1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
// sha3.c
// 19-Nov-11 Markku-Juhani O. Saarinen <mjos@iki.fi>
// Revised 07-Aug-15 to match with official release of FIPS PUB 202 "SHA3"
// Revised 03-Sep-15 for portability + OpenSSL - style API
#include "sha3.h"
// update the state with given number of rounds
static void sha3_keccakf(uint64_t st[25])
{
// constants
const uint64_t keccakf_rndc[24] = {
0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};
const int keccakf_rotc[24] = {
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, 2, 14,
27, 41, 56, 8, 25, 43, 62, 18, 39, 61, 20, 44
};
const int keccakf_piln[24] = {
10, 7, 11, 17, 18, 3, 5, 16, 8, 21, 24, 4,
15, 23, 19, 13, 12, 2, 20, 14, 22, 9, 6, 1
};
// variables
int i, j, r;
uint64_t t, bc[5];
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
uint8_t *v;
// endianess conversion. this is redundant on little-endian targets
for (i = 0; i < 25; i++) {
v = (uint8_t *) &st[i];
st[i] = ((uint64_t) v[0]) | (((uint64_t) v[1]) << 8) |
(((uint64_t) v[2]) << 16) | (((uint64_t) v[3]) << 24) |
(((uint64_t) v[4]) << 32) | (((uint64_t) v[5]) << 40) |
(((uint64_t) v[6]) << 48) | (((uint64_t) v[7]) << 56);
}
#endif
// actual iteration
for (r = 0; r < KECCAKF_ROUNDS; r++) {
// Theta
for (i = 0; i < 5; i++)
bc[i] = st[i] ^ st[i + 5] ^ st[i + 10] ^ st[i + 15] ^ st[i + 20];
for (i = 0; i < 5; i++) {
t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
for (j = 0; j < 25; j += 5)
st[j + i] ^= t;
}
// Rho Pi
t = st[1];
for (i = 0; i < 24; i++) {
j = keccakf_piln[i];
bc[0] = st[j];
st[j] = ROTL64(t, keccakf_rotc[i]);
t = bc[0];
}
// Chi
for (j = 0; j < 25; j += 5) {
for (i = 0; i < 5; i++)
bc[i] = st[j + i];
for (i = 0; i < 5; i++)
st[j + i] ^= (~bc[(i + 1) % 5]) & bc[(i + 2) % 5];
}
// Iota
st[0] ^= keccakf_rndc[r];
}
#if __BYTE_ORDER__ != __ORDER_LITTLE_ENDIAN__
// endianess conversion. this is redundant on little-endian targets
for (i = 0; i < 25; i++) {
v = (uint8_t *) &st[i];
t = st[i];
v[0] = t & 0xFF;
v[1] = (t >> 8) & 0xFF;
v[2] = (t >> 16) & 0xFF;
v[3] = (t >> 24) & 0xFF;
v[4] = (t >> 32) & 0xFF;
v[5] = (t >> 40) & 0xFF;
v[6] = (t >> 48) & 0xFF;
v[7] = (t >> 56) & 0xFF;
}
#endif
}
// Initialize the context for SHA3
static int sha3_init(sha3_ctx_t *c, int mdlen)
{
int i;
for (i = 0; i < 25; i++)
c->st.q[i] = 0;
c->mdlen = mdlen;
c->rsiz = 200 - 2 * mdlen;
c->pt = 0;
return 1;
}
// update state with more data
static int sha3_update(sha3_ctx_t *c, const void *data, size_t len)
{
size_t i;
int j;
j = c->pt;
for (i = 0; i < len; i++) {
c->st.b[j++] ^= ((const uint8_t *) data)[i];
if (j >= c->rsiz) {
sha3_keccakf(c->st.q);
j = 0;
}
}
c->pt = j;
return 1;
}
// finalize and output a hash
static int sha3_final(void *md, sha3_ctx_t *c)
{
int i;
c->st.b[c->pt] ^= 0x06;
c->st.b[c->rsiz - 1] ^= 0x80;
sha3_keccakf(c->st.q);
for (i = 0; i < c->mdlen; i++) {
((uint8_t *) md)[i] = c->st.b[i];
}
return 1;
}
#if 0
// compute a SHA-3 hash (md) of given byte length from "in"
void *sha3(const void *in, size_t inlen, void *md, int mdlen)
{
sha3_ctx_t sha3;
sha3_init(&sha3, mdlen);
sha3_update(&sha3, in, inlen);
sha3_final(md, &sha3);
return md;
}
#endif
// SHAKE128 and SHAKE256 extensible-output functionality
static void shake_xof(sha3_ctx_t *c)
{
c->st.b[c->pt] ^= 0x1F;
c->st.b[c->rsiz - 1] ^= 0x80;
sha3_keccakf(c->st.q);
c->pt = 0;
}
static void shake_out(sha3_ctx_t *c, void *out, size_t len)
{
size_t i;
int j;
j = c->pt;
for (i = 0; i < len; i++) {
if (j >= c->rsiz) {
sha3_keccakf(c->st.q);
j = 0;
}
((uint8_t *) out)[i] = c->st.b[j++];
}
c->pt = j;
}
|