1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
:mod:`!cmath` --- Mathematical functions for complex numbers
============================================================
.. module:: cmath
:synopsis: Mathematical functions for complex numbers.
--------------
This module provides access to mathematical functions for complex numbers. The
functions in this module accept integers, floating-point numbers or complex
numbers as arguments. They will also accept any Python object that has either a
:meth:`~object.__complex__` or a :meth:`~object.__float__` method: these methods are used to
convert the object to a complex or floating-point number, respectively, and
the function is then applied to the result of the conversion.
.. note::
For functions involving branch cuts, we have the problem of deciding how to
define those functions on the cut itself. Following Kahan's "Branch cuts for
complex elementary functions" paper, as well as Annex G of C99 and later C
standards, we use the sign of zero to distinguish one side of the branch cut
from the other: for a branch cut along (a portion of) the real axis we look
at the sign of the imaginary part, while for a branch cut along the
imaginary axis we look at the sign of the real part.
For example, the :func:`cmath.sqrt` function has a branch cut along the
negative real axis. An argument of ``complex(-2.0, -0.0)`` is treated as
though it lies *below* the branch cut, and so gives a result on the negative
imaginary axis::
>>> cmath.sqrt(complex(-2.0, -0.0))
-1.4142135623730951j
But an argument of ``complex(-2.0, 0.0)`` is treated as though it lies above
the branch cut::
>>> cmath.sqrt(complex(-2.0, 0.0))
1.4142135623730951j
==================================================== ============================================
**Conversions to and from polar coordinates**
--------------------------------------------------------------------------------------------------
:func:`phase(z) <phase>` Return the phase of *z*
:func:`polar(z) <polar>` Return the representation of *z* in polar coordinates
:func:`rect(r, phi) <rect>` Return the complex number *z* with polar coordinates *r* and *phi*
**Power and logarithmic functions**
--------------------------------------------------------------------------------------------------
:func:`exp(z) <exp>` Return *e* raised to the power *z*
:func:`log(z[, base]) <log>` Return the logarithm of *z* to the given *base* (*e* by default)
:func:`log10(z) <log10>` Return the base-10 logarithm of *z*
:func:`sqrt(z) <sqrt>` Return the square root of *z*
**Trigonometric functions**
--------------------------------------------------------------------------------------------------
:func:`acos(z) <acos>` Return the arc cosine of *z*
:func:`asin(z) <asin>` Return the arc sine of *z*
:func:`atan(z) <atan>` Return the arc tangent of *z*
:func:`cos(z) <cos>` Return the cosine of *z*
:func:`sin(z) <sin>` Return the sine of *z*
:func:`tan(z) <tan>` Return the tangent of *z*
**Hyperbolic functions**
--------------------------------------------------------------------------------------------------
:func:`acosh(z) <acosh>` Return the inverse hyperbolic cosine of *z*
:func:`asinh(z) <asinh>` Return the inverse hyperbolic sine of *z*
:func:`atanh(z) <atanh>` Return the inverse hyperbolic tangent of *z*
:func:`cosh(z) <cosh>` Return the hyperbolic cosine of *z*
:func:`sinh(z) <sinh>` Return the hyperbolic sine of *z*
:func:`tanh(z) <tanh>` Return the hyperbolic tangent of *z*
**Classification functions**
--------------------------------------------------------------------------------------------------
:func:`isfinite(z) <isfinite>` Check if all components of *z* are finite
:func:`isinf(z) <isinf>` Check if any component of *z* is infinite
:func:`isnan(z) <isnan>` Check if any component of *z* is a NaN
:func:`isclose(a, b, *, rel_tol, abs_tol) <isclose>` Check if the values *a* and *b* are close to each other
**Constants**
--------------------------------------------------------------------------------------------------
:data:`pi` *π* = 3.141592...
:data:`e` *e* = 2.718281...
:data:`tau` *τ* = 2\ *π* = 6.283185...
:data:`inf` Positive infinity
:data:`infj` Pure imaginary infinity
:data:`nan` "Not a number" (NaN)
:data:`nanj` Pure imaginary NaN
==================================================== ============================================
Conversions to and from polar coordinates
-----------------------------------------
A Python complex number ``z`` is stored internally using *rectangular*
or *Cartesian* coordinates. It is completely determined by its *real
part* ``z.real`` and its *imaginary part* ``z.imag``.
*Polar coordinates* give an alternative way to represent a complex
number. In polar coordinates, a complex number *z* is defined by the
modulus *r* and the phase angle *phi*. The modulus *r* is the distance
from *z* to the origin, while the phase *phi* is the counterclockwise
angle, measured in radians, from the positive x-axis to the line
segment that joins the origin to *z*.
The following functions can be used to convert from the native
rectangular coordinates to polar coordinates and back.
.. function:: phase(z)
Return the phase of *z* (also known as the *argument* of *z*), as a float.
``phase(z)`` is equivalent to ``math.atan2(z.imag, z.real)``. The result
lies in the range [-\ *π*, *π*], and the branch cut for this operation lies
along the negative real axis. The sign of the result is the same as the
sign of ``z.imag``, even when ``z.imag`` is zero::
>>> phase(complex(-1.0, 0.0))
3.141592653589793
>>> phase(complex(-1.0, -0.0))
-3.141592653589793
.. note::
The modulus (absolute value) of a complex number *z* can be
computed using the built-in :func:`abs` function. There is no
separate :mod:`cmath` module function for this operation.
.. function:: polar(z)
Return the representation of *z* in polar coordinates. Returns a
pair ``(r, phi)`` where *r* is the modulus of *z* and *phi* is the
phase of *z*. ``polar(z)`` is equivalent to ``(abs(z),
phase(z))``.
.. function:: rect(r, phi)
Return the complex number *z* with polar coordinates *r* and *phi*.
Equivalent to ``complex(r * math.cos(phi), r * math.sin(phi))``.
Power and logarithmic functions
-------------------------------
.. function:: exp(z)
Return *e* raised to the power *z*, where *e* is the base of natural
logarithms.
.. function:: log(z[, base])
Return the logarithm of *z* to the given *base*. If the *base* is not
specified, returns the natural logarithm of *z*. There is one branch cut,
from 0 along the negative real axis to -∞.
.. function:: log10(z)
Return the base-10 logarithm of *z*. This has the same branch cut as
:func:`log`.
.. function:: sqrt(z)
Return the square root of *z*. This has the same branch cut as :func:`log`.
Trigonometric functions
-----------------------
.. function:: acos(z)
Return the arc cosine of *z*. There are two branch cuts: One extends right
from 1 along the real axis to ∞. The other extends left from -1 along the
real axis to -∞.
.. function:: asin(z)
Return the arc sine of *z*. This has the same branch cuts as :func:`acos`.
.. function:: atan(z)
Return the arc tangent of *z*. There are two branch cuts: One extends from
``1j`` along the imaginary axis to ``∞j``. The other extends from ``-1j``
along the imaginary axis to ``-∞j``.
.. function:: cos(z)
Return the cosine of *z*.
.. function:: sin(z)
Return the sine of *z*.
.. function:: tan(z)
Return the tangent of *z*.
Hyperbolic functions
--------------------
.. function:: acosh(z)
Return the inverse hyperbolic cosine of *z*. There is one branch cut,
extending left from 1 along the real axis to -∞.
.. function:: asinh(z)
Return the inverse hyperbolic sine of *z*. There are two branch cuts:
One extends from ``1j`` along the imaginary axis to ``∞j``. The other
extends from ``-1j`` along the imaginary axis to ``-∞j``.
.. function:: atanh(z)
Return the inverse hyperbolic tangent of *z*. There are two branch cuts: One
extends from ``1`` along the real axis to ``∞``. The other extends from
``-1`` along the real axis to ``-∞``.
.. function:: cosh(z)
Return the hyperbolic cosine of *z*.
.. function:: sinh(z)
Return the hyperbolic sine of *z*.
.. function:: tanh(z)
Return the hyperbolic tangent of *z*.
Classification functions
------------------------
.. function:: isfinite(z)
Return ``True`` if both the real and imaginary parts of *z* are finite, and
``False`` otherwise.
.. versionadded:: 3.2
.. function:: isinf(z)
Return ``True`` if either the real or the imaginary part of *z* is an
infinity, and ``False`` otherwise.
.. function:: isnan(z)
Return ``True`` if either the real or the imaginary part of *z* is a NaN,
and ``False`` otherwise.
.. function:: isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0)
Return ``True`` if the values *a* and *b* are close to each other and
``False`` otherwise.
Whether or not two values are considered close is determined according to
given absolute and relative tolerances. If no errors occur, the result will
be: ``abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)``.
*rel_tol* is the relative tolerance -- it is the maximum allowed difference
between *a* and *b*, relative to the larger absolute value of *a* or *b*.
For example, to set a tolerance of 5%, pass ``rel_tol=0.05``. The default
tolerance is ``1e-09``, which assures that the two values are the same
within about 9 decimal digits. *rel_tol* must be nonnegative and less
than ``1.0``.
*abs_tol* is the absolute tolerance; it defaults to ``0.0`` and it must be
nonnegative. When comparing ``x`` to ``0.0``, ``isclose(x, 0)`` is computed
as ``abs(x) <= rel_tol * abs(x)``, which is ``False`` for any ``x`` and
rel_tol less than ``1.0``. So add an appropriate positive abs_tol argument
to the call.
The IEEE 754 special values of ``NaN``, ``inf``, and ``-inf`` will be
handled according to IEEE rules. Specifically, ``NaN`` is not considered
close to any other value, including ``NaN``. ``inf`` and ``-inf`` are only
considered close to themselves.
.. versionadded:: 3.5
.. seealso::
:pep:`485` -- A function for testing approximate equality
Constants
---------
.. data:: pi
The mathematical constant *π*, as a float.
.. data:: e
The mathematical constant *e*, as a float.
.. data:: tau
The mathematical constant *τ*, as a float.
.. versionadded:: 3.6
.. data:: inf
Floating-point positive infinity. Equivalent to ``float('inf')``.
.. versionadded:: 3.6
.. data:: infj
Complex number with zero real part and positive infinity imaginary
part. Equivalent to ``complex(0.0, float('inf'))``.
.. versionadded:: 3.6
.. data:: nan
A floating-point "not a number" (NaN) value. Equivalent to
``float('nan')``.
.. versionadded:: 3.6
.. data:: nanj
Complex number with zero real part and NaN imaginary part. Equivalent to
``complex(0.0, float('nan'))``.
.. versionadded:: 3.6
.. index:: pair: module; math
Note that the selection of functions is similar, but not identical, to that in
module :mod:`math`. The reason for having two modules is that some users aren't
interested in complex numbers, and perhaps don't even know what they are. They
would rather have ``math.sqrt(-1)`` raise an exception than return a complex
number. Also note that the functions defined in :mod:`cmath` always return a
complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).
A note on branch cuts: They are curves along which the given function fails to
be continuous. They are a necessary feature of many complex functions. It is
assumed that if you need to compute with complex functions, you will understand
about branch cuts. Consult almost any (not too elementary) book on complex
variables for enlightenment. For information of the proper choice of branch
cuts for numerical purposes, a good reference should be the following:
.. seealso::
Kahan, W: Branch cuts for complex elementary functions; or, Much ado about
nothing's sign bit. In Iserles, A., and Powell, M. (eds.), The state of the art
in numerical analysis. Clarendon Press (1987) pp165--211.
|