that introduce
new names use the local scope: in particular, import statements and
function definitions bind the module or function name in the local
scope. (The \keyword{global} statement can be used to indicate that
particular variables live in the global scope.)
\section{A First Look at Classes \label{firstClasses}}
Classes introduce a little bit of new syntax, three new object types,
and some new semantics.
\subsection{Class Definition Syntax \label{classDefinition}}
The simplest form of class definition looks like this:
\begin{verbatim}
class ClassName:
<statement-1>
.
.
.
<statement-N>
\end{verbatim}
Class definitions, like function definitions
(\keyword{def} statements) must be executed before they have any
effect. (You could conceivably place a class definition in a branch
of an \keyword{if} statement, or inside a function.)
In practice, the statements inside a class definition will usually be
function definitions, but other statements are allowed, and sometimes
useful --- we'll come back to this later. The function definitions
inside a class normally have a peculiar form of argument list,
dictated by the calling conventions for methods --- again, this is
explained later.
When a class definition is entered, a new namespace is created, and
used as the local scope --- thus, all assignments to local variables
go into this new namespace. In particular, function definitions bind
the name of the new function here.
When a class definition is left normally (via the end), a \emph{class
object} is created. This is basically a wrapper around the contents
of the namespace created by the class definition; we'll learn more
about class objects in the next section. The original local scope
(the one in effect just before the class definition was entered) is
reinstated, and the class object is bound here to the class name given
in the class definition header (\class{ClassName} in the example).
\subsection{Class Objects \label{classObjects}}
Class objects support two kinds of operations: attribute references
and instantiation.
\emph{Attribute references} use the standard syntax used for all
attribute references in Python: \code{obj.name}. Valid attribute
names are all the names that were in the class's namespace when the
class object was created. So, if the class definition looked like
this:
\begin{verbatim}
class MyClass:
"A simple example class"
i = 12345
def f(self):
return 'hello world'
\end{verbatim}
then \code{MyClass.i} and \code{MyClass.f} are valid attribute
references, returning an integer and a function object, respectively.
Class attributes can also be assigned to, so you can change the value
of \code{MyClass.i} by assignment. \member{__doc__} is also a valid
attribute, returning the docstring belonging to the class: \code{"A
simple example class"}.
Class \emph{instantiation} uses function notation. Just pretend that
the class object is a parameterless function that returns a new
instance of the class. For example (assuming the above class):
\begin{verbatim}
x = MyClass()
\end{verbatim}
creates a new \emph{instance} of the class and assigns this object to
the local variable \code{x}.
The instantiation operation (``calling'' a class object) creates an
empty object. Many classes like to create objects with instances
customized to a specific initial state.
Therefore a class may define a special method named
\method{__init__()}, like this:
\begin{verbatim}
def __init__(self):
self.data = []
\end{verbatim}
When a class defines an \method{__init__()} method, class
instantiation automatically invokes \method{__init__()} for the
newly-created class instance. So in this example, a new, initialized
instance can be obtained by:
\begin{verbatim}
x = MyClass()
\end{verbatim}
Of course, the \method{__init__()} method may have arguments for
greater flexibility. In that case, arguments given to the class
instantiation operator are passed on to \method{__init__()}. For
example,
\begin{verbatim}
>>> class Complex:
... def __init__(self, realpart, imagpart):
... self.r = realpart
... self.i = imagpart
...
>>> x = Complex(3.0, -4.5)
>>> x.r, x.i
(3.0, -4.5)
\end{verbatim}
\subsection{Instance Objects \label{instanceObjects}}
Now what can we do with instance objects? The only operations
understood by instance objects are attribute references. There are
two kinds of valid attribute names, data attributes and methods.
\emph{data attributes} correspond to
``instance variables'' in Smalltalk, and to ``data members'' in
\Cpp. Data attributes need not be declared; like local variables,
they spring into existence when they are first assigned to. For
example, if \code{x} is the instance of \class{MyClass} created above,
the following piece of code will print the value \code{16}, without
leaving a trace:
\begin{verbatim}
x.counter = 1
while x.counter < 10:
x.counter = x.counter * 2
print x.counter
del x.counter
\end{verbatim}
The other kind of instance attribute reference is a \emph{method}.
A method is a function that ``belongs to'' an
object. (In Python, the term method is not unique to class instances:
other object types can have methods as well. For example, list objects have
methods called append, insert, remove, sort, and so on. However,
in the following discussion, we'll use the term method exclusively to mean
methods of class instance objects, unless explicitly stated otherwise.)
Valid method names of an instance object depend on its class. By
definition, all attributes of a class that are function
objects define corresponding methods of its instances. So in our
example, \code{x.f} is a valid method reference, since
\code{MyClass.f} is a function, but \code{x.i} is not, since
\code{MyClass.i} is not. But \code{x.f} is not the same thing as
\code{MyClass.f} --- it is a \obindex{method}\emph{method object}, not
a function object.
\subsection{Method Objects \label{methodObjects}}
Usually, a method is called right after it is bound:
\begin{verbatim}
x.f()
\end{verbatim}
In the \class{MyClass} example, this will return the string \code{'hello world'}.
However, it is not necessary to call a method right away:
\code{x.f} is a method object, and can be stored away and called at a
later time. For example:
\begin{verbatim}
xf = x.f
while True:
print xf()
\end{verbatim}
will continue to print \samp{hello world} until the end of time.
What exactly happens when a method is called? You may have noticed
that \code{x.f()} was called without an argument above, even though
the function definition for \method{f} specified an argument. What
happened to the argument? Surely Python raises an exception when a
function that requires an argument is called without any --- even if
the argument isn't actually used...
Actually, you may have guessed the answer: the special thing about
methods is that the object is passed as the first argument of the
function. In our example, the call \code{x.f()} is exactly equivalent
to \code{MyClass.f(x)}. In general, calling a method with a list of
\var{n} arguments is equivalent to calling the corresponding function
with an argument list that is created by inserting the method's object
before the first argument.
If you still don't understand how methods work, a look at the
implementation can perhaps clarify matters. When an instance
attribute is referenced that isn't a data attribute, its class is
searched. If the name denotes a valid class attribute that is a
function object, a method object is created by packing (pointers to)
the instance object and the function object just found together in an
abstract object: this is the method object. When the method object is
called with an argument list, it is unpacked again, a new argument
list is constructed from the instance object and the original argument
list, and the function object is called with this new argument list.
\section{Random Remarks \label{remarks}}
% [These should perhaps be placed more carefully...]
Data attributes override method attributes with the same name; to
avoid accidental name conflicts, which may cause hard-to-find bugs in
large programs, it is wise to use some kind of convention that
minimizes the chance of conflicts. Possible conventions include
capitalizing method names, prefixing data attribute names with a small
unique string (perhaps just an underscore), or using verbs for methods
and nouns for data attributes.
Data attributes may be referenced by methods as well as by ordinary
users (``clients'') of an object. In other words, classes are not
usable to implement pure abstract data types. In fact, nothing in
Python makes it possible to enforce data hiding --- it is all based
upon convention. (On the other hand, the Python implementation,
written in C, can completely hide implementation details and control
access to an object if necessary; this can be used by extensions to
Python written in C.)
Clients should use data attributes with care --- clients may mess up
invariants maintained by the methods by stamping on their data
attributes. Note that clients may add data attributes of their own to
an instance object without affecting the validity of the methods, as
long as name conflicts are avoided --- again, a naming convention can
save a lot of headaches here.
There is no shorthand for referencing data attributes (or other
methods!) from within methods. I find that this actually increases
the readability of methods: there is no chance of confusing local
variables and instance variables when glancing through a method.
Often, the first argument of a method is called
\code{self}. This is nothing more than a convention: the name
\code{self} has absolutely no special meaning to Python. (Note,
however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that
a \emph{class browser} program might be written that relies upon such a
convention.)
Any function object that is a class attribute defines a method for
instances of that class. It is not necessary that the function
definition is textually enclosed in the class definition: assigning a
function object to a local variable in the class is also ok. For
example:
\begin{verbatim}
# Function defined outside the class
def f1(self, x, y):
return min(x, x+y)
class C:
f = f1
def g(self):
return 'hello world'
h = g
\end{verbatim}
Now \code{f}, \code{g} and \code{h} are all attributes of class
\class{C} that refer to function objects, and consequently they are all
methods of instances of \class{C} --- \code{h} being exactly equivalent
to \code{g}. Note that this practice usually only serves to confuse
the reader of a program.
Methods may call other methods by using method attributes of the
\code{self} argument:
\begin{verbatim}
class Bag:
def __init__(self):
self.data = []
def add(self, x):
self.data.append(x)
def addtwice(self, x):
self.add(x)
self.add(x)
\end{verbatim}
Methods may reference global names in the same way as ordinary
functions. The global scope associated with a method is the module
containing the class definition. (The class itself is never used as a
global scope!) While one rarely encounters a good reason for using
global data in a method, there are many legitimate uses of the global
scope: for one thing, functions and modules imported into the global
scope can be used by methods, as well as functions and classes defined
in it. Usually, the class containing the method is itself defined in
this global scope, and in the next section we'll find some good
reasons why a method would want to reference its own class!
\section{Inheritance \label{inheritance}}
Of course, a language feature would not be worthy of the name ``class''
without supporting inheritance. The syntax for a derived class
definition looks like this:
\begin{verbatim}
class DerivedClassName(BaseClassName):
<statement-1>
.
.
.
<statement-N>
\end{verbatim}
The name \class{BaseClassName} must be defined in a scope containing
the derived class definition. In place of a base class name, other
arbitrary expressions are also allowed. This can be useful, for
example, when the base class is defined in another module:
\begin{verbatim}
class DerivedClassName(modname.BaseClassName):
\end{verbatim}
Execution of a derived class definition proceeds the same as for a
base class. When the class object is constructed, the base class is
remembered. This is used for resolving attribute references: if a
requested attribute is not found in the class, the search proceeds to look in the
base class. This rule is applied recursively if the base class itself
is derived from some other class.
There's nothing special about instantiation of derived classes:
\code{DerivedClassName()} creates a new instance of the class. Method
references are resolved as follows: the corresponding class attribute
is searched, descending down the chain of base classes if necessary,
and the method reference is valid if this yields a function object.
Derived classes may override methods of their base classes. Because
methods have no special privileges when calling other methods of the
same object, a method of a base class that calls another method
defined in the same base class may end up calling a method of
a derived class that overrides it. (For \Cpp{} programmers: all methods
in Python are effectively \keyword{virtual}.)
An overriding method in a derived class may in fact want to extend
rather than simply replace the base class method of the same name.
There is a simple way to call the base class method directly: just
call \samp{BaseClassName.methodname(self, arguments)}. This is
occasionally useful to clients as well. (Note that this only works if
the base class is defined or imported directly in the global scope.)
\subsection{Multiple Inheritance \label{multiple}}
Python supports a limited form of multiple inheritance as well. A
class definition with multiple base classes looks like this:
\begin{verbatim}
class DerivedClassName(Base1, Base2, Base3):
<statement-1>
.
.
.
<statement-N>
\end{verbatim}
The only rule necessary to explain the semantics is the resolution
rule used for class attribute references. This is depth-first,
left-to-right. Thus, if an attribute is not found in
\class{DerivedClassName}, it is searched in \class{Base1}, then
(recursively) in the base classes of \class{Base1}, and only if it is
not found there, it is searched in \class{Base2}, and so on.
(To some people breadth first --- searching \class{Base2} and
\class{Base3} before the base classes of \class{Base1} --- looks more
natural. However, this would require you to know whether a particular
attribute of \class{Base1} is actually defined in \class{Base1} or in
one of its base classes before you can figure out the consequences of
a name conflict with an attribute of \class{Base2}. The depth-first
rule makes no differences between direct and inherited attributes of
\class{Base1}.)
It is clear that indiscriminate use of multiple inheritance is a
maintenance nightmare, given the reliance in Python on conventions to
avoid accidental name conflicts. A well-known problem with multiple
inheritance is a class derived from two classes that happen to have a
common base class. While it is easy enough to figure out what happens
in this case (the instance will have a single copy of ``instance
variables'' or data attributes used by the common base class), it is
not clear that these semantics are in any way useful.
%% XXX Add rules for new-style MRO?
\section{Private Variables \label{private}}
There is limited support for class-private
identifiers. Any identifier of the form \code{__spam} (at least two
leading underscores, at most one trailing underscore) is textually
replaced with \code{_classname__spam}, where \code{classname} is the
current class name with leading underscore(s) stripped. This mangling
is done without regard to the syntactic position of the identifier, so
it can be used to define class-private instance and class variables,
methods, variables stored in globals, and even variables stored in instances.
private to this class on instances of \emph{other} classes. Truncation
may occur when the mangled name would be longer than 255 characters.
Outside classes, or when the class name consists of only underscores,
no mangling occurs.
Name mangling is intended to give classes an easy way to define
``private'' instance variables and methods, without having to worry
about instance variables defined by derived classes, or mucking with
instance variables by code outside the class. Note that the mangling
rules are designed mostly to avoid accidents; it still is possible for
a determined soul to access or modify a variable that is considered
private. This can even be useful in special circumstances, such as in
the debugger, and that's one reason why this loophole is not closed.
(Buglet: derivation of a class with the same name as the base class
makes use of private variables of the base class possible.)
Notice that code passed to \code{exec}, \code{eval()} or
\code{evalfile()} does not consider the classname of the invoking
class to be the current class; this is similar to the effect of the
\code{global} statement, the effect of which is likewise restricted to
code that is byte-compiled together. The same restriction applies to
\code{getattr()}, \code{setattr()} and \code{delattr()}, as well as
when referencing \code{__dict__} directly.
\section{Odds and Ends \label{odds}}
Sometimes it is useful to have a data type similar to the Pascal
``record'' or C ``struct'', bundling together a few named data
items. An empty class definition will do nicely:
\begin{verbatim}
class Employee:
pass
john = Employee() # Create an empty employee record
# Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000
\end{verbatim}
A piece of Python code that expects a particular abstract data type
can often be passed a class that emulates the methods of that data
type instead. For instance, if you have a function that formats some
data from a file object, you can define a class with methods
\method{read()} and \method{readline()} that get the data from a string
buffer instead, and pass it as an argument.% (Unfortunately, this
%technique has its limitations: a class can't define operations that
%are accessed by special syntax such as sequence subscripting or
%arithmetic operators, and assigning such a ``pseudo-file'' to
%\code{sys.stdin} will not cause the interpreter to read further input
%from it.)
Instance method objects have attributes, too: \code{m.im_self} is the
instance object with the method \method{m}, and \code{m.im_func} is the
function object corresponding to the method.
\section{Exceptions Are Classes Too\label{exceptionClasses}}
User-defined exceptions are identified by classes as well. Using this
mechanism it is possible to create extensible hierarchies of exceptions.
There are two new valid (semantic) forms for the raise statement:
\begin{verbatim}
raise Class, instance
raise instance
\end{verbatim}
In the first form, \code{instance} must be an instance of
\class{Class} or of a class derived from it. The second form is a
shorthand for:
\begin{verbatim}
raise instance.__class__, instance
\end{verbatim}
A class in an except clause is compatible with an exception if it is the same
class or a base class thereof (but not the other way around --- an
except clause listing a derived class is not compatible with a base
class). For example, the following code will print B, C, D in that
order:
\begin{verbatim}
class B:
pass
class C(B):
pass
class D(C):
pass
for c in [B, C, D]:
try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"
\end{verbatim}
Note that if the except clauses were reversed (with
\samp{except B} first), it would have printed B, B, B --- the first
matching except clause is triggered.
When an error message is printed for an unhandled exception, the
exception's class name is printed, then a colon and a space, and
finally the instance converted to a string using the built-in function
\function{str()}.
\section{Iterators\label{iterators}}
By now you have probably noticed that most container objects can be looped
over using a \keyword{for} statement:
\begin{verbatim}
for element in [1, 2, 3]:
print element
for element in (1, 2, 3):
print element
for key in {'one':1, 'two':2}:
print key
for char in "123":
print char
for line in open("myfile.txt"):
print line
\end{verbatim}
This style of access is clear, concise, and convenient. The use of iterators
pervades and unifies Python. Behind the scenes, the \keyword{for}
statement calls \function{iter()} on the container object. The
function returns an iterator object that defines the method
\method{next()} which accesses elements in the container one at a
time. When there are no more elements, \method{next()} raises a
\exception{StopIteration} exception which tells the \keyword{for} loop
to terminate. This example shows how it all works:
\begin{verbatim}
>>> s = 'abc'
>>> it = iter(s)
>>> it
<iterator object at 0x00A1DB50>
>>> it.next()
'a'
>>> it.next()
'b'
>>> it.next()
'c'
>>> it.next()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
it.next()
StopIteration
\end{verbatim}
Having seen the mechanics behind the iterator protocol, it is easy to add
iterator behavior to your classes. Define a \method{__iter__()} method
which returns an object with a \method{next()} method. If the class defines
\method{next()}, then \method{__iter__()} can just return \code{self}:
\begin{verbatim}
class Reverse:
"Iterator for looping over a sequence backwards"
def __init__(self, data):
self.data = data
self.index = len(data)
def __iter__(self):
return self
def next(self):
if self.index == 0:
raise StopIteration
self.index = self.index - 1
return self.data[self.index]
>>> for char in Reverse('spam'):
... print char
...
m
a
p
s
\end{verbatim}
\section{Generators\label{generators}}
Generators are a simple and powerful tool for creating iterators. They are
written like regular functions but use the \keyword{yield} statement whenever
they want to return data. Each time \method{next()} is called, the
generator resumes where it left-off (it remembers all the data values and
which statement was last executed). An example shows that generators can
be trivially easy to create:
\begin{verbatim}
def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]
>>> for char in reverse('golf'):
... print char
...
f
l
o
g
\end{verbatim}
Anything that can be done with generators can also be done with class based
iterators as described in the previous section. What makes generators so
compact is that the \method{__iter__()} and \method{next()} methods are
created automatically.
Another key feature is that the local variables and execution state
are automatically saved between calls. This made the function easier to write
and much more clear than an approach using instance variables like
\code{self.index} and \code{self.data}.
In addition to automatic method creation and saving program state, when
generators terminate, they automatically raise \exception{StopIteration}.
In combination, these features make it easy to create iterators with no
more effort than writing a regular function.
\section{Generator Expressions\label{genexps}}
Some simple generators can be coded succinctly as expressions using a syntax
similar to list comprehensions but with parentheses instead of brackets. These
expressions are designed for situations where the generator is used right
away by an enclosing function. Generator expressions are more compact but
less versatile than full generator definitions and tend to be more memory
friendly than equivalent list comprehensions.
Examples:
\begin{verbatim}
>>> sum(i*i for i in range(10)) # sum of squares
285
>>> xvec = [10, 20, 30]
>>> yvec = [7, 5, 3]
>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260
>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))
>>> unique_words = set(word for line in page for word in line.split())
>>> valedictorian = max((student.gpa, student.name) for student in graduates)
>>> data = 'golf'
>>> list(data[i] for i in range(len(data)-1,-1,-1))
['f', 'l', 'o', 'g']
\end{verbatim}
\chapter{Brief Tour of the Standard Library \label{briefTour}}
\section{Operating System Interface\label{os-interface}}
The \ulink{\module{os}}{../lib/module-os.html}
module provides dozens of functions for interacting with the
operating system:
\begin{verbatim}
>>> import os
>>> os.system('time 0:02')
0
>>> os.getcwd() # Return the current working directory
'C:\\Python24'
>>> os.chdir('/server/accesslogs')
\end{verbatim}
Be sure to use the \samp{import os} style instead of
\samp{from os import *}. This will keep \function{os.open()} from
shadowing the builtin \function{open()} function which operates much
differently.
\bifuncindex{help}
The builtin \function{dir()} and \function{help()} functions are useful
as interactive aids for working with large modules like \module{os}:
\begin{verbatim}
>>> import os
>>> dir(os)
<returns a list of all module functions>
>>> help(os)
<returns an extensive manual page created from the module's docstrings>
\end{verbatim}
For daily file and directory management tasks, the
\ulink{\module{shutil}}{../lib/module-shutil.html}
module provides a higher level interface that is easier to use:
\begin{verbatim}
>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil.move('/build/executables', 'installdir')
\end{verbatim}
\section{File Wildcards\label{file-wildcards}}
The \ulink{\module{glob}}{../lib/module-glob.html}
module provides a function for making file lists from directory
wildcard searches:
\begin{verbatim}
>>> import glob
>>> glob.glob('*.py')
['primes.py', 'random.py', 'quote.py']
\end{verbatim}
\section{Command Line Arguments\label{command-line-arguments}}
Common utility scripts often need to process command line arguments.
These arguments are stored in the
\ulink{\module{sys}}{../lib/module-sys.html}\ module's \var{argv}
attribute as a list. For instance the following output results from
running \samp{python demo.py one two three} at the command line:
\begin{verbatim}
>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']
\end{verbatim}
The \ulink{\module{getopt}}{../lib/module-getopt.html}
module processes \var{sys.argv} using the conventions of the \UNIX{}
\function{getopt()} function. More powerful and flexible command line
processing is provided by the
\ulink{\module{optparse}}{../lib/module-optparse.html} module.
\section{Error Output Redirection and Program Termination\label{stderr}}
The \ulink{\module{sys}}{../lib/module-sys.html}
module also has attributes for \var{stdin}, \var{stdout}, and
\var{stderr}. The latter is useful for emitting warnings and error
messages to make them visible even when \var{stdout} has been redirected:
\begin{verbatim}
>>> sys.stderr.write('Warning, log file not found starting a new one\n')
Warning, log file not found starting a new one
\end{verbatim}
The most direct way to terminate a script is to use \samp{sys.exit()}.
\section{String Pattern Matching\label{string-pattern-matching}}
The \ulink{\module{re}}{../lib/module-re.html}
module provides regular expression tools for advanced string processing.
For complex matching and manipulation, regular expressions offer succinct,
optimized solutions:
\begin{verbatim}
>>> import re
>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']
>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')
'cat in the hat'
\end{verbatim}
When only simple capabilities are needed, string methods are preferred
because they are easier to read and debug:
\begin{verbatim}
>>> 'tea for too'.replace('too', 'two')
'tea for two'
\end{verbatim}
\section{Mathematics\label{mathematics}}
The \ulink{\module{math}}{../lib/module-math.html} module gives
access to the underlying C library functions for floating point math:
\begin{verbatim}
>>> import math
>>> math.cos(math.pi / 4.0)
0.70710678118654757
>>> math.log(1024, 2)
10.0
\end{verbatim}
The \ulink{\module{random}}{../lib/module-random.html}
module provides tools for making random selections:
\begin{verbatim}
>>> import random
>>> random.choice(['apple', 'pear', 'banana'])
'apple'
>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]
>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)
4
\end{verbatim}
\section{Internet Access\label{internet-access}}
There are a number of modules for accessing the internet and processing
internet protocols. Two of the simplest are
\ulink{\module{urllib2}}{../lib/module-urllib2.html}
for retrieving data from urls and
\ulink{\module{smtplib}}{../lib/module-smtplib.html}
for sending mail:
\begin{verbatim}
>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'):
... if 'EST' in line: # look for Eastern Standard Time
... print line
<BR>Nov. 25, 09:43:32 PM EST
>>> import smtplib
>>> server = smtplib.SMTP('localhost')
>>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
"""To: jcaesar@example.org
From: soothsayer@example.org
Beware the Ides of March.
""")
>>> server.quit()
\end{verbatim}
\section{Dates and Times\label{dates-and-times}}
The \ulink{\module{datetime}}{../lib/module-datetime.html} module
supplies classes for manipulating dates and times in both simple
and complex ways. While date and time arithmetic is supported, the
focus of the implementation is on efficient member extraction for
output formatting and manipulation. The module also supports objects
that are time zone aware.
\begin{verbatim}
# dates are easily constructed and formatted
>>> from datetime import date
>>> now = date.today()
>>> now
datetime.date(2003, 12, 2)
>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'
# dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday
>>> age.days
14368
\end{verbatim}
\section{Data Compression\label{data-compression}}
Common data archiving and compression formats are directly supported
by modules including:
\ulink{\module{zlib}}{../lib/module-zlib.html},
\ulink{\module{gzip}}{../lib/module-gzip.html},
\ulink{\module{bz2}}{../lib/module-bz2.html},
\ulink{\module{zipfile}}{../lib/module-zipfile.html}, and
\ulink{\module{tarfile}}{../lib/module-tarfile.html}.
\begin{verbatim}
>>> import zlib
>>> s = 'witch which has which witches wrist watch'
>>> len(s)
41
>>> t = zlib.compress(s)
>>> len(t)
37
>>> zlib.decompress(t)
'witch which has which witches wrist watch'
>>> zlib.crc32(s)
226805979
\end{verbatim}
\section{Performance Measurement\label{performance-measurement}}
Some Python users develop a deep interest in knowing the relative
performance of different approaches to the same problem.
Python provides a measurement tool that answers those questions
immediately.
For example, it may be tempting to use the tuple packing and unpacking
feature instead of the traditional approach to swapping arguments.
The \ulink{\module{timeit}}{../lib/module-timeit.html} module
quickly demonstrates a modest performance advantage:
\begin{verbatim}
>>> from timeit import Timer
>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577
>>> Timer('a,b = b,a', 'a=1; b=2').timeit()
0.54962537085770791
\end{verbatim}
In contrast to \module{timeit}'s fine level of granularity, the
\ulink{\module{profile}}{../lib/module-profile.html} and \module{pstats}
modules provide tools for identifying time critical sections in larger blocks
of code.
\section{Quality Control\label{quality-control}}
One approach for developing high quality software is to write tests for
each function as it is developed and to run those tests frequently during
the development process.
The \ulink{\module{doctest}}{../lib/module-doctest.html} module provides
a tool for scanning a module and validating tests embedded in a program's
docstrings. Test construction is as simple as cutting-and-pasting a
typical call along with its results into the docstring. This improves
the documentation by providing the user with an example and it allows the
doctest module to make sure the code remains true to the documentation:
\begin{verbatim}
def average(values):
"""Computes the arithmetic mean of a list of numbers.
>>> print average([20, 30, 70])
40.0
"""
return sum(values, 0.0) / len(values)
import doctest
doctest.testmod() # automatically validate the embedded tests
\end{verbatim}
The \ulink{\module{unittest}}{../lib/module-unittest.html} module is not
as effortless as the \module{doctest} module, but it allows a more
comprehensive set of tests to be maintained in a separate file:
\begin{verbatim}
import unittest
class TestStatisticalFunctions(unittest.TestCase):
def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)
unittest.main() # Calling from the command line invokes all tests
\end{verbatim}
\section{Batteries Included\label{batteries-included}}
Python has a ``batteries included'' philosophy. This is best seen
through the sophisticated and robust capabilities of its larger
packages. For example:
\begin{itemize}
\item The \ulink{\module{xmlrpclib}}{../lib/module-xmlrpclib.html} and
\ulink{\module{SimpleXMLRPCServer}}{../lib/module-SimpleXMLRPCServer.html}
modules make implementing remote procedure calls into an almost trivial task.
Despite the names, no direct knowledge or handling of XML is needed.
\item The \ulink{\module{email}}{../lib/module-email.html} package is a library
for managing email messages, including MIME and other RFC 2822-based message
documents. Unlike \module{smtplib} and \module{poplib} which actually send
and receive messages, the email package has a complete toolset for building
or decoding complex message structures (including attachments) and for
implementing internet encoding and header protocols.
\item The \ulink{\module{xml.dom}}{../lib/module-xml.dom.html} and
\ulink{\module{xml.sax}}{../lib/module-xml.sax.html} packages provide robust
support for parsing this popular data interchange format. Likewise, the
\ulink{\module{csv}}{../lib/module-csv.html} module supports direct reads and
writes in a common database format. Together, these modules and packages
greatly simplify data interchange between python applications and other
tools.
\item Internationalization is supported by a number of modules including
\ulink{\module{gettext}}{../lib/module-gettext.html},
\ulink{\module{locale}}{../lib/module-locale.html}, and the
\ulink{\module{codecs}}{../lib/module-codecs.html} package.
\end{itemize}
\chapter{Brief Tour of the Standard Library -- Part II\label{briefTourTwo}}
This second tour covers more advanced modules that support professional
programming needs. These modules rarely occur in small scripts.
\section{Output Formatting\label{output-formatting}}
The \ulink{\module{repr}}{../lib/module-repr.html} module provides an
version of \function{repr()} for abbreviated displays of large or deeply
nested containers:
\begin{verbatim}
>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
"set(['a', 'c', 'd', 'e', 'f', 'g', ...])"
\end{verbatim}
The \ulink{\module{pprint}}{../lib/module-pprint.html} module offers
more sophisticated control over printing both built-in and user defined
objects in a way that is readable by the interpreter. When the result
is longer than one line, the ``pretty printer'' adds line breaks and
indentation to more clearly reveal data structure:
\begin{verbatim}
>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['magenta',
... 'yellow'], 'blue']]]
...
>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
'white',
['green', 'red']],
[['magenta', 'yellow'],
'blue']]]
\end{verbatim}
The \ulink{\module{textwrap}}{../lib/module-textwrap.html} module
formats paragraphs of text to fit a given screen width:
\begin{verbatim}
>>> import textwrap
>>> doc = """The wrap() method is just like fill() except that it returns
... a list of strings instead of one big string with newlines to separate
... the wrapped lines."""
...
>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.
\end{verbatim}
The \ulink{\module{locale}}{../lib/module-locale.html} module accesses
a database of culture specific data formats. The grouping attribute
of locale's format function provides a direct way of formatting numbers
with group separators:
\begin{verbatim}
>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252')
'English_United States.1252'
>>> conv = locale.localeconv() # get a mapping of conventions
>>> x = 1234567.8
>>> locale.format("%d", x, grouping=True)
'1,234,567'
>>> locale.format("%s%.*f", (conv['currency_symbol'],
... conv['frac_digits'], x), grouping=True)
'$1,234,567.80'
\end{verbatim}
\section{Templating\label{templating}}
The \ulink{\module{string}}{../lib/module-string.html} module includes a
versatile \class{Template} class with a simplified syntax suitable for
editing by end-users. This allows users to customize their applications
without having to alter the application.
The format uses placeholder names formed by \samp{\$} with valid Python
identifiers (alphanumeric characters and underscores). Surrounding the
placeholder with braces allows it to be followed by more alphanumeric letters
with no intervening spaces. Writing \samp{\$\$} creates a single escaped
\samp{\$}:
\begin{verbatim}
>>> from string import Template
>>> t = Template('${village}folk send $$10 to $cause.')
>>> t.substitute(village='Nottingham', cause='the ditch fund')
'Nottinghamfolk send $10 to the ditch fund.'
\end{verbatim}
The \method{substitute} method raises a \exception{KeyError} when a
placeholder is not supplied in a dictionary or a keyword argument. For
mail-merge style applications, user supplied data may be incomplete and the
\method{safe_substitute} method may be more appropriate --- it will leave
placeholders unchanged if data is missing:
\begin{verbatim}
>>> t = Template('Return the $item to $owner.')
>>> d = dict(item='unladen swallow')
>>> t.substitute(d)
Traceback (most recent call last):
. . .
KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'
\end{verbatim}
Template subclasses can specify a custom delimiter. For example, a batch
renaming utility for a photo browser may elect to use percent signs for
placeholders such as the current date, image sequence number, or file format:
\begin{verbatim}
>>> import time, os.path
>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):
... delimiter = '%'
>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format): ')
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f
>>> t = BatchRename(fmt)
>>> date = time.strftime('%d%b%y')
>>> for i, filename in enumerate(photofiles):
... base, ext = os.path.splitext(filename)
... newname = t.substitute(d=date, n=i, f=ext)
... print '%s --> %s' % (filename, newname)
img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg
\end{verbatim}
Another application for templating is separating program logic from the
details of multiple output formats. This makes it possible to substitute
custom templates for XML files, plain text reports, and HTML web reports.
\section{Working with Binary Data Record Layouts\label{binary-formats}}
The \ulink{\module{struct}}{../lib/module-struct.html} module provides
\function{pack()} and \function{unpack()} functions for working with
variable length binary record formats. The following example shows how
to loop through header information in a ZIP file (with pack codes
\code{"H"} and \code{"L"} representing two and four byte unsigned
numbers respectively):
\begin{verbatim}
import struct
data = open('myfile.zip', 'rb').read()
start = 0
for i in range(3): # show the first 3 file headers
start += 14
fields = struct.unpack('LLLHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fields
start += 16
filename = data[start:start+filenamesize]
start += filenamesize
extra = data[start:start+extra_size]
print filename, hex(crc32), comp_size, uncomp_size
start += extra_size + comp_size # skip to the next header
\end{verbatim}
\section{Multi-threading\label{multi-threading}}
Threading is a technique for decoupling tasks which are not sequentially
dependent. Threads can be used to improve the responsiveness of
applications that accept user input while other tasks run in the
background. A related use case is running I/O in parallel with
computations in another thread.
The following code shows how the high level
\ulink{\module{threading}}{../lib/module-threading.html} module can run
tasks in background while the main program continues to run:
\begin{verbatim}
import threading, zipfile
class AsyncZip(threading.Thread):
def __init__(self, infile, outfile):
threading.Thread.__init__(self)
self.infile = infile
self.outfile = outfile
def run(self):
f = zipfile.ZipFile(self.outfile, 'w', zipfile.ZIP_DEFLATED)
f.write(self.infile)
f.close()
print 'Finished background zip of: ', self.infile
background = AsyncZip('mydata.txt', 'myarchive.zip')
background.start()
print 'The main program continues to run in foreground.'
background.join() # Wait for the background task to finish
print 'Main program waited until background was done.'
\end{verbatim}
The principal challenge of multi-threaded applications is coordinating
threads that share data or other resources. To that end, the threading
module provides a number of synchronization primitives including locks,
events, condition variables, and semaphores.
While those tools are powerful, minor design errors can result in
problems that are difficult to reproduce. So, the preferred approach
to task coordination is to concentrate all access to a resource
in a single thread and then use the
\ulink{\module{Queue}}{../lib/module-Queue.html} module to feed that
thread with requests from other threads. Applications using
\class{Queue} objects for inter-thread communication and coordination
are easier to design, more readable, and more reliable.
\section{Logging\label{logging}}
The \ulink{\module{logging}}{../lib/module-logging.html} module offers
a full featured and flexible logging system. At its simplest, log
messages are sent to a file or to \code{sys.stderr}:
\begin{verbatim}
import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')
\end{verbatim}
This produces the following output:
\begin{verbatim}
WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down
\end{verbatim}
By default, informational and debugging messages are suppressed and the
output is sent to standard error. Other output options include routing
messages through email, datagrams, sockets, or to an HTTP Server. New
filters can select different routing based on message priority:
\constant{DEBUG}, \constant{INFO}, \constant{WARNING}, \constant{ERROR},
and \constant{CRITICAL}.
The logging system can be configured directly from Python or can be
loaded from a user editable configuration file for customized logging
without altering the application.
\section{Weak References\label{weak-references}}
Python does automatic memory management (reference counting for most
objects and garbage collection to eliminate cycles). The memory is
freed shortly after the last reference to it has been eliminated.
This approach works fine for most applications but occasionally there
is a need to track objects only as long as they are being used by
something else. Unfortunately, just tracking them creates a reference
that makes them permanent. The
\ulink{\module{weakref}}{../lib/module-weakref.html} module provides
tools for tracking objects without creating a reference. When the
object is no longer needed, it is automatically removed from a weakref
table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:
\begin{verbatim}
>>> import weakref, gc
>>> class A:
... def __init__(self, value):
... self.value = value
... def __repr__(self):
... return str(self.value)
...
>>> a = A(10) # create a reference
>>> d = weakref.WeakValueDictionary()
>>> d['primary'] = a # does not create a reference
>>> d['primary'] # fetch the object if it is still alive
10
>>> del a # remove the one reference
>>> gc.collect() # run garbage collection right away
0
>>> d['primary'] # entry was automatically removed
Traceback (most recent call last):
File "<pyshell#108>", line 1, in -toplevel-
d['primary'] # entry was automatically removed
File "C:/PY24/lib/weakref.py", line 46, in __getitem__
o = self.data[key]()
KeyError: 'primary'
\end{verbatim}
\section{Tools for Working with Lists\label{list-tools}}
Many data structure needs can be met with the built-in list type.
However, sometimes there is a need for alternative implementations
with different performance trade-offs.
The \ulink{\module{array}}{../lib/module-array.html} module provides an
\class{array()} object that is like a list that stores only homogenous
data but stores it more compactly. The following example shows an array
of numbers stored as two byte unsigned binary numbers (typecode
\code{"H"}) rather than the usual 16 bytes per entry for regular lists
of python int objects:
\begin{verbatim}
>>> from array import array
>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)
26932
>>> a[1:3]
array('H', [10, 700])
\end{verbatim}
The \ulink{\module{collections}}{../lib/module-collections.html} module
provides a \class{deque()} object that is like a list with faster
appends and pops from the left side but slower lookups in the middle.
These objects are well suited for implementing queues and breadth first
tree searches:
\begin{verbatim}
>>> from collections import deque
>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")
>>> print "Handling", d.popleft()
Handling task1
unsearched = deque([starting_node])
def breadth_first_search(unsearched):
node = unsearched.popleft()
for m in gen_moves(node):
if is_goal(m):
return m
unsearched.append(m)
\end{verbatim}
In addition to alternative list implementations, the library also offers
other tools such as the \ulink{\module{bisect}}{../lib/module-bisect.html}
module with functions for manipulating sorted lists:
\begin{verbatim}
>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500, 'python')]
>>> bisect.insort(scores, (300, 'ruby'))
>>> scores
[(100, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500, 'python')]
\end{verbatim}
The \ulink{\module{heapq}}{../lib/module-heapq.html} module provides
functions for implementing heaps based on regular lists. The lowest
valued entry is always kept at position zero. This is useful for
applications which repeatedly access the smallest element but do not
want to run a full list sort:
\begin{verbatim}
>>> from heapq import heapify, heappop, heappush
>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
>>> heapify(data) # rearrange the list into heap order
>>> heappush(data, -5) # add a new entry
>>> [heappop(data) for i in range(3)] # fetch the three smallest entries
[-5, 0, 1]
\end{verbatim}
\section{Decimal Floating Point Arithmetic\label{decimal-fp}}
The \ulink{\module{decimal}}{../lib/module-decimal.html} module offers a
\class{Decimal} datatype for decimal floating point arithmetic. Compared to
the built-in \class{float} implementation of binary floating point, the new
class is especially helpful for financial applications and other uses which
require exact decimal representation, control over precision, control over
rounding to meet legal or regulatory requirements, tracking of significant
decimal places, or for applications where the user expects the results to
match calculations done by hand.
For example, calculating a 5\%{} tax on a 70 cent phone charge gives
different results in decimal floating point and binary floating point.
The difference becomes significant if the results are rounded to the
nearest cent:
\begin{verbatim}
>>> from decimal import *
>>> Decimal('0.70') * Decimal('1.05')
Decimal("0.7350")
>>> .70 * 1.05
0.73499999999999999
\end{verbatim}
The \class{Decimal} result keeps a trailing zero, automatically inferring four
place significance from multiplicands with two place significance. Decimal reproduces
mathematics as done by hand and avoids issues that can arise when binary
floating point cannot exactly represent decimal quantities.
Exact representation enables the \class{Decimal} class to perform
modulo calculations and equality tests that are unsuitable for binary
floating point:
\begin{verbatim}
>>> Decimal('1.00') % Decimal('.10')
Decimal("0.00")
>>> 1.00 % 0.10
0.09999999999999995
>>> sum([Decimal('0.1')]*10) == Decimal('1.0')
True
>>> sum([0.1]*10) == 1.0
False
\end{verbatim}
The \module{decimal} module provides arithmetic with as much precision as
needed:
\begin{verbatim}
>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")
\end{verbatim}
\chapter{What Now? \label{whatNow}}
Reading this tutorial has probably reinforced your interest in using
Python --- you should be eager to apply Python to solving your
real-world problems. Now what should you do?
You should read, or at least page through, the
\citetitle[../lib/lib.html]{Python Library Reference},
which gives complete (though terse) reference material about types,
functions, and modules that can save you a lot of time when writing
Python programs. The standard Python distribution includes a
\emph{lot} of code in both C and Python; there are modules to read
\UNIX{} mailboxes, retrieve documents via HTTP, generate random
numbers, parse command-line options, write CGI programs, compress
data, and a lot more; skimming through the Library Reference will give
you an idea of what's available.
The major Python Web site is \url{http://www.python.org/}; it contains
code, documentation, and pointers to Python-related pages around the
Web. This Web site is mirrored in various places around the
world, such as Europe, Japan, and Australia; a mirror may be faster
than the main site, depending on your geographical location. A more
informal site is \url{http://starship.python.net/}, which contains a
bunch of Python-related personal home pages; many people have
downloadable software there. Many more user-created Python modules
can be found in the \ulink{Python Package
Index}{http://www.python.org/pypi} (PyPI).
For Python-related questions and problem reports, you can post to the
newsgroup \newsgroup{comp.lang.python}, or send them to the mailing
list at \email{python-list@python.org}. The newsgroup and mailing list
are gatewayed, so messages posted to one will automatically be
forwarded to the other. There are around 120 postings a day (with peaks
up to several hundred),
% Postings figure based on average of last six months activity as
% reported by www.egroups.com; Jan. 2000 - June 2000: 21272 msgs / 182
% days = 116.9 msgs / day and steadily increasing.
asking (and answering) questions, suggesting new features, and
announcing new modules. Before posting, be sure to check the list of
\ulink{Frequently Asked Questions}{http://www.python.org/doc/faq/} (also called the FAQ), or look for it in the
\file{Misc/} directory of the Python source distribution. Mailing
list archives are available at \url{http://www.python.org/pipermail/}.
The FAQ answers many of the questions that come up again and again,
and may already contain the solution for your problem.
\appendix
\chapter{Interactive Input Editing and History Substitution\label{interacting}}
Some versions of the Python interpreter support editing of the current
input line and history substitution, similar to facilities found in
the Korn shell and the GNU Bash shell. This is implemented using the
\emph{GNU Readline} library, which supports Emacs-style and vi-style
editing. This library has its own documentation which I won't
duplicate here; however, the basics are easily explained. The
interactive editing and history described here are optionally
available in the \UNIX{} and Cygwin versions of the interpreter.
This chapter does \emph{not} document the editing facilities of Mark
Hammond's PythonWin package or the Tk-based environment, IDLE,
distributed with Python. The command line history recall which
operates within DOS boxes on NT and some other DOS and Windows flavors
is yet another beast.
\section{Line Editing \label{lineEditing}}
If supported, input line editing is active whenever the interpreter
prints a primary or secondary prompt. The current line can be edited
using the conventional Emacs control characters. The most important
of these are: \kbd{C-A} (Control-A) moves the cursor to the beginning
of the line, \kbd{C-E} to the end, \kbd{C-B} moves it one position to
the left, \kbd{C-F} to the right. Backspace erases the character to
the left of the cursor, \kbd{C-D} the character to its right.
\kbd{C-K} kills (erases) the rest of the line to the right of the
cursor, \kbd{C-Y} yanks back the last killed string.
\kbd{C-underscore} undoes the last change you made; it can be repeated
for cumulative effect.
\section{History Substitution \label{history}}
History substitution works as follows. All non-empty input lines
issued are saved in a history buffer, and when a new prompt is given
you are positioned on a new line at the bottom of this buffer.
\kbd{C-P} moves one line up (back) in the history buffer,
\kbd{C-N} moves one down. Any line in the history buffer can be
edited; an asterisk appears in front of the prompt to mark a line as
modified. Pressing the \kbd{Return} key passes the current line to
the interpreter. \kbd{C-R} starts an incremental reverse search;
\kbd{C-S} starts a forward search.
\section{Key Bindings \label{keyBindings}}
The key bindings and some other parameters of the Readline library can
be customized by placing commands in an initialization file called
\file{\~{}/.inputrc}. Key bindings have the form
\begin{verbatim}
key-name: function-name
\end{verbatim}
or
\begin{verbatim}
"string": function-name
\end{verbatim}
and options can be set with
\begin{verbatim}
set option-name value
\end{verbatim}
For example:
\begin{verbatim}
# I prefer vi-style editing:
set editing-mode vi
# Edit using a single line:
set horizontal-scroll-mode On
# Rebind some keys:
Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file
\end{verbatim}
Note that the default binding for \kbd{Tab} in Python is to insert a
\kbd{Tab} character instead of Readline's default filename completion
function. If you insist, you can override this by putting
\begin{verbatim}
Tab: complete
\end{verbatim}
in your \file{\~{}/.inputrc}. (Of course, this makes it harder to
type indented continuation lines if you're accustomed to using
\kbd{Tab} for that purpose.)
Automatic completion of variable and module names is optionally
available. To enable it in the interpreter's interactive mode, add
the following to your startup file:\footnote{
Python will execute the contents of a file identified by the
\envvar{PYTHONSTARTUP} environment variable when you start an
interactive interpreter.}
\refstmodindex{rlcompleter}\refbimodindex{readline}
\begin{verbatim}
import rlcompleter, readline
readline.parse_and_bind('tab: complete')
\end{verbatim}
This binds the \kbd{Tab} key to the completion function, so hitting
the \kbd{Tab} key twice suggests completions; it looks at Python
statement names, the current local variables, and the available module
names. For dotted expressions such as \code{string.a}, it will
evaluate the expression up to the final \character{.} and then
suggest completions from the attributes of the resulting object. Note
that this may execute application-defined code if an object with a
\method{__getattr__()} method is part of the expression.
A more capable startup file might look like this example. Note that
this deletes the names it creates once they are no longer needed; this
is done since the startup file is executed in the same namespace as
the interactive commands, and removing the names avoids creating side
effects in the interactive environment. You may find it convenient
to keep some of the imported modules, such as
\ulink{\module{os}}{../lib/module-os.html}, which turn
out to be needed in most sessions with the interpreter.
\begin{verbatim}
# Add auto-completion and a stored history file of commands to your Python
# interactive interpreter. Requires Python 2.0+, readline. Autocomplete is
# bound to the Esc key by default (you can change it - see readline docs).
#
# Store the file in ~/.pystartup, and set an environment variable to point
# to it: "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash.
#
# Note that PYTHONSTARTUP does *not* expand "~", so you have to put in the
# full path to your home directory.
import atexit
import os
import readline
import rlcompleter
historyPath = os.path.expanduser("~/.pyhistory")
def save_history(historyPath=historyPath):
import readline
readline.write_history_file(historyPath)
if os.path.exists(historyPath):
readline.read_history_file(historyPath)
atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath
\end{verbatim}
\section{Commentary \label{commentary}}
This facility is an enormous step forward compared to earlier versions
of the interpreter; however, some wishes are left: It would be nice if
the proper indentation were suggested on continuation lines (the
parser knows if an indent token is required next). The completion
mechanism might use the interpreter's symbol table. A command to
check (or even suggest) matching parentheses, quotes, etc., would also
be useful.
\chapter{Floating Point Arithmetic: Issues and Limitations\label{fp-issues}}
\sectionauthor{Tim Peters}{tim_one@users.sourceforge.net}
Floating-point numbers are represented in computer hardware as
base 2 (binary) fractions. For example, the decimal fraction
\begin{verbatim}
0.125
\end{verbatim}
has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction
\begin{verbatim}
0.001
\end{verbatim}
has value 0/2 + 0/4 + 1/8. These two fractions have identical values,
the only real difference being that the first is written in base 10
fractional notation, and the second in base 2.
Unfortunately, most decimal fractions cannot be represented exactly as
binary fractions. A consequence is that, in general, the decimal
floating-point numbers you enter are only approximated by the binary
floating-point numbers actually stored in the machine.
The problem is easier to understand at first in base 10. Consider the
fraction 1/3. You can approximate that as a base 10 fraction:
\begin{verbatim}
0.3
\end{verbatim}
or, better,
\begin{verbatim}
0.33
\end{verbatim}
or, better,
\begin{verbatim}
0.333
\end{verbatim}
and so on. No matter how many digits you're willing to write down, the
result will never be exactly 1/3, but will be an increasingly better
approximation of 1/3.
In the same way, no matter how many base 2 digits you're willing to
use, the decimal value 0.1 cannot be represented exactly as a base 2
fraction. In base 2, 1/10 is the infinitely repeating fraction
\begin{verbatim}
0.0001100110011001100110011001100110011001100110011...
\end{verbatim}
Stop at any finite number of bits, and you get an approximation. This
is why you see things like:
\begin{verbatim}
>>> 0.1
0.10000000000000001
\end{verbatim}
On most machines today, that is what you'll see if you enter 0.1 at
a Python prompt. You may not, though, because the number of bits
used by the hardware to store floating-point values can vary across
machines, and Python only prints a decimal approximation to the true
decimal value of the binary approximation stored by the machine. On
most machines, if Python were to print the true decimal value of
the binary approximation stored for 0.1, it would have to display
\begin{verbatim}
>>> 0.1
0.1000000000000000055511151231257827021181583404541015625
\end{verbatim}
instead! The Python prompt uses the builtin
\function{repr()} function to obtain a string version of everything it
displays. For floats, \code{repr(\var{float})} rounds the true
decimal value to 17 significant digits, giving
\begin{verbatim}
0.10000000000000001
\end{verbatim}
\code{repr(\var{float})} produces 17 significant digits because it
turns out that's enough (on most machines) so that
\code{eval(repr(\var{x})) == \var{x}} exactly for all finite floats
\var{x}, but rounding to 16 digits is not enough to make that true.
Note that this is in the very nature of binary floating-point: this is
not a bug in Python, and it is not a bug in your code either. You'll
see the same kind of thing in all languages that support your
hardware's floating-point arithmetic (although some languages may
not \emph{display} the difference by default, or in all output modes).
Python's builtin \function{str()} function produces only 12
significant digits, and you may wish to use that instead. It's
unusual for \code{eval(str(\var{x}))} to reproduce \var{x}, but the
output may be more pleasant to look at:
\begin{verbatim}
>>> print str(0.1)
0.1
\end{verbatim}
It's important to realize that this is, in a real sense, an illusion:
the value in the machine is not exactly 1/10, you're simply rounding
the \emph{display} of the true machine value.
Other surprises follow from this one. For example, after seeing
\begin{verbatim}
>>> 0.1
0.10000000000000001
\end{verbatim}
you may be tempted to use the \function{round()} function to chop it
back to the single digit you expect. But that makes no difference:
\begin{verbatim}
>>> round(0.1, 1)
0.10000000000000001
\end{verbatim}
The problem is that the binary floating-point value stored for "0.1"
was already the best possible binary approximation to 1/10, so trying
to round it again can't make it better: it was already as good as it
gets.
Another consequence is that since 0.1 is not exactly 1/10,
summing ten values of 0.1 may not yield exactly 1.0, either:
\begin{verbatim}
>>> sum = 0.0
>>> for i in range(10):
... sum += 0.1
...
>>> sum
0.99999999999999989
\end{verbatim}
Binary floating-point arithmetic holds many surprises like this. The
problem with "0.1" is explained in precise detail below, in the
"Representation Error" section. See
\citetitle[http://www.lahey.com/float.htm]{The Perils of Floating
Point} for a more complete account of other common surprises.
As that says near the end, ``there are no easy answers.'' Still,
don't be unduly wary of floating-point! The errors in Python float
operations are inherited from the floating-point hardware, and on most
machines are on the order of no more than 1 part in 2**53 per
operation. That's more than adequate for most tasks, but you do need
to keep in mind that it's not decimal arithmetic, and that every float
operation can suffer a new rounding error.
While pathological cases do exist, for most casual use of
floating-point arithmetic you'll see the result you expect in the end
if you simply round the display of your final results to the number of
decimal digits you expect. \function{str()} usually suffices, and for
finer control see the discussion of Python's \code{\%} format
operator: the \code{\%g}, \code{\%f} and \code{\%e} format codes
supply flexible and easy ways to round float results for display.
\section{Representation Error
\label{fp-error}}
This section explains the ``0.1'' example in detail, and shows how
you can perform an exact analysis of cases like this yourself. Basic
familiarity with binary floating-point representation is assumed.
\dfn{Representation error} refers to fact that some (most, actually)
decimal fractions cannot be represented exactly as binary (base 2)
fractions. This is the chief reason why Python (or Perl, C, \Cpp,
Java, Fortran, and many others) often won't display the exact decimal
number you expect:
\begin{verbatim}
>>> 0.1
0.10000000000000001
\end{verbatim}
Why is that? 1/10 is not exactly representable as a binary fraction.
Almost all machines today (November 2000) use IEEE-754 floating point
arithmetic, and almost all platforms map Python floats to IEEE-754
"double precision". 754 doubles contain 53 bits of precision, so on
input the computer strives to convert 0.1 to the closest fraction it can
of the form \var{J}/2**\var{N} where \var{J} is an integer containing
exactly 53 bits. Rewriting
\begin{verbatim}
1 / 10 ~= J / (2**N)
\end{verbatim}
as
\begin{verbatim}
J ~= 2**N / 10
\end{verbatim}
and recalling that \var{J} has exactly 53 bits (is \code{>= 2**52} but
\code{< 2**53}), the best value for \var{N} is 56:
\begin{verbatim}
>>> 2**52
4503599627370496L
>>> 2**53
9007199254740992L
>>> 2**56/10
7205759403792793L
\end{verbatim}
That is, 56 is the only value for \var{N} that leaves \var{J} with
exactly 53 bits. The best possible value for \var{J} is then that
quotient rounded:
\begin{verbatim}
>>> q, r = divmod(2**56, 10)
>>> r
6L
\end{verbatim}
Since the remainder is more than half of 10, the best approximation is
obtained by rounding up:
\begin{verbatim}
>>> q+1
7205759403792794L
\end{verbatim}
Therefore the best possible approximation to 1/10 in 754 double
precision is that over 2**56, or
\begin{verbatim}
7205759403792794 / 72057594037927936
\end{verbatim}
Note that since we rounded up, this is actually a little bit larger than
1/10; if we had not rounded up, the quotient would have been a little
bit smaller than 1/10. But in no case can it be \emph{exactly} 1/10!
So the computer never ``sees'' 1/10: what it sees is the exact
fraction given above, the best 754 double approximation it can get:
\begin{verbatim}
>>> .1 * 2**56
7205759403792794.0
\end{verbatim}
If we multiply that fraction by 10**30, we can see the (truncated)
value of its 30 most significant decimal digits:
\begin{verbatim}
>>> 7205759403792794 * 10**30 / 2**56
100000000000000005551115123125L
\end{verbatim}
meaning that the exact number stored in the computer is approximately
equal to the decimal value 0.100000000000000005551115123125. Rounding
that to 17 significant digits gives the 0.10000000000000001 that Python
displays (well, will display on any 754-conforming platform that does
best-possible input and output conversions in its C library --- yours may
not!).
\chapter{History and License}
\input{license}
\input{glossary}
\input{tut.ind}
\end{document}
|