1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380
|
\documentclass{howto}
\usepackage{distutils}
% $Id: whatsnew23.tex 38161 2005-01-01 00:34:56Z rhettinger $
\title{What's New in Python 2.3}
\release{1.01}
\author{A.M.\ Kuchling}
\authoraddress{
\strong{Python Software Foundation}\\
Email: \email{amk@amk.ca}
}
\begin{document}
\maketitle
\tableofcontents
This article explains the new features in Python 2.3. Python 2.3 was
released on July 29, 2003.
The main themes for Python 2.3 are polishing some of the features
added in 2.2, adding various small but useful enhancements to the core
language, and expanding the standard library. The new object model
introduced in the previous version has benefited from 18 months of
bugfixes and from optimization efforts that have improved the
performance of new-style classes. A few new built-in functions have
been added such as \function{sum()} and \function{enumerate()}. The
\keyword{in} operator can now be used for substring searches (e.g.
\code{"ab" in "abc"} returns \constant{True}).
Some of the many new library features include Boolean, set, heap, and
date/time data types, the ability to import modules from ZIP-format
archives, metadata support for the long-awaited Python catalog, an
updated version of IDLE, and modules for logging messages, wrapping
text, parsing CSV files, processing command-line options, using BerkeleyDB
databases... the list of new and enhanced modules is lengthy.
This article doesn't attempt to provide a complete specification of
the new features, but instead provides a convenient overview. For
full details, you should refer to the documentation for Python 2.3,
such as the \citetitle[../lib/lib.html]{Python Library Reference} and
the \citetitle[../ref/ref.html]{Python Reference Manual}. If you want
to understand the complete implementation and design rationale,
refer to the PEP for a particular new feature.
%======================================================================
\section{PEP 218: A Standard Set Datatype}
The new \module{sets} module contains an implementation of a set
datatype. The \class{Set} class is for mutable sets, sets that can
have members added and removed. The \class{ImmutableSet} class is for
sets that can't be modified, and instances of \class{ImmutableSet} can
therefore be used as dictionary keys. Sets are built on top of
dictionaries, so the elements within a set must be hashable.
Here's a simple example:
\begin{verbatim}
>>> import sets
>>> S = sets.Set([1,2,3])
>>> S
Set([1, 2, 3])
>>> 1 in S
True
>>> 0 in S
False
>>> S.add(5)
>>> S.remove(3)
>>> S
Set([1, 2, 5])
>>>
\end{verbatim}
The union and intersection of sets can be computed with the
\method{union()} and \method{intersection()} methods; an alternative
notation uses the bitwise operators \code{\&} and \code{|}.
Mutable sets also have in-place versions of these methods,
\method{union_update()} and \method{intersection_update()}.
\begin{verbatim}
>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([4,5,6])
>>> S1.union(S2)
Set([1, 2, 3, 4, 5, 6])
>>> S1 | S2 # Alternative notation
Set([1, 2, 3, 4, 5, 6])
>>> S1.intersection(S2)
Set([])
>>> S1 & S2 # Alternative notation
Set([])
>>> S1.union_update(S2)
>>> S1
Set([1, 2, 3, 4, 5, 6])
>>>
\end{verbatim}
It's also possible to take the symmetric difference of two sets. This
is the set of all elements in the union that aren't in the
intersection. Another way of putting it is that the symmetric
difference contains all elements that are in exactly one
set. Again, there's an alternative notation (\code{\^}), and an
in-place version with the ungainly name
\method{symmetric_difference_update()}.
\begin{verbatim}
>>> S1 = sets.Set([1,2,3,4])
>>> S2 = sets.Set([3,4,5,6])
>>> S1.symmetric_difference(S2)
Set([1, 2, 5, 6])
>>> S1 ^ S2
Set([1, 2, 5, 6])
>>>
\end{verbatim}
There are also \method{issubset()} and \method{issuperset()} methods
for checking whether one set is a subset or superset of another:
\begin{verbatim}
>>> S1 = sets.Set([1,2,3])
>>> S2 = sets.Set([2,3])
>>> S2.issubset(S1)
True
>>> S1.issubset(S2)
False
>>> S1.issuperset(S2)
True
>>>
\end{verbatim}
\begin{seealso}
\seepep{218}{Adding a Built-In Set Object Type}{PEP written by Greg V. Wilson.
Implemented by Greg V. Wilson, Alex Martelli, and GvR.}
\end{seealso}
%======================================================================
\section{PEP 255: Simple Generators\label{section-generators}}
In Python 2.2, generators were added as an optional feature, to be
enabled by a \code{from __future__ import generators} directive. In
2.3 generators no longer need to be specially enabled, and are now
always present; this means that \keyword{yield} is now always a
keyword. The rest of this section is a copy of the description of
generators from the ``What's New in Python 2.2'' document; if you read
it back when Python 2.2 came out, you can skip the rest of this section.
You're doubtless familiar with how function calls work in Python or C.
When you call a function, it gets a private namespace where its local
variables are created. When the function reaches a \keyword{return}
statement, the local variables are destroyed and the resulting value
is returned to the caller. A later call to the same function will get
a fresh new set of local variables. But, what if the local variables
weren't thrown away on exiting a function? What if you could later
resume the function where it left off? This is what generators
provide; they can be thought of as resumable functions.
Here's the simplest example of a generator function:
\begin{verbatim}
def generate_ints(N):
for i in range(N):
yield i
\end{verbatim}
A new keyword, \keyword{yield}, was introduced for generators. Any
function containing a \keyword{yield} statement is a generator
function; this is detected by Python's bytecode compiler which
compiles the function specially as a result.
When you call a generator function, it doesn't return a single value;
instead it returns a generator object that supports the iterator
protocol. On executing the \keyword{yield} statement, the generator
outputs the value of \code{i}, similar to a \keyword{return}
statement. The big difference between \keyword{yield} and a
\keyword{return} statement is that on reaching a \keyword{yield} the
generator's state of execution is suspended and local variables are
preserved. On the next call to the generator's \code{.next()} method,
the function will resume executing immediately after the
\keyword{yield} statement. (For complicated reasons, the
\keyword{yield} statement isn't allowed inside the \keyword{try} block
of a \keyword{try}...\keyword{finally} statement; read \pep{255} for a full
explanation of the interaction between \keyword{yield} and
exceptions.)
Here's a sample usage of the \function{generate_ints()} generator:
\begin{verbatim}
>>> gen = generate_ints(3)
>>> gen
<generator object at 0x8117f90>
>>> gen.next()
0
>>> gen.next()
1
>>> gen.next()
2
>>> gen.next()
Traceback (most recent call last):
File "stdin", line 1, in ?
File "stdin", line 2, in generate_ints
StopIteration
\end{verbatim}
You could equally write \code{for i in generate_ints(5)}, or
\code{a,b,c = generate_ints(3)}.
Inside a generator function, the \keyword{return} statement can only
be used without a value, and signals the end of the procession of
values; afterwards the generator cannot return any further values.
\keyword{return} with a value, such as \code{return 5}, is a syntax
error inside a generator function. The end of the generator's results
can also be indicated by raising \exception{StopIteration} manually,
or by just letting the flow of execution fall off the bottom of the
function.
You could achieve the effect of generators manually by writing your
own class and storing all the local variables of the generator as
instance variables. For example, returning a list of integers could
be done by setting \code{self.count} to 0, and having the
\method{next()} method increment \code{self.count} and return it.
However, for a moderately complicated generator, writing a
corresponding class would be much messier.
\file{Lib/test/test_generators.py} contains a number of more
interesting examples. The simplest one implements an in-order
traversal of a tree using generators recursively.
\begin{verbatim}
# A recursive generator that generates Tree leaves in in-order.
def inorder(t):
if t:
for x in inorder(t.left):
yield x
yield t.label
for x in inorder(t.right):
yield x
\end{verbatim}
Two other examples in \file{Lib/test/test_generators.py} produce
solutions for the N-Queens problem (placing $N$ queens on an $NxN$
chess board so that no queen threatens another) and the Knight's Tour
(a route that takes a knight to every square of an $NxN$ chessboard
without visiting any square twice).
The idea of generators comes from other programming languages,
especially Icon (\url{http://www.cs.arizona.edu/icon/}), where the
idea of generators is central. In Icon, every
expression and function call behaves like a generator. One example
from ``An Overview of the Icon Programming Language'' at
\url{http://www.cs.arizona.edu/icon/docs/ipd266.htm} gives an idea of
what this looks like:
\begin{verbatim}
sentence := "Store it in the neighboring harbor"
if (i := find("or", sentence)) > 5 then write(i)
\end{verbatim}
In Icon the \function{find()} function returns the indexes at which the
substring ``or'' is found: 3, 23, 33. In the \keyword{if} statement,
\code{i} is first assigned a value of 3, but 3 is less than 5, so the
comparison fails, and Icon retries it with the second value of 23. 23
is greater than 5, so the comparison now succeeds, and the code prints
the value 23 to the screen.
Python doesn't go nearly as far as Icon in adopting generators as a
central concept. Generators are considered part of the core
Python language, but learning or using them isn't compulsory; if they
don't solve any problems that you have, feel free to ignore them.
One novel feature of Python's interface as compared to
Icon's is that a generator's state is represented as a concrete object
(the iterator) that can be passed around to other functions or stored
in a data structure.
\begin{seealso}
\seepep{255}{Simple Generators}{Written by Neil Schemenauer, Tim
Peters, Magnus Lie Hetland. Implemented mostly by Neil Schemenauer
and Tim Peters, with other fixes from the Python Labs crew.}
\end{seealso}
%======================================================================
\section{PEP 263: Source Code Encodings \label{section-encodings}}
Python source files can now be declared as being in different
character set encodings. Encodings are declared by including a
specially formatted comment in the first or second line of the source
file. For example, a UTF-8 file can be declared with:
\begin{verbatim}
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
\end{verbatim}
Without such an encoding declaration, the default encoding used is
7-bit ASCII. Executing or importing modules that contain string
literals with 8-bit characters and have no encoding declaration will result
in a \exception{DeprecationWarning} being signalled by Python 2.3; in
2.4 this will be a syntax error.
The encoding declaration only affects Unicode string literals, which
will be converted to Unicode using the specified encoding. Note that
Python identifiers are still restricted to ASCII characters, so you
can't have variable names that use characters outside of the usual
alphanumerics.
\begin{seealso}
\seepep{263}{Defining Python Source Code Encodings}{Written by
Marc-Andr\'e Lemburg and Martin von~L\"owis; implemented by Suzuki
Hisao and Martin von~L\"owis.}
\end{seealso}
%======================================================================
\section{PEP 273: Importing Modules from Zip Archives}
The new \module{zipimport} module adds support for importing
modules from a ZIP-format archive. You don't need to import the
module explicitly; it will be automatically imported if a ZIP
archive's filename is added to \code{sys.path}. For example:
\begin{verbatim}
amk@nyman:~/src/python$ unzip -l /tmp/example.zip
Archive: /tmp/example.zip
Length Date Time Name
-------- ---- ---- ----
8467 11-26-02 22:30 jwzthreading.py
-------- -------
8467 1 file
amk@nyman:~/src/python$ ./python
Python 2.3 (#1, Aug 1 2003, 19:54:32)
>>> import sys
>>> sys.path.insert(0, '/tmp/example.zip') # Add .zip file to front of path
>>> import jwzthreading
>>> jwzthreading.__file__
'/tmp/example.zip/jwzthreading.py'
>>>
\end{verbatim}
An entry in \code{sys.path} can now be the filename of a ZIP archive.
The ZIP archive can contain any kind of files, but only files named
\file{*.py}, \file{*.pyc}, or \file{*.pyo} can be imported. If an
archive only contains \file{*.py} files, Python will not attempt to
modify the archive by adding the corresponding \file{*.pyc} file, meaning
that if a ZIP archive doesn't contain \file{*.pyc} files, importing may be
rather slow.
A path within the archive can also be specified to only import from a
subdirectory; for example, the path \file{/tmp/example.zip/lib/}
would only import from the \file{lib/} subdirectory within the
archive.
\begin{seealso}
\seepep{273}{Import Modules from Zip Archives}{Written by James C. Ahlstrom,
who also provided an implementation.
Python 2.3 follows the specification in \pep{273},
but uses an implementation written by Just van~Rossum
that uses the import hooks described in \pep{302}.
See section~\ref{section-pep302} for a description of the new import hooks.
}
\end{seealso}
%======================================================================
\section{PEP 277: Unicode file name support for Windows NT}
On Windows NT, 2000, and XP, the system stores file names as Unicode
strings. Traditionally, Python has represented file names as byte
strings, which is inadequate because it renders some file names
inaccessible.
Python now allows using arbitrary Unicode strings (within the
limitations of the file system) for all functions that expect file
names, most notably the \function{open()} built-in function. If a Unicode
string is passed to \function{os.listdir()}, Python now returns a list
of Unicode strings. A new function, \function{os.getcwdu()}, returns
the current directory as a Unicode string.
Byte strings still work as file names, and on Windows Python will
transparently convert them to Unicode using the \code{mbcs} encoding.
Other systems also allow Unicode strings as file names but convert
them to byte strings before passing them to the system, which can
cause a \exception{UnicodeError} to be raised. Applications can test
whether arbitrary Unicode strings are supported as file names by
checking \member{os.path.supports_unicode_filenames}, a Boolean value.
Under MacOS, \function{os.listdir()} may now return Unicode filenames.
\begin{seealso}
\seepep{277}{Unicode file name support for Windows NT}{Written by Neil
Hodgson; implemented by Neil Hodgson, Martin von~L\"owis, and Mark
Hammond.}
\end{seealso}
%======================================================================
\section{PEP 278: Universal Newline Support}
The three major operating systems used today are Microsoft Windows,
Apple's Macintosh OS, and the various \UNIX\ derivatives. A minor
irritation of cross-platform work
is that these three platforms all use different characters
to mark the ends of lines in text files. \UNIX\ uses the linefeed
(ASCII character 10), MacOS uses the carriage return (ASCII
character 13), and Windows uses a two-character sequence of a
carriage return plus a newline.
Python's file objects can now support end of line conventions other
than the one followed by the platform on which Python is running.
Opening a file with the mode \code{'U'} or \code{'rU'} will open a file
for reading in universal newline mode. All three line ending
conventions will be translated to a \character{\e n} in the strings
returned by the various file methods such as \method{read()} and
\method{readline()}.
Universal newline support is also used when importing modules and when
executing a file with the \function{execfile()} function. This means
that Python modules can be shared between all three operating systems
without needing to convert the line-endings.
This feature can be disabled when compiling Python by specifying
the \longprogramopt{without-universal-newlines} switch when running Python's
\program{configure} script.
\begin{seealso}
\seepep{278}{Universal Newline Support}{Written
and implemented by Jack Jansen.}
\end{seealso}
%======================================================================
\section{PEP 279: enumerate()\label{section-enumerate}}
A new built-in function, \function{enumerate()}, will make
certain loops a bit clearer. \code{enumerate(thing)}, where
\var{thing} is either an iterator or a sequence, returns a iterator
that will return \code{(0, \var{thing}[0])}, \code{(1,
\var{thing}[1])}, \code{(2, \var{thing}[2])}, and so forth.
A common idiom to change every element of a list looks like this:
\begin{verbatim}
for i in range(len(L)):
item = L[i]
# ... compute some result based on item ...
L[i] = result
\end{verbatim}
This can be rewritten using \function{enumerate()} as:
\begin{verbatim}
for i, item in enumerate(L):
# ... compute some result based on item ...
L[i] = result
\end{verbatim}
\begin{seealso}
\seepep{279}{The enumerate() built-in function}{Written
and implemented by Raymond D. Hettinger.}
\end{seealso}
%======================================================================
\section{PEP 282: The logging Package}
A standard package for writing logs, \module{logging}, has been added
to Python 2.3. It provides a powerful and flexible mechanism for
generating logging output which can then be filtered and processed in
various ways. A configuration file written in a standard format can
be used to control the logging behavior of a program. Python
includes handlers that will write log records to
standard error or to a file or socket, send them to the system log, or
even e-mail them to a particular address; of course, it's also
possible to write your own handler classes.
The \class{Logger} class is the primary class.
Most application code will deal with one or more \class{Logger}
objects, each one used by a particular subsystem of the application.
Each \class{Logger} is identified by a name, and names are organized
into a hierarchy using \samp{.} as the component separator. For
example, you might have \class{Logger} instances named \samp{server},
\samp{server.auth} and \samp{server.network}. The latter two
instances are below \samp{server} in the hierarchy. This means that
if you turn up the verbosity for \samp{server} or direct \samp{server}
messages to a different handler, the changes will also apply to
records logged to \samp{server.auth} and \samp{server.network}.
There's also a root \class{Logger} that's the parent of all other
loggers.
For simple uses, the \module{logging} package contains some
convenience functions that always use the root log:
\begin{verbatim}
import logging
logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf')
logging.error('Error occurred')
logging.critical('Critical error -- shutting down')
\end{verbatim}
This produces the following output:
\begin{verbatim}
WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down
\end{verbatim}
In the default configuration, informational and debugging messages are
suppressed and the output is sent to standard error. You can enable
the display of informational and debugging messages by calling the
\method{setLevel()} method on the root logger.
Notice the \function{warning()} call's use of string formatting
operators; all of the functions for logging messages take the
arguments \code{(\var{msg}, \var{arg1}, \var{arg2}, ...)} and log the
string resulting from \code{\var{msg} \% (\var{arg1}, \var{arg2},
...)}.
There's also an \function{exception()} function that records the most
recent traceback. Any of the other functions will also record the
traceback if you specify a true value for the keyword argument
\var{exc_info}.
\begin{verbatim}
def f():
try: 1/0
except: logging.exception('Problem recorded')
f()
\end{verbatim}
This produces the following output:
\begin{verbatim}
ERROR:root:Problem recorded
Traceback (most recent call last):
File "t.py", line 6, in f
1/0
ZeroDivisionError: integer division or modulo by zero
\end{verbatim}
Slightly more advanced programs will use a logger other than the root
logger. The \function{getLogger(\var{name})} function is used to get
a particular log, creating it if it doesn't exist yet.
\function{getLogger(None)} returns the root logger.
\begin{verbatim}
log = logging.getLogger('server')
...
log.info('Listening on port %i', port)
...
log.critical('Disk full')
...
\end{verbatim}
Log records are usually propagated up the hierarchy, so a message
logged to \samp{server.auth} is also seen by \samp{server} and
\samp{root}, but a \class{Logger} can prevent this by setting its
\member{propagate} attribute to \constant{False}.
There are more classes provided by the \module{logging} package that
can be customized. When a \class{Logger} instance is told to log a
message, it creates a \class{LogRecord} instance that is sent to any
number of different \class{Handler} instances. Loggers and handlers
can also have an attached list of filters, and each filter can cause
the \class{LogRecord} to be ignored or can modify the record before
passing it along. When they're finally output, \class{LogRecord}
instances are converted to text by a \class{Formatter} class. All of
these classes can be replaced by your own specially-written classes.
With all of these features the \module{logging} package should provide
enough flexibility for even the most complicated applications. This
is only an incomplete overview of its features, so please see the
\ulink{package's reference documentation}{../lib/module-logging.html}
for all of the details. Reading \pep{282} will also be helpful.
\begin{seealso}
\seepep{282}{A Logging System}{Written by Vinay Sajip and Trent Mick;
implemented by Vinay Sajip.}
\end{seealso}
%======================================================================
\section{PEP 285: A Boolean Type\label{section-bool}}
A Boolean type was added to Python 2.3. Two new constants were added
to the \module{__builtin__} module, \constant{True} and
\constant{False}. (\constant{True} and
\constant{False} constants were added to the built-ins
in Python 2.2.1, but the 2.2.1 versions are simply set to integer values of
1 and 0 and aren't a different type.)
The type object for this new type is named
\class{bool}; the constructor for it takes any Python value and
converts it to \constant{True} or \constant{False}.
\begin{verbatim}
>>> bool(1)
True
>>> bool(0)
False
>>> bool([])
False
>>> bool( (1,) )
True
\end{verbatim}
Most of the standard library modules and built-in functions have been
changed to return Booleans.
\begin{verbatim}
>>> obj = []
>>> hasattr(obj, 'append')
True
>>> isinstance(obj, list)
True
>>> isinstance(obj, tuple)
False
\end{verbatim}
Python's Booleans were added with the primary goal of making code
clearer. For example, if you're reading a function and encounter the
statement \code{return 1}, you might wonder whether the \code{1}
represents a Boolean truth value, an index, or a
coefficient that multiplies some other quantity. If the statement is
\code{return True}, however, the meaning of the return value is quite
clear.
Python's Booleans were \emph{not} added for the sake of strict
type-checking. A very strict language such as Pascal would also
prevent you performing arithmetic with Booleans, and would require
that the expression in an \keyword{if} statement always evaluate to a
Boolean result. Python is not this strict and never will be, as
\pep{285} explicitly says. This means you can still use any
expression in an \keyword{if} statement, even ones that evaluate to a
list or tuple or some random object. The Boolean type is a
subclass of the \class{int} class so that arithmetic using a Boolean
still works.
\begin{verbatim}
>>> True + 1
2
>>> False + 1
1
>>> False * 75
0
>>> True * 75
75
\end{verbatim}
To sum up \constant{True} and \constant{False} in a sentence: they're
alternative ways to spell the integer values 1 and 0, with the single
difference that \function{str()} and \function{repr()} return the
strings \code{'True'} and \code{'False'} instead of \code{'1'} and
\code{'0'}.
\begin{seealso}
\seepep{285}{Adding a bool type}{Written and implemented by GvR.}
\end{seealso}
%======================================================================
\section{PEP 293: Codec Error Handling Callbacks}
When encoding a Unicode string into a byte string, unencodable
characters may be encountered. So far, Python has allowed specifying
the error processing as either ``strict'' (raising
\exception{UnicodeError}), ``ignore'' (skipping the character), or
``replace'' (using a question mark in the output string), with
``strict'' being the default behavior. It may be desirable to specify
alternative processing of such errors, such as inserting an XML
character reference or HTML entity reference into the converted
string.
Python now has a flexible framework to add different processing
strategies. New error handlers can be added with
\function{codecs.register_error}, and codecs then can access the error
handler with \function{codecs.lookup_error}. An equivalent C API has
been added for codecs written in C. The error handler gets the
necessary state information such as the string being converted, the
position in the string where the error was detected, and the target
encoding. The handler can then either raise an exception or return a
replacement string.
Two additional error handlers have been implemented using this
framework: ``backslashreplace'' uses Python backslash quoting to
represent unencodable characters and ``xmlcharrefreplace'' emits
XML character references.
\begin{seealso}
\seepep{293}{Codec Error Handling Callbacks}{Written and implemented by
Walter D\"orwald.}
\end{seealso}
%======================================================================
\section{PEP 301: Package Index and Metadata for
Distutils\label{section-pep301}}
Support for the long-requested Python catalog makes its first
appearance in 2.3.
The heart of the catalog is the new Distutils \command{register} command.
Running \code{python setup.py register} will collect the metadata
describing a package, such as its name, version, maintainer,
description, \&c., and send it to a central catalog server. The
resulting catalog is available from \url{http://www.python.org/pypi}.
To make the catalog a bit more useful, a new optional
\var{classifiers} keyword argument has been added to the Distutils
\function{setup()} function. A list of
\ulink{Trove}{http://catb.org/\textasciitilde esr/trove/}-style
strings can be supplied to help classify the software.
Here's an example \file{setup.py} with classifiers, written to be compatible
with older versions of the Distutils:
\begin{verbatim}
from distutils import core
kw = {'name': "Quixote",
'version': "0.5.1",
'description': "A highly Pythonic Web application framework",
# ...
}
if (hasattr(core, 'setup_keywords') and
'classifiers' in core.setup_keywords):
kw['classifiers'] = \
['Topic :: Internet :: WWW/HTTP :: Dynamic Content',
'Environment :: No Input/Output (Daemon)',
'Intended Audience :: Developers'],
core.setup(**kw)
\end{verbatim}
The full list of classifiers can be obtained by running
\verb|python setup.py register --list-classifiers|.
\begin{seealso}
\seepep{301}{Package Index and Metadata for Distutils}{Written and
implemented by Richard Jones.}
\end{seealso}
%======================================================================
\section{PEP 302: New Import Hooks \label{section-pep302}}
While it's been possible to write custom import hooks ever since the
\module{ihooks} module was introduced in Python 1.3, no one has ever
been really happy with it because writing new import hooks is
difficult and messy. There have been various proposed alternatives
such as the \module{imputil} and \module{iu} modules, but none of them
has ever gained much acceptance, and none of them were easily usable
from \C{} code.
\pep{302} borrows ideas from its predecessors, especially from
Gordon McMillan's \module{iu} module. Three new items
are added to the \module{sys} module:
\begin{itemize}
\item \code{sys.path_hooks} is a list of callable objects; most
often they'll be classes. Each callable takes a string containing a
path and either returns an importer object that will handle imports
from this path or raises an \exception{ImportError} exception if it
can't handle this path.
\item \code{sys.path_importer_cache} caches importer objects for
each path, so \code{sys.path_hooks} will only need to be traversed
once for each path.
\item \code{sys.meta_path} is a list of importer objects that will
be traversed before \code{sys.path} is checked. This list is
initially empty, but user code can add objects to it. Additional
built-in and frozen modules can be imported by an object added to
this list.
\end{itemize}
Importer objects must have a single method,
\method{find_module(\var{fullname}, \var{path}=None)}. \var{fullname}
will be a module or package name, e.g. \samp{string} or
\samp{distutils.core}. \method{find_module()} must return a loader object
that has a single method, \method{load_module(\var{fullname})}, that
creates and returns the corresponding module object.
Pseudo-code for Python's new import logic, therefore, looks something
like this (simplified a bit; see \pep{302} for the full details):
\begin{verbatim}
for mp in sys.meta_path:
loader = mp(fullname)
if loader is not None:
<module> = loader.load_module(fullname)
for path in sys.path:
for hook in sys.path_hooks:
try:
importer = hook(path)
except ImportError:
# ImportError, so try the other path hooks
pass
else:
loader = importer.find_module(fullname)
<module> = loader.load_module(fullname)
# Not found!
raise ImportError
\end{verbatim}
\begin{seealso}
\seepep{302}{New Import Hooks}{Written by Just van~Rossum and Paul Moore.
Implemented by Just van~Rossum.
}
\end{seealso}
%======================================================================
\section{PEP 305: Comma-separated Files \label{section-pep305}}
Comma-separated files are a format frequently used for exporting data
from databases and spreadsheets. Python 2.3 adds a parser for
comma-separated files.
Comma-separated format is deceptively simple at first glance:
\begin{verbatim}
Costs,150,200,3.95
\end{verbatim}
Read a line and call \code{line.split(',')}: what could be simpler?
But toss in string data that can contain commas, and things get more
complicated:
\begin{verbatim}
"Costs",150,200,3.95,"Includes taxes, shipping, and sundry items"
\end{verbatim}
A big ugly regular expression can parse this, but using the new
\module{csv} package is much simpler:
\begin{verbatim}
import csv
input = open('datafile', 'rb')
reader = csv.reader(input)
for line in reader:
print line
\end{verbatim}
The \function{reader} function takes a number of different options.
The field separator isn't limited to the comma and can be changed to
any character, and so can the quoting and line-ending characters.
Different dialects of comma-separated files can be defined and
registered; currently there are two dialects, both used by Microsoft Excel.
A separate \class{csv.writer} class will generate comma-separated files
from a succession of tuples or lists, quoting strings that contain the
delimiter.
\begin{seealso}
\seepep{305}{CSV File API}{Written and implemented
by Kevin Altis, Dave Cole, Andrew McNamara, Skip Montanaro, Cliff Wells.
}
\end{seealso}
%======================================================================
\section{PEP 307: Pickle Enhancements \label{section-pep305}}
The \module{pickle} and \module{cPickle} modules received some
attention during the 2.3 development cycle. In 2.2, new-style classes
could be pickled without difficulty, but they weren't pickled very
compactly; \pep{307} quotes a trivial example where a new-style class
results in a pickled string three times longer than that for a classic
class.
The solution was to invent a new pickle protocol. The
\function{pickle.dumps()} function has supported a text-or-binary flag
for a long time. In 2.3, this flag is redefined from a Boolean to an
integer: 0 is the old text-mode pickle format, 1 is the old binary
format, and now 2 is a new 2.3-specific format. A new constant,
\constant{pickle.HIGHEST_PROTOCOL}, can be used to select the fanciest
protocol available.
Unpickling is no longer considered a safe operation. 2.2's
\module{pickle} provided hooks for trying to prevent unsafe classes
from being unpickled (specifically, a
\member{__safe_for_unpickling__} attribute), but none of this code
was ever audited and therefore it's all been ripped out in 2.3. You
should not unpickle untrusted data in any version of Python.
To reduce the pickling overhead for new-style classes, a new interface
for customizing pickling was added using three special methods:
\method{__getstate__}, \method{__setstate__}, and
\method{__getnewargs__}. Consult \pep{307} for the full semantics
of these methods.
As a way to compress pickles yet further, it's now possible to use
integer codes instead of long strings to identify pickled classes.
The Python Software Foundation will maintain a list of standardized
codes; there's also a range of codes for private use. Currently no
codes have been specified.
\begin{seealso}
\seepep{307}{Extensions to the pickle protocol}{Written and implemented
by Guido van Rossum and Tim Peters.}
\end{seealso}
%======================================================================
\section{Extended Slices\label{section-slices}}
Ever since Python 1.4, the slicing syntax has supported an optional
third ``step'' or ``stride'' argument. For example, these are all
legal Python syntax: \code{L[1:10:2]}, \code{L[:-1:1]},
\code{L[::-1]}. This was added to Python at the request of
the developers of Numerical Python, which uses the third argument
extensively. However, Python's built-in list, tuple, and string
sequence types have never supported this feature, raising a
\exception{TypeError} if you tried it. Michael Hudson contributed a
patch to fix this shortcoming.
For example, you can now easily extract the elements of a list that
have even indexes:
\begin{verbatim}
>>> L = range(10)
>>> L[::2]
[0, 2, 4, 6, 8]
\end{verbatim}
Negative values also work to make a copy of the same list in reverse
order:
\begin{verbatim}
>>> L[::-1]
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
\end{verbatim}
This also works for tuples, arrays, and strings:
\begin{verbatim}
>>> s='abcd'
>>> s[::2]
'ac'
>>> s[::-1]
'dcba'
\end{verbatim}
If you have a mutable sequence such as a list or an array you can
assign to or delete an extended slice, but there are some differences
between assignment to extended and regular slices. Assignment to a
regular slice can be used to change the length of the sequence:
\begin{verbatim}
>>> a = range(3)
>>> a
[0, 1, 2]
>>> a[1:3] = [4, 5, 6]
>>> a
[0, 4, 5, 6]
\end{verbatim}
Extended slices aren't this flexible. When assigning to an extended
slice, the list on the right hand side of the statement must contain
the same number of items as the slice it is replacing:
\begin{verbatim}
>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> a[::2] = [0, -1]
>>> a
[0, 1, -1, 3]
>>> a[::2] = [0,1,2]
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: attempt to assign sequence of size 3 to extended slice of size 2
\end{verbatim}
Deletion is more straightforward:
\begin{verbatim}
>>> a = range(4)
>>> a
[0, 1, 2, 3]
>>> a[::2]
[0, 2]
>>> del a[::2]
>>> a
[1, 3]
\end{verbatim}
One can also now pass slice objects to the
\method{__getitem__} methods of the built-in sequences:
\begin{verbatim}
>>> range(10).__getitem__(slice(0, 5, 2))
[0, 2, 4]
\end{verbatim}
Or use slice objects directly in subscripts:
\begin{verbatim}
>>> range(10)[slice(0, 5, 2)]
[0, 2, 4]
\end{verbatim}
To simplify implementing sequences that support extended slicing,
slice objects now have a method \method{indices(\var{length})} which,
given the length of a sequence, returns a \code{(\var{start},
\var{stop}, \var{step})} tuple that can be passed directly to
\function{range()}.
\method{indices()} handles omitted and out-of-bounds indices in a
manner consistent with regular slices (and this innocuous phrase hides
a welter of confusing details!). The method is intended to be used
like this:
\begin{verbatim}
class FakeSeq:
...
def calc_item(self, i):
...
def __getitem__(self, item):
if isinstance(item, slice):
indices = item.indices(len(self))
return FakeSeq([self.calc_item(i) for i in range(*indices)])
else:
return self.calc_item(i)
\end{verbatim}
From this example you can also see that the built-in \class{slice}
object is now the type object for the slice type, and is no longer a
function. This is consistent with Python 2.2, where \class{int},
\class{str}, etc., underwent the same change.
%======================================================================
\section{Other Language Changes}
Here are all of the changes that Python 2.3 makes to the core Python
language.
\begin{itemize}
\item The \keyword{yield} statement is now always a keyword, as
described in section~\ref{section-generators} of this document.
\item A new built-in function \function{enumerate()}
was added, as described in section~\ref{section-enumerate} of this
document.
\item Two new constants, \constant{True} and \constant{False} were
added along with the built-in \class{bool} type, as described in
section~\ref{section-bool} of this document.
\item The \function{int()} type constructor will now return a long
integer instead of raising an \exception{OverflowError} when a string
or floating-point number is too large to fit into an integer. This
can lead to the paradoxical result that
\code{isinstance(int(\var{expression}), int)} is false, but that seems
unlikely to cause problems in practice.
\item Built-in types now support the extended slicing syntax,
as described in section~\ref{section-slices} of this document.
\item A new built-in function, \function{sum(\var{iterable}, \var{start}=0)},
adds up the numeric items in the iterable object and returns their sum.
\function{sum()} only accepts numbers, meaning that you can't use it
to concatenate a bunch of strings. (Contributed by Alex
Martelli.)
\item \code{list.insert(\var{pos}, \var{value})} used to
insert \var{value} at the front of the list when \var{pos} was
negative. The behaviour has now been changed to be consistent with
slice indexing, so when \var{pos} is -1 the value will be inserted
before the last element, and so forth.
\item \code{list.index(\var{value})}, which searches for \var{value}
within the list and returns its index, now takes optional
\var{start} and \var{stop} arguments to limit the search to
only part of the list.
\item Dictionaries have a new method, \method{pop(\var{key}\optional{,
\var{default}})}, that returns the value corresponding to \var{key}
and removes that key/value pair from the dictionary. If the requested
key isn't present in the dictionary, \var{default} is returned if it's
specified and \exception{KeyError} raised if it isn't.
\begin{verbatim}
>>> d = {1:2}
>>> d
{1: 2}
>>> d.pop(4)
Traceback (most recent call last):
File "stdin", line 1, in ?
KeyError: 4
>>> d.pop(1)
2
>>> d.pop(1)
Traceback (most recent call last):
File "stdin", line 1, in ?
KeyError: 'pop(): dictionary is empty'
>>> d
{}
>>>
\end{verbatim}
There's also a new class method,
\method{dict.fromkeys(\var{iterable}, \var{value})}, that
creates a dictionary with keys taken from the supplied iterator
\var{iterable} and all values set to \var{value}, defaulting to
\code{None}.
(Patches contributed by Raymond Hettinger.)
Also, the \function{dict()} constructor now accepts keyword arguments to
simplify creating small dictionaries:
\begin{verbatim}
>>> dict(red=1, blue=2, green=3, black=4)
{'blue': 2, 'black': 4, 'green': 3, 'red': 1}
\end{verbatim}
(Contributed by Just van~Rossum.)
\item The \keyword{assert} statement no longer checks the \code{__debug__}
flag, so you can no longer disable assertions by assigning to \code{__debug__}.
Running Python with the \programopt{-O} switch will still generate
code that doesn't execute any assertions.
\item Most type objects are now callable, so you can use them
to create new objects such as functions, classes, and modules. (This
means that the \module{new} module can be deprecated in a future
Python version, because you can now use the type objects available in
the \module{types} module.)
% XXX should new.py use PendingDeprecationWarning?
For example, you can create a new module object with the following code:
\begin{verbatim}
>>> import types
>>> m = types.ModuleType('abc','docstring')
>>> m
<module 'abc' (built-in)>
>>> m.__doc__
'docstring'
\end{verbatim}
\item
A new warning, \exception{PendingDeprecationWarning} was added to
indicate features which are in the process of being
deprecated. The warning will \emph{not} be printed by default. To
check for use of features that will be deprecated in the future,
supply \programopt{-Walways::PendingDeprecationWarning::} on the
command line or use \function{warnings.filterwarnings()}.
\item The process of deprecating string-based exceptions, as
in \code{raise "Error occurred"}, has begun. Raising a string will
now trigger \exception{PendingDeprecationWarning}.
\item Using \code{None} as a variable name will now result in a
\exception{SyntaxWarning} warning. In a future version of Python,
\code{None} may finally become a keyword.
\item The \method{xreadlines()} method of file objects, introduced in
Python 2.1, is no longer necessary because files now behave as their
own iterator. \method{xreadlines()} was originally introduced as a
faster way to loop over all the lines in a file, but now you can
simply write \code{for line in file_obj}. File objects also have a
new read-only \member{encoding} attribute that gives the encoding used
by the file; Unicode strings written to the file will be automatically
converted to bytes using the given encoding.
\item The method resolution order used by new-style classes has
changed, though you'll only notice the difference if you have a really
complicated inheritance hierarchy. Classic classes are unaffected by
this change. Python 2.2 originally used a topological sort of a
class's ancestors, but 2.3 now uses the C3 algorithm as described in
the paper \ulink{``A Monotonic Superclass Linearization for
Dylan''}{http://www.webcom.com/haahr/dylan/linearization-oopsla96.html}.
To understand the motivation for this change,
read Michele Simionato's article
\ulink{``Python 2.3 Method Resolution Order''}
{http://www.python.org/2.3/mro.html}, or
read the thread on python-dev starting with the message at
\url{http://mail.python.org/pipermail/python-dev/2002-October/029035.html}.
Samuele Pedroni first pointed out the problem and also implemented the
fix by coding the C3 algorithm.
\item Python runs multithreaded programs by switching between threads
after executing N bytecodes. The default value for N has been
increased from 10 to 100 bytecodes, speeding up single-threaded
applications by reducing the switching overhead. Some multithreaded
applications may suffer slower response time, but that's easily fixed
by setting the limit back to a lower number using
\function{sys.setcheckinterval(\var{N})}.
The limit can be retrieved with the new
\function{sys.getcheckinterval()} function.
\item One minor but far-reaching change is that the names of extension
types defined by the modules included with Python now contain the
module and a \character{.} in front of the type name. For example, in
Python 2.2, if you created a socket and printed its
\member{__class__}, you'd get this output:
\begin{verbatim}
>>> s = socket.socket()
>>> s.__class__
<type 'socket'>
\end{verbatim}
In 2.3, you get this:
\begin{verbatim}
>>> s.__class__
<type '_socket.socket'>
\end{verbatim}
\item One of the noted incompatibilities between old- and new-style
classes has been removed: you can now assign to the
\member{__name__} and \member{__bases__} attributes of new-style
classes. There are some restrictions on what can be assigned to
\member{__bases__} along the lines of those relating to assigning to
an instance's \member{__class__} attribute.
\end{itemize}
%======================================================================
\subsection{String Changes}
\begin{itemize}
\item The \keyword{in} operator now works differently for strings.
Previously, when evaluating \code{\var{X} in \var{Y}} where \var{X}
and \var{Y} are strings, \var{X} could only be a single character.
That's now changed; \var{X} can be a string of any length, and
\code{\var{X} in \var{Y}} will return \constant{True} if \var{X} is a
substring of \var{Y}. If \var{X} is the empty string, the result is
always \constant{True}.
\begin{verbatim}
>>> 'ab' in 'abcd'
True
>>> 'ad' in 'abcd'
False
>>> '' in 'abcd'
True
\end{verbatim}
Note that this doesn't tell you where the substring starts; if you
need that information, use the \method{find()} string method.
\item The \method{strip()}, \method{lstrip()}, and \method{rstrip()}
string methods now have an optional argument for specifying the
characters to strip. The default is still to remove all whitespace
characters:
\begin{verbatim}
>>> ' abc '.strip()
'abc'
>>> '><><abc<><><>'.strip('<>')
'abc'
>>> '><><abc<><><>\n'.strip('<>')
'abc<><><>\n'
>>> u'\u4000\u4001abc\u4000'.strip(u'\u4000')
u'\u4001abc'
>>>
\end{verbatim}
(Suggested by Simon Brunning and implemented by Walter D\"orwald.)
\item The \method{startswith()} and \method{endswith()}
string methods now accept negative numbers for the \var{start} and \var{end}
parameters.
\item Another new string method is \method{zfill()}, originally a
function in the \module{string} module. \method{zfill()} pads a
numeric string with zeros on the left until it's the specified width.
Note that the \code{\%} operator is still more flexible and powerful
than \method{zfill()}.
\begin{verbatim}
>>> '45'.zfill(4)
'0045'
>>> '12345'.zfill(4)
'12345'
>>> 'goofy'.zfill(6)
'0goofy'
\end{verbatim}
(Contributed by Walter D\"orwald.)
\item A new type object, \class{basestring}, has been added.
Both 8-bit strings and Unicode strings inherit from this type, so
\code{isinstance(obj, basestring)} will return \constant{True} for
either kind of string. It's a completely abstract type, so you
can't create \class{basestring} instances.
\item Interned strings are no longer immortal and will now be
garbage-collected in the usual way when the only reference to them is
from the internal dictionary of interned strings. (Implemented by
Oren Tirosh.)
\end{itemize}
%======================================================================
\subsection{Optimizations}
\begin{itemize}
\item The creation of new-style class instances has been made much
faster; they're now faster than classic classes!
\item The \method{sort()} method of list objects has been extensively
rewritten by Tim Peters, and the implementation is significantly
faster.
\item Multiplication of large long integers is now much faster thanks
to an implementation of Karatsuba multiplication, an algorithm that
scales better than the O(n*n) required for the grade-school
multiplication algorithm. (Original patch by Christopher A. Craig,
and significantly reworked by Tim Peters.)
\item The \code{SET_LINENO} opcode is now gone. This may provide a
small speed increase, depending on your compiler's idiosyncrasies.
See section~\ref{section-other} for a longer explanation.
(Removed by Michael Hudson.)
\item \function{xrange()} objects now have their own iterator, making
\code{for i in xrange(n)} slightly faster than
\code{for i in range(n)}. (Patch by Raymond Hettinger.)
\item A number of small rearrangements have been made in various
hotspots to improve performance, such as inlining a function or removing
some code. (Implemented mostly by GvR, but lots of people have
contributed single changes.)
\end{itemize}
The net result of the 2.3 optimizations is that Python 2.3 runs the
pystone benchmark around 25\% faster than Python 2.2.
%======================================================================
\section{New, Improved, and Deprecated Modules}
As usual, Python's standard library received a number of enhancements and
bug fixes. Here's a partial list of the most notable changes, sorted
alphabetically by module name. Consult the
\file{Misc/NEWS} file in the source tree for a more
complete list of changes, or look through the CVS logs for all the
details.
\begin{itemize}
\item The \module{array} module now supports arrays of Unicode
characters using the \character{u} format character. Arrays also now
support using the \code{+=} assignment operator to add another array's
contents, and the \code{*=} assignment operator to repeat an array.
(Contributed by Jason Orendorff.)
\item The \module{bsddb} module has been replaced by version 4.1.6
of the \ulink{PyBSDDB}{http://pybsddb.sourceforge.net} package,
providing a more complete interface to the transactional features of
the BerkeleyDB library.
The old version of the module has been renamed to
\module{bsddb185} and is no longer built automatically; you'll
have to edit \file{Modules/Setup} to enable it. Note that the new
\module{bsddb} package is intended to be compatible with the
old module, so be sure to file bugs if you discover any
incompatibilities. When upgrading to Python 2.3, if the new interpreter is compiled
with a new version of
the underlying BerkeleyDB library, you will almost certainly have to
convert your database files to the new version. You can do this
fairly easily with the new scripts \file{db2pickle.py} and
\file{pickle2db.py} which you will find in the distribution's
\file{Tools/scripts} directory. If you've already been using the PyBSDDB
package and importing it as \module{bsddb3}, you will have to change your
\code{import} statements to import it as \module{bsddb}.
\item The new \module{bz2} module is an interface to the bz2 data
compression library. bz2-compressed data is usually smaller than
corresponding \module{zlib}-compressed data. (Contributed by Gustavo Niemeyer.)
\item A set of standard date/time types has been added in the new \module{datetime}
module. See the following section for more details.
\item The Distutils \class{Extension} class now supports
an extra constructor argument named \var{depends} for listing
additional source files that an extension depends on. This lets
Distutils recompile the module if any of the dependency files are
modified. For example, if \file{sampmodule.c} includes the header
file \file{sample.h}, you would create the \class{Extension} object like
this:
\begin{verbatim}
ext = Extension("samp",
sources=["sampmodule.c"],
depends=["sample.h"])
\end{verbatim}
Modifying \file{sample.h} would then cause the module to be recompiled.
(Contributed by Jeremy Hylton.)
\item Other minor changes to Distutils:
it now checks for the \envvar{CC}, \envvar{CFLAGS}, \envvar{CPP},
\envvar{LDFLAGS}, and \envvar{CPPFLAGS} environment variables, using
them to override the settings in Python's configuration (contributed
by Robert Weber).
\item Previously the \module{doctest} module would only search the
docstrings of public methods and functions for test cases, but it now
also examines private ones as well. The \function{DocTestSuite(}
function creates a \class{unittest.TestSuite} object from a set of
\module{doctest} tests.
\item The new \function{gc.get_referents(\var{object})} function returns a
list of all the objects referenced by \var{object}.
\item The \module{getopt} module gained a new function,
\function{gnu_getopt()}, that supports the same arguments as the existing
\function{getopt()} function but uses GNU-style scanning mode.
The existing \function{getopt()} stops processing options as soon as a
non-option argument is encountered, but in GNU-style mode processing
continues, meaning that options and arguments can be mixed. For
example:
\begin{verbatim}
>>> getopt.getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename')], ['output', '-v'])
>>> getopt.gnu_getopt(['-f', 'filename', 'output', '-v'], 'f:v')
([('-f', 'filename'), ('-v', '')], ['output'])
\end{verbatim}
(Contributed by Peter \AA{strand}.)
\item The \module{grp}, \module{pwd}, and \module{resource} modules
now return enhanced tuples:
\begin{verbatim}
>>> import grp
>>> g = grp.getgrnam('amk')
>>> g.gr_name, g.gr_gid
('amk', 500)
\end{verbatim}
\item The \module{gzip} module can now handle files exceeding 2~Gb.
\item The new \module{heapq} module contains an implementation of a
heap queue algorithm. A heap is an array-like data structure that
keeps items in a partially sorted order such that, for every index
\var{k}, \code{heap[\var{k}] <= heap[2*\var{k}+1]} and
\code{heap[\var{k}] <= heap[2*\var{k}+2]}. This makes it quick to
remove the smallest item, and inserting a new item while maintaining
the heap property is O(lg~n). (See
\url{http://www.nist.gov/dads/HTML/priorityque.html} for more
information about the priority queue data structure.)
The \module{heapq} module provides \function{heappush()} and
\function{heappop()} functions for adding and removing items while
maintaining the heap property on top of some other mutable Python
sequence type. Here's an example that uses a Python list:
\begin{verbatim}
>>> import heapq
>>> heap = []
>>> for item in [3, 7, 5, 11, 1]:
... heapq.heappush(heap, item)
...
>>> heap
[1, 3, 5, 11, 7]
>>> heapq.heappop(heap)
1
>>> heapq.heappop(heap)
3
>>> heap
[5, 7, 11]
\end{verbatim}
(Contributed by Kevin O'Connor.)
\item The IDLE integrated development environment has been updated
using the code from the IDLEfork project
(\url{http://idlefork.sf.net}). The most notable feature is that the
code being developed is now executed in a subprocess, meaning that
there's no longer any need for manual \code{reload()} operations.
IDLE's core code has been incorporated into the standard library as the
\module{idlelib} package.
\item The \module{imaplib} module now supports IMAP over SSL.
(Contributed by Piers Lauder and Tino Lange.)
\item The \module{itertools} contains a number of useful functions for
use with iterators, inspired by various functions provided by the ML
and Haskell languages. For example,
\code{itertools.ifilter(predicate, iterator)} returns all elements in
the iterator for which the function \function{predicate()} returns
\constant{True}, and \code{itertools.repeat(obj, \var{N})} returns
\code{obj} \var{N} times. There are a number of other functions in
the module; see the \ulink{package's reference
documentation}{../lib/module-itertools.html} for details.
(Contributed by Raymond Hettinger.)
\item Two new functions in the \module{math} module,
\function{degrees(\var{rads})} and \function{radians(\var{degs})},
convert between radians and degrees. Other functions in the
\module{math} module such as \function{math.sin()} and
\function{math.cos()} have always required input values measured in
radians. Also, an optional \var{base} argument was added to
\function{math.log()} to make it easier to compute logarithms for
bases other than \code{e} and \code{10}. (Contributed by Raymond
Hettinger.)
\item Several new POSIX functions (\function{getpgid()}, \function{killpg()},
\function{lchown()}, \function{loadavg()}, \function{major()}, \function{makedev()},
\function{minor()}, and \function{mknod()}) were added to the
\module{posix} module that underlies the \module{os} module.
(Contributed by Gustavo Niemeyer, Geert Jansen, and Denis S. Otkidach.)
\item In the \module{os} module, the \function{*stat()} family of
functions can now report fractions of a second in a timestamp. Such
time stamps are represented as floats, similar to
the value returned by \function{time.time()}.
During testing, it was found that some applications will break if time
stamps are floats. For compatibility, when using the tuple interface
of the \class{stat_result} time stamps will be represented as integers.
When using named fields (a feature first introduced in Python 2.2),
time stamps are still represented as integers, unless
\function{os.stat_float_times()} is invoked to enable float return
values:
\begin{verbatim}
>>> os.stat("/tmp").st_mtime
1034791200
>>> os.stat_float_times(True)
>>> os.stat("/tmp").st_mtime
1034791200.6335014
\end{verbatim}
In Python 2.4, the default will change to always returning floats.
Application developers should enable this feature only if all their
libraries work properly when confronted with floating point time
stamps, or if they use the tuple API. If used, the feature should be
activated on an application level instead of trying to enable it on a
per-use basis.
\item The \module{optparse} module contains a new parser for command-line arguments
that can convert option values to a particular Python type
and will automatically generate a usage message. See the following section for
more details.
\item The old and never-documented \module{linuxaudiodev} module has
been deprecated, and a new version named \module{ossaudiodev} has been
added. The module was renamed because the OSS sound drivers can be
used on platforms other than Linux, and the interface has also been
tidied and brought up to date in various ways. (Contributed by Greg
Ward and Nicholas FitzRoy-Dale.)
\item The new \module{platform} module contains a number of functions
that try to determine various properties of the platform you're
running on. There are functions for getting the architecture, CPU
type, the Windows OS version, and even the Linux distribution version.
(Contributed by Marc-Andr\'e Lemburg.)
\item The parser objects provided by the \module{pyexpat} module
can now optionally buffer character data, resulting in fewer calls to
your character data handler and therefore faster performance. Setting
the parser object's \member{buffer_text} attribute to \constant{True}
will enable buffering.
\item The \function{sample(\var{population}, \var{k})} function was
added to the \module{random} module. \var{population} is a sequence or
\class{xrange} object containing the elements of a population, and
\function{sample()} chooses \var{k} elements from the population without
replacing chosen elements. \var{k} can be any value up to
\code{len(\var{population})}. For example:
\begin{verbatim}
>>> days = ['Mo', 'Tu', 'We', 'Th', 'Fr', 'St', 'Sn']
>>> random.sample(days, 3) # Choose 3 elements
['St', 'Sn', 'Th']
>>> random.sample(days, 7) # Choose 7 elements
['Tu', 'Th', 'Mo', 'We', 'St', 'Fr', 'Sn']
>>> random.sample(days, 7) # Choose 7 again
['We', 'Mo', 'Sn', 'Fr', 'Tu', 'St', 'Th']
>>> random.sample(days, 8) # Can't choose eight
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "random.py", line 414, in sample
raise ValueError, "sample larger than population"
ValueError: sample larger than population
>>> random.sample(xrange(1,10000,2), 10) # Choose ten odd nos. under 10000
[3407, 3805, 1505, 7023, 2401, 2267, 9733, 3151, 8083, 9195]
\end{verbatim}
The \module{random} module now uses a new algorithm, the Mersenne
Twister, implemented in C. It's faster and more extensively studied
than the previous algorithm.
(All changes contributed by Raymond Hettinger.)
\item The \module{readline} module also gained a number of new
functions: \function{get_history_item()},
\function{get_current_history_length()}, and \function{redisplay()}.
\item The \module{rexec} and \module{Bastion} modules have been
declared dead, and attempts to import them will fail with a
\exception{RuntimeError}. New-style classes provide new ways to break
out of the restricted execution environment provided by
\module{rexec}, and no one has interest in fixing them or time to do
so. If you have applications using \module{rexec}, rewrite them to
use something else.
(Sticking with Python 2.2 or 2.1 will not make your applications any
safer because there are known bugs in the \module{rexec} module in
those versions. To repeat: if you're using \module{rexec}, stop using
it immediately.)
\item The \module{rotor} module has been deprecated because the
algorithm it uses for encryption is not believed to be secure. If
you need encryption, use one of the several AES Python modules
that are available separately.
\item The \module{shutil} module gained a \function{move(\var{src},
\var{dest})} function that recursively moves a file or directory to a new
location.
\item Support for more advanced POSIX signal handling was added
to the \module{signal} but then removed again as it proved impossible
to make it work reliably across platforms.
\item The \module{socket} module now supports timeouts. You
can call the \method{settimeout(\var{t})} method on a socket object to
set a timeout of \var{t} seconds. Subsequent socket operations that
take longer than \var{t} seconds to complete will abort and raise a
\exception{socket.timeout} exception.
The original timeout implementation was by Tim O'Malley. Michael
Gilfix integrated it into the Python \module{socket} module and
shepherded it through a lengthy review. After the code was checked
in, Guido van~Rossum rewrote parts of it. (This is a good example of
a collaborative development process in action.)
\item On Windows, the \module{socket} module now ships with Secure
Sockets Layer (SSL) support.
\item The value of the C \constant{PYTHON_API_VERSION} macro is now
exposed at the Python level as \code{sys.api_version}. The current
exception can be cleared by calling the new \function{sys.exc_clear()}
function.
\item The new \module{tarfile} module
allows reading from and writing to \program{tar}-format archive files.
(Contributed by Lars Gust\"abel.)
\item The new \module{textwrap} module contains functions for wrapping
strings containing paragraphs of text. The \function{wrap(\var{text},
\var{width})} function takes a string and returns a list containing
the text split into lines of no more than the chosen width. The
\function{fill(\var{text}, \var{width})} function returns a single
string, reformatted to fit into lines no longer than the chosen width.
(As you can guess, \function{fill()} is built on top of
\function{wrap()}. For example:
\begin{verbatim}
>>> import textwrap
>>> paragraph = "Not a whit, we defy augury: ... more text ..."
>>> textwrap.wrap(paragraph, 60)
["Not a whit, we defy augury: there's a special providence in",
"the fall of a sparrow. If it be now, 'tis not to come; if it",
...]
>>> print textwrap.fill(paragraph, 35)
Not a whit, we defy augury: there's
a special providence in the fall of
a sparrow. If it be now, 'tis not
to come; if it be not to come, it
will be now; if it be not now, yet
it will come: the readiness is all.
>>>
\end{verbatim}
The module also contains a \class{TextWrapper} class that actually
implements the text wrapping strategy. Both the
\class{TextWrapper} class and the \function{wrap()} and
\function{fill()} functions support a number of additional keyword
arguments for fine-tuning the formatting; consult the \ulink{module's
documentation}{../lib/module-textwrap.html} for details.
(Contributed by Greg Ward.)
\item The \module{thread} and \module{threading} modules now have
companion modules, \module{dummy_thread} and \module{dummy_threading},
that provide a do-nothing implementation of the \module{thread}
module's interface for platforms where threads are not supported. The
intention is to simplify thread-aware modules (ones that \emph{don't}
rely on threads to run) by putting the following code at the top:
\begin{verbatim}
try:
import threading as _threading
except ImportError:
import dummy_threading as _threading
\end{verbatim}
In this example, \module{_threading} is used as the module name to make
it clear that the module being used is not necessarily the actual
\module{threading} module. Code can call functions and use classes in
\module{_threading} whether or not threads are supported, avoiding an
\keyword{if} statement and making the code slightly clearer. This
module will not magically make multithreaded code run without threads;
code that waits for another thread to return or to do something will
simply hang forever.
\item The \module{time} module's \function{strptime()} function has
long been an annoyance because it uses the platform C library's
\function{strptime()} implementation, and different platforms
sometimes have odd bugs. Brett Cannon contributed a portable
implementation that's written in pure Python and should behave
identically on all platforms.
\item The new \module{timeit} module helps measure how long snippets
of Python code take to execute. The \file{timeit.py} file can be run
directly from the command line, or the module's \class{Timer} class
can be imported and used directly. Here's a short example that
figures out whether it's faster to convert an 8-bit string to Unicode
by appending an empty Unicode string to it or by using the
\function{unicode()} function:
\begin{verbatim}
import timeit
timer1 = timeit.Timer('unicode("abc")')
timer2 = timeit.Timer('"abc" + u""')
# Run three trials
print timer1.repeat(repeat=3, number=100000)
print timer2.repeat(repeat=3, number=100000)
# On my laptop this outputs:
# [0.36831796169281006, 0.37441694736480713, 0.35304892063140869]
# [0.17574405670166016, 0.18193507194519043, 0.17565798759460449]
\end{verbatim}
\item The \module{Tix} module has received various bug fixes and
updates for the current version of the Tix package.
\item The \module{Tkinter} module now works with a thread-enabled
version of Tcl. Tcl's threading model requires that widgets only be
accessed from the thread in which they're created; accesses from
another thread can cause Tcl to panic. For certain Tcl interfaces,
\module{Tkinter} will now automatically avoid this
when a widget is accessed from a different thread by marshalling a
command, passing it to the correct thread, and waiting for the
results. Other interfaces can't be handled automatically but
\module{Tkinter} will now raise an exception on such an access so that
you can at least find out about the problem. See
\url{http://mail.python.org/pipermail/python-dev/2002-December/031107.html} %
for a more detailed explanation of this change. (Implemented by
Martin von~L\"owis.)
\item Calling Tcl methods through \module{_tkinter} no longer
returns only strings. Instead, if Tcl returns other objects those
objects are converted to their Python equivalent, if one exists, or
wrapped with a \class{_tkinter.Tcl_Obj} object if no Python equivalent
exists. This behavior can be controlled through the
\method{wantobjects()} method of \class{tkapp} objects.
When using \module{_tkinter} through the \module{Tkinter} module (as
most Tkinter applications will), this feature is always activated. It
should not cause compatibility problems, since Tkinter would always
convert string results to Python types where possible.
If any incompatibilities are found, the old behavior can be restored
by setting the \member{wantobjects} variable in the \module{Tkinter}
module to false before creating the first \class{tkapp} object.
\begin{verbatim}
import Tkinter
Tkinter.wantobjects = 0
\end{verbatim}
Any breakage caused by this change should be reported as a bug.
\item The \module{UserDict} module has a new \class{DictMixin} class which
defines all dictionary methods for classes that already have a minimum
mapping interface. This greatly simplifies writing classes that need
to be substitutable for dictionaries, such as the classes in
the \module{shelve} module.
Adding the mix-in as a superclass provides the full dictionary
interface whenever the class defines \method{__getitem__},
\method{__setitem__}, \method{__delitem__}, and \method{keys}.
For example:
\begin{verbatim}
>>> import UserDict
>>> class SeqDict(UserDict.DictMixin):
... """Dictionary lookalike implemented with lists."""
... def __init__(self):
... self.keylist = []
... self.valuelist = []
... def __getitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... return self.valuelist[i]
... def __setitem__(self, key, value):
... try:
... i = self.keylist.index(key)
... self.valuelist[i] = value
... except ValueError:
... self.keylist.append(key)
... self.valuelist.append(value)
... def __delitem__(self, key):
... try:
... i = self.keylist.index(key)
... except ValueError:
... raise KeyError
... self.keylist.pop(i)
... self.valuelist.pop(i)
... def keys(self):
... return list(self.keylist)
...
>>> s = SeqDict()
>>> dir(s) # See that other dictionary methods are implemented
['__cmp__', '__contains__', '__delitem__', '__doc__', '__getitem__',
'__init__', '__iter__', '__len__', '__module__', '__repr__',
'__setitem__', 'clear', 'get', 'has_key', 'items', 'iteritems',
'iterkeys', 'itervalues', 'keylist', 'keys', 'pop', 'popitem',
'setdefault', 'update', 'valuelist', 'values']
\end{verbatim}
(Contributed by Raymond Hettinger.)
\item The DOM implementation
in \module{xml.dom.minidom} can now generate XML output in a
particular encoding by providing an optional encoding argument to
the \method{toxml()} and \method{toprettyxml()} methods of DOM nodes.
\item The \module{xmlrpclib} module now supports an XML-RPC extension
for handling nil data values such as Python's \code{None}. Nil values
are always supported on unmarshalling an XML-RPC response. To
generate requests containing \code{None}, you must supply a true value
for the \var{allow_none} parameter when creating a \class{Marshaller}
instance.
\item The new \module{DocXMLRPCServer} module allows writing
self-documenting XML-RPC servers. Run it in demo mode (as a program)
to see it in action. Pointing the Web browser to the RPC server
produces pydoc-style documentation; pointing xmlrpclib to the
server allows invoking the actual methods.
(Contributed by Brian Quinlan.)
\item Support for internationalized domain names (RFCs 3454, 3490,
3491, and 3492) has been added. The ``idna'' encoding can be used
to convert between a Unicode domain name and the ASCII-compatible
encoding (ACE) of that name.
\begin{alltt}
>{}>{}> u"www.Alliancefran\c caise.nu".encode("idna")
'www.xn--alliancefranaise-npb.nu'
\end{alltt}
The \module{socket} module has also been extended to transparently
convert Unicode hostnames to the ACE version before passing them to
the C library. Modules that deal with hostnames such as
\module{httplib} and \module{ftplib}) also support Unicode host names;
\module{httplib} also sends HTTP \samp{Host} headers using the ACE
version of the domain name. \module{urllib} supports Unicode URLs
with non-ASCII host names as long as the \code{path} part of the URL
is ASCII only.
To implement this change, the \module{stringprep} module, the
\code{mkstringprep} tool and the \code{punycode} encoding have been added.
\end{itemize}
%======================================================================
\subsection{Date/Time Type}
Date and time types suitable for expressing timestamps were added as
the \module{datetime} module. The types don't support different
calendars or many fancy features, and just stick to the basics of
representing time.
The three primary types are: \class{date}, representing a day, month,
and year; \class{time}, consisting of hour, minute, and second; and
\class{datetime}, which contains all the attributes of both
\class{date} and \class{time}. There's also a
\class{timedelta} class representing differences between two points
in time, and time zone logic is implemented by classes inheriting from
the abstract \class{tzinfo} class.
You can create instances of \class{date} and \class{time} by either
supplying keyword arguments to the appropriate constructor,
e.g. \code{datetime.date(year=1972, month=10, day=15)}, or by using
one of a number of class methods. For example, the \method{date.today()}
class method returns the current local date.
Once created, instances of the date/time classes are all immutable.
There are a number of methods for producing formatted strings from
objects:
\begin{verbatim}
>>> import datetime
>>> now = datetime.datetime.now()
>>> now.isoformat()
'2002-12-30T21:27:03.994956'
>>> now.ctime() # Only available on date, datetime
'Mon Dec 30 21:27:03 2002'
>>> now.strftime('%Y %d %b')
'2002 30 Dec'
\end{verbatim}
The \method{replace()} method allows modifying one or more fields
of a \class{date} or \class{datetime} instance, returning a new instance:
\begin{verbatim}
>>> d = datetime.datetime.now()
>>> d
datetime.datetime(2002, 12, 30, 22, 15, 38, 827738)
>>> d.replace(year=2001, hour = 12)
datetime.datetime(2001, 12, 30, 12, 15, 38, 827738)
>>>
\end{verbatim}
Instances can be compared, hashed, and converted to strings (the
result is the same as that of \method{isoformat()}). \class{date} and
\class{datetime} instances can be subtracted from each other, and
added to \class{timedelta} instances. The largest missing feature is
that there's no standard library support for parsing strings and getting back a
\class{date} or \class{datetime}.
For more information, refer to the \ulink{module's reference
documentation}{../lib/module-datetime.html}.
(Contributed by Tim Peters.)
%======================================================================
\subsection{The optparse Module}
The \module{getopt} module provides simple parsing of command-line
arguments. The new \module{optparse} module (originally named Optik)
provides more elaborate command-line parsing that follows the Unix
conventions, automatically creates the output for \longprogramopt{help},
and can perform different actions for different options.
You start by creating an instance of \class{OptionParser} and telling
it what your program's options are.
\begin{verbatim}
import sys
from optparse import OptionParser
op = OptionParser()
op.add_option('-i', '--input',
action='store', type='string', dest='input',
help='set input filename')
op.add_option('-l', '--length',
action='store', type='int', dest='length',
help='set maximum length of output')
\end{verbatim}
Parsing a command line is then done by calling the \method{parse_args()}
method.
\begin{verbatim}
options, args = op.parse_args(sys.argv[1:])
print options
print args
\end{verbatim}
This returns an object containing all of the option values,
and a list of strings containing the remaining arguments.
Invoking the script with the various arguments now works as you'd
expect it to. Note that the length argument is automatically
converted to an integer.
\begin{verbatim}
$ ./python opt.py -i data arg1
<Values at 0x400cad4c: {'input': 'data', 'length': None}>
['arg1']
$ ./python opt.py --input=data --length=4
<Values at 0x400cad2c: {'input': 'data', 'length': 4}>
[]
$
\end{verbatim}
The help message is automatically generated for you:
\begin{verbatim}
$ ./python opt.py --help
usage: opt.py [options]
options:
-h, --help show this help message and exit
-iINPUT, --input=INPUT
set input filename
-lLENGTH, --length=LENGTH
set maximum length of output
$
\end{verbatim}
% $ prevent Emacs tex-mode from getting confused
See the \ulink{module's documentation}{../lib/module-optparse.html}
for more details.
Optik was written by Greg Ward, with suggestions from the readers of
the Getopt SIG.
%======================================================================
\section{Pymalloc: A Specialized Object Allocator\label{section-pymalloc}}
Pymalloc, a specialized object allocator written by Vladimir
Marangozov, was a feature added to Python 2.1. Pymalloc is intended
to be faster than the system \cfunction{malloc()} and to have less
memory overhead for allocation patterns typical of Python programs.
The allocator uses C's \cfunction{malloc()} function to get large
pools of memory and then fulfills smaller memory requests from these
pools.
In 2.1 and 2.2, pymalloc was an experimental feature and wasn't
enabled by default; you had to explicitly enable it when compiling
Python by providing the
\longprogramopt{with-pymalloc} option to the \program{configure}
script. In 2.3, pymalloc has had further enhancements and is now
enabled by default; you'll have to supply
\longprogramopt{without-pymalloc} to disable it.
This change is transparent to code written in Python; however,
pymalloc may expose bugs in C extensions. Authors of C extension
modules should test their code with pymalloc enabled,
because some incorrect code may cause core dumps at runtime.
There's one particularly common error that causes problems. There are
a number of memory allocation functions in Python's C API that have
previously just been aliases for the C library's \cfunction{malloc()}
and \cfunction{free()}, meaning that if you accidentally called
mismatched functions the error wouldn't be noticeable. When the
object allocator is enabled, these functions aren't aliases of
\cfunction{malloc()} and \cfunction{free()} any more, and calling the
wrong function to free memory may get you a core dump. For example,
if memory was allocated using \cfunction{PyObject_Malloc()}, it has to
be freed using \cfunction{PyObject_Free()}, not \cfunction{free()}. A
few modules included with Python fell afoul of this and had to be
fixed; doubtless there are more third-party modules that will have the
same problem.
As part of this change, the confusing multiple interfaces for
allocating memory have been consolidated down into two API families.
Memory allocated with one family must not be manipulated with
functions from the other family. There is one family for allocating
chunks of memory and another family of functions specifically for
allocating Python objects.
\begin{itemize}
\item To allocate and free an undistinguished chunk of memory use
the ``raw memory'' family: \cfunction{PyMem_Malloc()},
\cfunction{PyMem_Realloc()}, and \cfunction{PyMem_Free()}.
\item The ``object memory'' family is the interface to the pymalloc
facility described above and is biased towards a large number of
``small'' allocations: \cfunction{PyObject_Malloc},
\cfunction{PyObject_Realloc}, and \cfunction{PyObject_Free}.
\item To allocate and free Python objects, use the ``object'' family
\cfunction{PyObject_New()}, \cfunction{PyObject_NewVar()}, and
\cfunction{PyObject_Del()}.
\end{itemize}
Thanks to lots of work by Tim Peters, pymalloc in 2.3 also provides
debugging features to catch memory overwrites and doubled frees in
both extension modules and in the interpreter itself. To enable this
support, compile a debugging version of the Python interpreter by
running \program{configure} with \longprogramopt{with-pydebug}.
To aid extension writers, a header file \file{Misc/pymemcompat.h} is
distributed with the source to Python 2.3 that allows Python
extensions to use the 2.3 interfaces to memory allocation while
compiling against any version of Python since 1.5.2. You would copy
the file from Python's source distribution and bundle it with the
source of your extension.
\begin{seealso}
\seeurl{http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/python/python/dist/src/Objects/obmalloc.c}
{For the full details of the pymalloc implementation, see
the comments at the top of the file \file{Objects/obmalloc.c} in the
Python source code. The above link points to the file within the
SourceForge CVS browser.}
\end{seealso}
% ======================================================================
\section{Build and C API Changes}
Changes to Python's build process and to the C API include:
\begin{itemize}
\item The cycle detection implementation used by the garbage collection
has proven to be stable, so it's now been made mandatory. You can no
longer compile Python without it, and the
\longprogramopt{with-cycle-gc} switch to \program{configure} has been removed.
\item Python can now optionally be built as a shared library
(\file{libpython2.3.so}) by supplying \longprogramopt{enable-shared}
when running Python's \program{configure} script. (Contributed by Ondrej
Palkovsky.)
\item The \csimplemacro{DL_EXPORT} and \csimplemacro{DL_IMPORT} macros
are now deprecated. Initialization functions for Python extension
modules should now be declared using the new macro
\csimplemacro{PyMODINIT_FUNC}, while the Python core will generally
use the \csimplemacro{PyAPI_FUNC} and \csimplemacro{PyAPI_DATA}
macros.
\item The interpreter can be compiled without any docstrings for
the built-in functions and modules by supplying
\longprogramopt{without-doc-strings} to the \program{configure} script.
This makes the Python executable about 10\% smaller, but will also
mean that you can't get help for Python's built-ins. (Contributed by
Gustavo Niemeyer.)
\item The \cfunction{PyArg_NoArgs()} macro is now deprecated, and code
that uses it should be changed. For Python 2.2 and later, the method
definition table can specify the
\constant{METH_NOARGS} flag, signalling that there are no arguments, and
the argument checking can then be removed. If compatibility with
pre-2.2 versions of Python is important, the code could use
\code{PyArg_ParseTuple(\var{args}, "")} instead, but this will be slower
than using \constant{METH_NOARGS}.
\item \cfunction{PyArg_ParseTuple()} accepts new format characters for various sizes of unsigned integers: \samp{B} for \ctype{unsigned char},
\samp{H} for \ctype{unsigned short int},
\samp{I} for \ctype{unsigned int},
and \samp{K} for \ctype{unsigned long long}.
\item A new function, \cfunction{PyObject_DelItemString(\var{mapping},
char *\var{key})} was added as shorthand for
\code{PyObject_DelItem(\var{mapping}, PyString_New(\var{key}))}.
\item File objects now manage their internal string buffer
differently, increasing it exponentially when needed. This results in
the benchmark tests in \file{Lib/test/test_bufio.py} speeding up
considerably (from 57 seconds to 1.7 seconds, according to one
measurement).
\item It's now possible to define class and static methods for a C
extension type by setting either the \constant{METH_CLASS} or
\constant{METH_STATIC} flags in a method's \ctype{PyMethodDef}
structure.
\item Python now includes a copy of the Expat XML parser's source code,
removing any dependence on a system version or local installation of
Expat.
\item If you dynamically allocate type objects in your extension, you
should be aware of a change in the rules relating to the
\member{__module__} and \member{__name__} attributes. In summary,
you will want to ensure the type's dictionary contains a
\code{'__module__'} key; making the module name the part of the type
name leading up to the final period will no longer have the desired
effect. For more detail, read the API reference documentation or the
source.
\end{itemize}
%======================================================================
\subsection{Port-Specific Changes}
Support for a port to IBM's OS/2 using the EMX runtime environment was
merged into the main Python source tree. EMX is a POSIX emulation
layer over the OS/2 system APIs. The Python port for EMX tries to
support all the POSIX-like capability exposed by the EMX runtime, and
mostly succeeds; \function{fork()} and \function{fcntl()} are
restricted by the limitations of the underlying emulation layer. The
standard OS/2 port, which uses IBM's Visual Age compiler, also gained
support for case-sensitive import semantics as part of the integration
of the EMX port into CVS. (Contributed by Andrew MacIntyre.)
On MacOS, most toolbox modules have been weaklinked to improve
backward compatibility. This means that modules will no longer fail
to load if a single routine is missing on the current OS version.
Instead calling the missing routine will raise an exception.
(Contributed by Jack Jansen.)
The RPM spec files, found in the \file{Misc/RPM/} directory in the
Python source distribution, were updated for 2.3. (Contributed by
Sean Reifschneider.)
Other new platforms now supported by Python include AtheOS
(\url{http://www.atheos.cx/}), GNU/Hurd, and OpenVMS.
%======================================================================
\section{Other Changes and Fixes \label{section-other}}
As usual, there were a bunch of other improvements and bugfixes
scattered throughout the source tree. A search through the CVS change
logs finds there were 523 patches applied and 514 bugs fixed between
Python 2.2 and 2.3. Both figures are likely to be underestimates.
Some of the more notable changes are:
\begin{itemize}
\item If the \envvar{PYTHONINSPECT} environment variable is set, the
Python interpreter will enter the interactive prompt after running a
Python program, as if Python had been invoked with the \programopt{-i}
option. The environment variable can be set before running the Python
interpreter, or it can be set by the Python program as part of its
execution.
\item The \file{regrtest.py} script now provides a way to allow ``all
resources except \var{foo}.'' A resource name passed to the
\programopt{-u} option can now be prefixed with a hyphen
(\character{-}) to mean ``remove this resource.'' For example, the
option `\code{\programopt{-u}all,-bsddb}' could be used to enable the
use of all resources except \code{bsddb}.
\item The tools used to build the documentation now work under Cygwin
as well as \UNIX.
\item The \code{SET_LINENO} opcode has been removed. Back in the
mists of time, this opcode was needed to produce line numbers in
tracebacks and support trace functions (for, e.g., \module{pdb}).
Since Python 1.5, the line numbers in tracebacks have been computed
using a different mechanism that works with ``python -O''. For Python
2.3 Michael Hudson implemented a similar scheme to determine when to
call the trace function, removing the need for \code{SET_LINENO}
entirely.
It would be difficult to detect any resulting difference from Python
code, apart from a slight speed up when Python is run without
\programopt{-O}.
C extensions that access the \member{f_lineno} field of frame objects
should instead call \code{PyCode_Addr2Line(f->f_code, f->f_lasti)}.
This will have the added effect of making the code work as desired
under ``python -O'' in earlier versions of Python.
A nifty new feature is that trace functions can now assign to the
\member{f_lineno} attribute of frame objects, changing the line that
will be executed next. A \samp{jump} command has been added to the
\module{pdb} debugger taking advantage of this new feature.
(Implemented by Richie Hindle.)
\end{itemize}
%======================================================================
\section{Porting to Python 2.3}
This section lists previously described changes that may require
changes to your code:
\begin{itemize}
\item \keyword{yield} is now always a keyword; if it's used as a
variable name in your code, a different name must be chosen.
\item For strings \var{X} and \var{Y}, \code{\var{X} in \var{Y}} now works
if \var{X} is more than one character long.
\item The \function{int()} type constructor will now return a long
integer instead of raising an \exception{OverflowError} when a string
or floating-point number is too large to fit into an integer.
\item If you have Unicode strings that contain 8-bit characters, you
must declare the file's encoding (UTF-8, Latin-1, or whatever) by
adding a comment to the top of the file. See
section~\ref{section-encodings} for more information.
\item Calling Tcl methods through \module{_tkinter} no longer
returns only strings. Instead, if Tcl returns other objects those
objects are converted to their Python equivalent, if one exists, or
wrapped with a \class{_tkinter.Tcl_Obj} object if no Python equivalent
exists.
\item Large octal and hex literals such as
\code{0xffffffff} now trigger a \exception{FutureWarning}. Currently
they're stored as 32-bit numbers and result in a negative value, but
in Python 2.4 they'll become positive long integers.
% The empty groups below prevent conversion to guillemets.
There are a few ways to fix this warning. If you really need a
positive number, just add an \samp{L} to the end of the literal. If
you're trying to get a 32-bit integer with low bits set and have
previously used an expression such as \code{\textasciitilde(1 <{}< 31)},
it's probably
clearest to start with all bits set and clear the desired upper bits.
For example, to clear just the top bit (bit 31), you could write
\code{0xffffffffL {\&}{\textasciitilde}(1L<{}<31)}.
\item You can no longer disable assertions by assigning to \code{__debug__}.
\item The Distutils \function{setup()} function has gained various new
keyword arguments such as \var{depends}. Old versions of the
Distutils will abort if passed unknown keywords. A solution is to check
for the presence of the new \function{get_distutil_options()} function
in your \file{setup.py} and only uses the new keywords
with a version of the Distutils that supports them:
\begin{verbatim}
from distutils import core
kw = {'sources': 'foo.c', ...}
if hasattr(core, 'get_distutil_options'):
kw['depends'] = ['foo.h']
ext = Extension(**kw)
\end{verbatim}
\item Using \code{None} as a variable name will now result in a
\exception{SyntaxWarning} warning.
\item Names of extension types defined by the modules included with
Python now contain the module and a \character{.} in front of the type
name.
\end{itemize}
%======================================================================
\section{Acknowledgements \label{acks}}
The author would like to thank the following people for offering
suggestions, corrections and assistance with various drafts of this
article: Jeff Bauer, Simon Brunning, Brett Cannon, Michael Chermside,
Andrew Dalke, Scott David Daniels, Fred~L. Drake, Jr., David Fraser,
Kelly Gerber,
Raymond Hettinger, Michael Hudson, Chris Lambert, Detlef Lannert,
Martin von~L\"owis, Andrew MacIntyre, Lalo Martins, Chad Netzer,
Gustavo Niemeyer, Neal Norwitz, Hans Nowak, Chris Reedy, Francesco
Ricciardi, Vinay Sajip, Neil Schemenauer, Roman Suzi, Jason Tishler,
Just van~Rossum.
\end{document}
|