1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
:mod:`math` --- Mathematical functions
======================================
.. module:: math
:synopsis: Mathematical functions (sin() etc.).
This module is always available. It provides access to the mathematical
functions defined by the C standard.
These functions cannot be used with complex numbers; use the functions of the
same name from the :mod:`cmath` module if you require support for complex
numbers. The distinction between functions which support complex numbers and
those which don't is made since most users do not want to learn quite as much
mathematics as required to understand complex numbers. Receiving an exception
instead of a complex result allows earlier detection of the unexpected complex
number used as a parameter, so that the programmer can determine how and why it
was generated in the first place.
The following functions are provided by this module. Except when explicitly
noted otherwise, all return values are floats.
Number-theoretic and representation functions
---------------------------------------------
.. function:: ceil(x)
Return the ceiling of *x* as a float, the smallest integer value greater than or
equal to *x*.
.. function:: copysign(x, y)
Return *x* with the sign of *y*. On a platform that supports
signed zeros, ``copysign(1.0, -0.0)`` returns *-1.0*.
.. versionadded:: 2.6
.. function:: fabs(x)
Return the absolute value of *x*.
.. function:: factorial(x)
Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
is negative.
.. versionadded:: 2.6
.. function:: floor(x)
Return the floor of *x* as a float, the largest integer value less than or equal
to *x*.
.. function:: fmod(x, y)
Return ``fmod(x, y)``, as defined by the platform C library. Note that the
Python expression ``x % y`` may not return the same result. The intent of the C
standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
precision) equal to ``x - n*y`` for some integer *n* such that the result has
the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
returns a result with the sign of *y* instead, and may not be exactly computable
for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
represented exactly as a float, and rounds to the surprising ``1e100``. For
this reason, function :func:`fmod` is generally preferred when working with
floats, while Python's ``x % y`` is preferred when working with integers.
.. function:: frexp(x)
Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
apart" the internal representation of a float in a portable way.
.. function:: fsum(iterable)
Return an accurate floating point sum of values in the iterable. Avoids
loss of precision by tracking multiple intermediate partial sums::
>>> sum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
0.9999999999999999
>>> fsum([.1, .1, .1, .1, .1, .1, .1, .1, .1, .1])
1.0
The algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
typical case where the rounding mode is half-even. On some non-Windows
builds, the underlying C library uses extended precision addition and may
occasionally double-round an intermediate sum causing it to be off in its
least significant bit.
For further discussion and two alternative approaches, see the `ASPN cookbook
recipes for accurate floating point summation
<http://code.activestate.com/recipes/393090/>`_\.
.. versionadded:: 2.6
.. function:: isinf(x)
Check if the float *x* is positive or negative infinity.
.. versionadded:: 2.6
.. function:: isnan(x)
Check if the float *x* is a NaN (not a number). For more information
on NaNs, see the IEEE 754 standards.
.. versionadded:: 2.6
.. function:: ldexp(x, i)
Return ``x * (2**i)``. This is essentially the inverse of function
:func:`frexp`.
.. function:: modf(x)
Return the fractional and integer parts of *x*. Both results carry the sign
of *x* and are floats.
.. function:: trunc(x)
Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
a long integer). Uses the ``__trunc__`` method.
.. versionadded:: 2.6
Note that :func:`frexp` and :func:`modf` have a different call/return pattern
than their C equivalents: they take a single argument and return a pair of
values, rather than returning their second return value through an 'output
parameter' (there is no such thing in Python).
For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
floating-point numbers of sufficiently large magnitude are exact integers.
Python floats typically carry no more than 53 bits of precision (the same as the
platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
necessarily has no fractional bits.
Power and logarithmic functions
-------------------------------
.. function:: exp(x)
Return ``e**x``.
.. function:: expm1(x)
Return ``e**x - 1``. For small floats *x*, the subtraction in
``exp(x) - 1`` can result in a significant loss of precision; the
:func:`expm1` function provides a way to compute this quantity to
full precision::
>>> from math import exp, expm1
>>> exp(1e-5) - 1 # gives result accurate to 11 places
1.0000050000069649e-05
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05
.. versionadded:: 2.7
.. function:: log(x[, base])
With one argument, return the natural logarithm of *x* (to base *e*).
With two arguments, return the logarithm of *x* to the given *base*,
calculated as ``log(x)/log(base)``.
.. versionchanged:: 2.3
*base* argument added.
.. function:: log1p(x)
Return the natural logarithm of *1+x* (base *e*). The
result is calculated in a way which is accurate for *x* near zero.
.. versionadded:: 2.6
.. function:: log10(x)
Return the base-10 logarithm of *x*. This is usually more accurate
than ``log(x, 10)``.
.. function:: pow(x, y)
Return ``x`` raised to the power ``y``. Exceptional cases follow
Annex 'F' of the C99 standard as far as possible. In particular,
``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
is undefined, and raises :exc:`ValueError`.
.. versionchanged:: 2.6
The outcome of ``1**nan`` and ``nan**0`` was undefined.
.. function:: sqrt(x)
Return the square root of *x*.
Trigonometric functions
-----------------------
.. function:: acos(x)
Return the arc cosine of *x*, in radians.
.. function:: asin(x)
Return the arc sine of *x*, in radians.
.. function:: atan(x)
Return the arc tangent of *x*, in radians.
.. function:: atan2(y, x)
Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
The vector in the plane from the origin to point ``(x, y)`` makes this angle
with the positive X axis. The point of :func:`atan2` is that the signs of both
inputs are known to it, so it can compute the correct quadrant for the angle.
For example, ``atan(1)`` and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
-1)`` is ``-3*pi/4``.
.. function:: cos(x)
Return the cosine of *x* radians.
.. function:: hypot(x, y)
Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
from the origin to point ``(x, y)``.
.. function:: sin(x)
Return the sine of *x* radians.
.. function:: tan(x)
Return the tangent of *x* radians.
Angular conversion
------------------
.. function:: degrees(x)
Converts angle *x* from radians to degrees.
.. function:: radians(x)
Converts angle *x* from degrees to radians.
Hyperbolic functions
--------------------
.. function:: acosh(x)
Return the inverse hyperbolic cosine of *x*.
.. versionadded:: 2.6
.. function:: asinh(x)
Return the inverse hyperbolic sine of *x*.
.. versionadded:: 2.6
.. function:: atanh(x)
Return the inverse hyperbolic tangent of *x*.
.. versionadded:: 2.6
.. function:: cosh(x)
Return the hyperbolic cosine of *x*.
.. function:: sinh(x)
Return the hyperbolic sine of *x*.
.. function:: tanh(x)
Return the hyperbolic tangent of *x*.
Special functions
-----------------
.. function:: erf(x)
Return the error function at *x*.
.. versionadded:: 2.7
.. function:: erfc(x)
Return the complementary error function at *x*.
.. versionadded:: 2.7
.. function:: gamma(x)
Return the Gamma function at *x*.
.. versionadded:: 2.7
.. function:: lgamma(x)
Return the natural logarithm of the absolute value of the Gamma
function at *x*.
.. versionadded:: 2.7
Constants
---------
.. data:: pi
The mathematical constant π = 3.141592..., to available precision.
.. data:: e
The mathematical constant e = 2.718281..., to available precision.
.. impl-detail::
The :mod:`math` module consists mostly of thin wrappers around the platform C
math library functions. Behavior in exceptional cases follows Annex F of
the C99 standard where appropriate. The current implementation will raise
:exc:`ValueError` for invalid operations like ``sqrt(-1.0)`` or ``log(0.0)``
(where C99 Annex F recommends signaling invalid operation or divide-by-zero),
and :exc:`OverflowError` for results that overflow (for example,
``exp(1000.0)``). A NaN will not be returned from any of the functions
above unless one or more of the input arguments was a NaN; in that case,
most functions will return a NaN, but (again following C99 Annex F) there
are some exceptions to this rule, for example ``pow(float('nan'), 0.0)`` or
``hypot(float('nan'), float('inf'))``.
Note that Python makes no effort to distinguish signaling NaNs from
quiet NaNs, and behavior for signaling NaNs remains unspecified.
Typical behavior is to treat all NaNs as though they were quiet.
.. versionchanged:: 2.6
Behavior in special cases now aims to follow C99 Annex F. In earlier
versions of Python the behavior in special cases was loosely specified.
.. seealso::
Module :mod:`cmath`
Complex number versions of many of these functions.
|