1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
/* Complex math module */
/* much code borrowed from mathmodule.c */
#include "Python.h"
#ifndef M_PI
#define M_PI (3.141592653589793239)
#endif
/* First, the C functions that do the real work */
/* constants */
static Py_complex c_one = {1., 0.};
static Py_complex c_half = {0.5, 0.};
static Py_complex c_i = {0., 1.};
static Py_complex c_halfi = {0., 0.5};
/* forward declarations */
static Py_complex c_log(Py_complex);
static Py_complex c_prodi(Py_complex);
static Py_complex c_sqrt(Py_complex);
static PyObject * math_error(void);
static Py_complex
c_acos(Py_complex x)
{
return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i,
c_sqrt(c_diff(c_one,c_prod(x,x))))))));
}
PyDoc_STRVAR(c_acos_doc,
"acos(x)\n"
"\n"
"Return the arc cosine of x.");
static Py_complex
c_acosh(Py_complex x)
{
Py_complex z;
z = c_sqrt(c_half);
z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)),
c_sqrt(c_diff(x,c_one)))));
return c_sum(z, z);
}
PyDoc_STRVAR(c_acosh_doc,
"acosh(x)\n"
"\n"
"Return the hyperbolic arccosine of x.");
static Py_complex
c_asin(Py_complex x)
{
/* -i * log[(sqrt(1-x**2) + i*x] */
const Py_complex squared = c_prod(x, x);
const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared));
return c_neg(c_prodi(c_log(
c_sum(sqrt_1_minus_x_sq, c_prodi(x))
) ) );
}
PyDoc_STRVAR(c_asin_doc,
"asin(x)\n"
"\n"
"Return the arc sine of x.");
static Py_complex
c_asinh(Py_complex x)
{
Py_complex z;
z = c_sqrt(c_half);
z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)),
c_sqrt(c_diff(x, c_i)))));
return c_sum(z, z);
}
PyDoc_STRVAR(c_asinh_doc,
"asinh(x)\n"
"\n"
"Return the hyperbolic arc sine of x.");
static Py_complex
c_atan(Py_complex x)
{
return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x))));
}
PyDoc_STRVAR(c_atan_doc,
"atan(x)\n"
"\n"
"Return the arc tangent of x.");
static Py_complex
c_atanh(Py_complex x)
{
return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x))));
}
PyDoc_STRVAR(c_atanh_doc,
"atanh(x)\n"
"\n"
"Return the hyperbolic arc tangent of x.");
static Py_complex
c_cos(Py_complex x)
{
Py_complex r;
r.real = cos(x.real)*cosh(x.imag);
r.imag = -sin(x.real)*sinh(x.imag);
return r;
}
PyDoc_STRVAR(c_cos_doc,
"cos(x)\n"
"n"
"Return the cosine of x.");
static Py_complex
c_cosh(Py_complex x)
{
Py_complex r;
r.real = cos(x.imag)*cosh(x.real);
r.imag = sin(x.imag)*sinh(x.real);
return r;
}
PyDoc_STRVAR(c_cosh_doc,
"cosh(x)\n"
"n"
"Return the hyperbolic cosine of x.");
static Py_complex
c_exp(Py_complex x)
{
Py_complex r;
double l = exp(x.real);
r.real = l*cos(x.imag);
r.imag = l*sin(x.imag);
return r;
}
PyDoc_STRVAR(c_exp_doc,
"exp(x)\n"
"\n"
"Return the exponential value e**x.");
static Py_complex
c_log(Py_complex x)
{
Py_complex r;
double l = hypot(x.real,x.imag);
r.imag = atan2(x.imag, x.real);
r.real = log(l);
return r;
}
static Py_complex
c_log10(Py_complex x)
{
Py_complex r;
double l = hypot(x.real,x.imag);
r.imag = atan2(x.imag, x.real)/log(10.);
r.real = log10(l);
return r;
}
PyDoc_STRVAR(c_log10_doc,
"log10(x)\n"
"\n"
"Return the base-10 logarithm of x.");
/* internal function not available from Python */
static Py_complex
c_prodi(Py_complex x)
{
Py_complex r;
r.real = -x.imag;
r.imag = x.real;
return r;
}
static Py_complex
c_sin(Py_complex x)
{
Py_complex r;
r.real = sin(x.real) * cosh(x.imag);
r.imag = cos(x.real) * sinh(x.imag);
return r;
}
PyDoc_STRVAR(c_sin_doc,
"sin(x)\n"
"\n"
"Return the sine of x.");
static Py_complex
c_sinh(Py_complex x)
{
Py_complex r;
r.real = cos(x.imag) * sinh(x.real);
r.imag = sin(x.imag) * cosh(x.real);
return r;
}
PyDoc_STRVAR(c_sinh_doc,
"sinh(x)\n"
"\n"
"Return the hyperbolic sine of x.");
static Py_complex
c_sqrt(Py_complex x)
{
Py_complex r;
double s,d;
if (x.real == 0. && x.imag == 0.)
r = x;
else {
s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag)));
d = 0.5*x.imag/s;
if (x.real > 0.) {
r.real = s;
r.imag = d;
}
else if (x.imag >= 0.) {
r.real = d;
r.imag = s;
}
else {
r.real = -d;
r.imag = -s;
}
}
return r;
}
PyDoc_STRVAR(c_sqrt_doc,
"sqrt(x)\n"
"\n"
"Return the square root of x.");
static Py_complex
c_tan(Py_complex x)
{
Py_complex r;
double sr,cr,shi,chi;
double rs,is,rc,ic;
double d;
sr = sin(x.real);
cr = cos(x.real);
shi = sinh(x.imag);
chi = cosh(x.imag);
rs = sr * chi;
is = cr * shi;
rc = cr * chi;
ic = -sr * shi;
d = rc*rc + ic * ic;
r.real = (rs*rc + is*ic) / d;
r.imag = (is*rc - rs*ic) / d;
return r;
}
PyDoc_STRVAR(c_tan_doc,
"tan(x)\n"
"\n"
"Return the tangent of x.");
static Py_complex
c_tanh(Py_complex x)
{
Py_complex r;
double si,ci,shr,chr;
double rs,is,rc,ic;
double d;
si = sin(x.imag);
ci = cos(x.imag);
shr = sinh(x.real);
chr = cosh(x.real);
rs = ci * shr;
is = si * chr;
rc = ci * chr;
ic = si * shr;
d = rc*rc + ic*ic;
r.real = (rs*rc + is*ic) / d;
r.imag = (is*rc - rs*ic) / d;
return r;
}
PyDoc_STRVAR(c_tanh_doc,
"tanh(x)\n"
"\n"
"Return the hyperbolic tangent of x.");
static PyObject *
cmath_log(PyObject *self, PyObject *args)
{
Py_complex x;
Py_complex y;
if (!PyArg_ParseTuple(args, "D|D", &x, &y))
return NULL;
errno = 0;
PyFPE_START_PROTECT("complex function", return 0)
x = c_log(x);
if (PyTuple_GET_SIZE(args) == 2)
x = c_quot(x, c_log(y));
PyFPE_END_PROTECT(x)
if (errno != 0)
return math_error();
Py_ADJUST_ERANGE2(x.real, x.imag);
return PyComplex_FromCComplex(x);
}
PyDoc_STRVAR(cmath_log_doc,
"log(x[, base]) -> the logarithm of x to the given base.\n\
If the base not specified, returns the natural logarithm (base e) of x.");
/* And now the glue to make them available from Python: */
static PyObject *
math_error(void)
{
if (errno == EDOM)
PyErr_SetString(PyExc_ValueError, "math domain error");
else if (errno == ERANGE)
PyErr_SetString(PyExc_OverflowError, "math range error");
else /* Unexpected math error */
PyErr_SetFromErrno(PyExc_ValueError);
return NULL;
}
static PyObject *
math_1(PyObject *args, Py_complex (*func)(Py_complex))
{
Py_complex x;
if (!PyArg_ParseTuple(args, "D", &x))
return NULL;
errno = 0;
PyFPE_START_PROTECT("complex function", return 0)
x = (*func)(x);
PyFPE_END_PROTECT(x)
Py_ADJUST_ERANGE2(x.real, x.imag);
if (errno != 0)
return math_error();
else
return PyComplex_FromCComplex(x);
}
#define FUNC1(stubname, func) \
static PyObject * stubname(PyObject *self, PyObject *args) { \
return math_1(args, func); \
}
FUNC1(cmath_acos, c_acos)
FUNC1(cmath_acosh, c_acosh)
FUNC1(cmath_asin, c_asin)
FUNC1(cmath_asinh, c_asinh)
FUNC1(cmath_atan, c_atan)
FUNC1(cmath_atanh, c_atanh)
FUNC1(cmath_cos, c_cos)
FUNC1(cmath_cosh, c_cosh)
FUNC1(cmath_exp, c_exp)
FUNC1(cmath_log10, c_log10)
FUNC1(cmath_sin, c_sin)
FUNC1(cmath_sinh, c_sinh)
FUNC1(cmath_sqrt, c_sqrt)
FUNC1(cmath_tan, c_tan)
FUNC1(cmath_tanh, c_tanh)
PyDoc_STRVAR(module_doc,
"This module is always available. It provides access to mathematical\n"
"functions for complex numbers.");
static PyMethodDef cmath_methods[] = {
{"acos", cmath_acos, METH_VARARGS, c_acos_doc},
{"acosh", cmath_acosh, METH_VARARGS, c_acosh_doc},
{"asin", cmath_asin, METH_VARARGS, c_asin_doc},
{"asinh", cmath_asinh, METH_VARARGS, c_asinh_doc},
{"atan", cmath_atan, METH_VARARGS, c_atan_doc},
{"atanh", cmath_atanh, METH_VARARGS, c_atanh_doc},
{"cos", cmath_cos, METH_VARARGS, c_cos_doc},
{"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc},
{"exp", cmath_exp, METH_VARARGS, c_exp_doc},
{"log", cmath_log, METH_VARARGS, cmath_log_doc},
{"log10", cmath_log10, METH_VARARGS, c_log10_doc},
{"sin", cmath_sin, METH_VARARGS, c_sin_doc},
{"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc},
{"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc},
{"tan", cmath_tan, METH_VARARGS, c_tan_doc},
{"tanh", cmath_tanh, METH_VARARGS, c_tanh_doc},
{NULL, NULL} /* sentinel */
};
PyMODINIT_FUNC
initcmath(void)
{
PyObject *m;
m = Py_InitModule3("cmath", cmath_methods, module_doc);
if (m == NULL)
return;
PyModule_AddObject(m, "pi",
PyFloat_FromDouble(atan(1.0) * 4.0));
PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0)));
}
|